
Denotationally Correct Computer Arithmetic

Atticus Kuhn
2023-07-11 13:29 GMT-8



Preliminaries



About Denotational Design

Definition
Denotational Design is a type of thinking that prioirtizes thinking about the meaning and
creating precise and elegant specifications using tools from abstract algebra and category
theory.

Notation
In denotational design, the function J·K is used to take any object to its meaning.



About Denotational Design

Definition
Denotational Design is a type of thinking that prioirtizes thinking about the meaning and
creating precise and elegant specifications using tools from abstract algebra and category
theory.

Notation
In denotational design, the function J·K is used to take any object to its meaning.



Motivations

Why are we interested?

Software and hardware engineering are built upon a tower of
hodge-podge and ad-hoc foundations; desirable properties such as correctness are either not
checked or not even specified

“That is not only not right; it is not even wrong” - Wolgang Pauli

Using mathematics can return elegance to computation.



Motivations

Why are we interested? Software and hardware engineering are built upon a tower of
hodge-podge and ad-hoc foundations; desirable properties such as correctness are either not
checked or not even specified

“That is not only not right; it is not even wrong” - Wolgang Pauli

Using mathematics can return elegance to computation.



Motivations

Why are we interested? Software and hardware engineering are built upon a tower of
hodge-podge and ad-hoc foundations; desirable properties such as correctness are either not
checked or not even specified

“That is not only not right; it is not even wrong” - Wolgang Pauli

Using mathematics can return elegance to computation.



Motivations

Why are we interested? Software and hardware engineering are built upon a tower of
hodge-podge and ad-hoc foundations; desirable properties such as correctness are either not
checked or not even specified

“That is not only not right; it is not even wrong” - Wolgang Pauli

Using mathematics can return elegance to computation.



Philosophy

N N

Bn Bn

+N

+Bn

J·K J·K J·K

Figure 1: A Diagram Showing the Relationship
Between Representations and Meanings

We care about problems in mathematics, but
our computations take place over physics
(electrons, circuits).

The denotation functionJ·K gives us the meaning of any representation
of electrons or bits.
Question
What does it mean for a function over
representations to be correct?

Theorem
We say a function over representations is
correct if Figure 6 commutes, i.e. if

JA +Bn BK = JAK +N JBK.



Philosophy

N N

Bn Bn

+N

+Bn

J·K J·K J·K

Figure 1: A Diagram Showing the Relationship
Between Representations and Meanings

We care about problems in mathematics, but
our computations take place over physics
(electrons, circuits). The denotation functionJ·K gives us the meaning of any representation
of electrons or bits.

Question
What does it mean for a function over
representations to be correct?

Theorem
We say a function over representations is
correct if Figure 6 commutes, i.e. if

JA +Bn BK = JAK +N JBK.



Philosophy

N N

Bn Bn

+N

+Bn

J·K J·K J·K

Figure 1: A Diagram Showing the Relationship
Between Representations and Meanings

We care about problems in mathematics, but
our computations take place over physics
(electrons, circuits). The denotation functionJ·K gives us the meaning of any representation
of electrons or bits.
Question
What does it mean for a function over
representations to be correct?

Theorem
We say a function over representations is
correct if Figure 6 commutes, i.e. if

JA +Bn BK = JAK +N JBK.



Philosophy

N N

Bn Bn

+N

+Bn

J·K J·K J·K

Figure 1: A Diagram Showing the Relationship
Between Representations and Meanings

We care about problems in mathematics, but
our computations take place over physics
(electrons, circuits). The denotation functionJ·K gives us the meaning of any representation
of electrons or bits.
Question
What does it mean for a function over
representations to be correct?

Theorem
We say a function over representations is
correct if Figure 6 commutes, i.e. if

JA +Bn BK = JAK +N JBK.



Why Computer Arithmetic

Reasons why I chose computer arithmetic

1. It is elementary; Most people have some exposure
2. It is a good way to show denotational design

The focus is not on any specific circuit component, but on specifications as to why it is
correct



Why Computer Arithmetic

Reasons why I chose computer arithmetic

1. It is elementary; Most people have some exposure

2. It is a good way to show denotational design

The focus is not on any specific circuit component, but on specifications as to why it is
correct



Why Computer Arithmetic

Reasons why I chose computer arithmetic

1. It is elementary; Most people have some exposure
2. It is a good way to show denotational design

The focus is not on any specific circuit component, but on specifications as to why it is
correct



Why Computer Arithmetic

Reasons why I chose computer arithmetic

1. It is elementary; Most people have some exposure
2. It is a good way to show denotational design

The focus is not on any specific circuit component, but on specifications as to why it is
correct



Simplifications

For the purposes of this talk, I simplified from my paper:

1. In my paper, I used the computer theorem prover language Agda to prove my
propositions correct. You do not need to know programming for this talk.

2. In my paper, I talked about category theory, but for the sake of this talk, just imagine
everything is occuring in the category of functions.

3. In my paper, I used little endian encoding, but in this talk, I will use big endian encoding
because most people are probably more familiar with big endian.



Simplifications

For the purposes of this talk, I simplified from my paper:

1. In my paper, I used the computer theorem prover language Agda to prove my
propositions correct. You do not need to know programming for this talk.

2. In my paper, I talked about category theory, but for the sake of this talk, just imagine
everything is occuring in the category of functions.

3. In my paper, I used little endian encoding, but in this talk, I will use big endian encoding
because most people are probably more familiar with big endian.



Simplifications

For the purposes of this talk, I simplified from my paper:

1. In my paper, I used the computer theorem prover language Agda to prove my
propositions correct. You do not need to know programming for this talk.

2. In my paper, I talked about category theory, but for the sake of this talk, just imagine
everything is occuring in the category of functions.

3. In my paper, I used little endian encoding, but in this talk, I will use big endian encoding
because most people are probably more familiar with big endian.



Simplifications

For the purposes of this talk, I simplified from my paper:

1. In my paper, I used the computer theorem prover language Agda to prove my
propositions correct. You do not need to know programming for this talk.

2. In my paper, I talked about category theory, but for the sake of this talk, just imagine
everything is occuring in the category of functions.

3. In my paper, I used little endian encoding, but in this talk, I will use big endian encoding
because most people are probably more familiar with big endian.



Binary Basics

We will represent binary numbers as lists of bits, where the least significant bit is on the right
(big endian encoding).

As an additional preliminary, we expect the reader to be familiar with common bitwise
operations, including · ⊕ ·, · ∨ ·, and · ∧ · (see table 1).
Notation
We use N to denote our number system, we use B to represent a bit, and we use Bn to
denote an n-bit representation.

· ⊕ · · ∨ · · ∧ ·

0 ⊕ 0 = 0 0 ∨ 0 = 0 0 ∧ 0 = 0
0 ⊕ 1 = 1 0 ∨ 1 = 1 0 ∧ 1 = 0
1 ⊕ 0 = 1 1 ∨ 0 = 1 1 ∧ 0 = 0
1 ⊕ 1 = 0 1 ∨ 0 = 1 1 ∧ 1 = 1

Table 1: · ⊕ ·, · ∨ ·, and · ∧ ·



Addition



Converting Bn to N

Anything we do is only correct modulo our meaning function J·K.
Jbn−1 · · · b1b0K = Jb0K + 2Jbn−1 · · · b1K (1)

= Jb0K + 2Jb1K + 4Jb2K + · · ·+ 2n−1Jbn−1K (2)

Input

1

0

1

1

1

0

if 1
1

0

1

0

if 0

0

1

1

0

if 1

1

1

4
add 5 5 output5

2

2
add 4

3

1

0

2
add 2

0

1

0
add 1

1

2

2

1

1
add 2

1

1 2

Figure 2: An Example showing J101K = 5



Converting Bn to N

Anything we do is only correct modulo our meaning function J·K.
Jbn−1 · · · b1b0K = Jb0K + 2Jbn−1 · · · b1K (1)

= Jb0K + 2Jb1K + 4Jb2K + · · ·+ 2n−1Jbn−1K (2)

Input

1

0

1

1

1

0

if 1
1

0

1

0

if 0

0

1

1

0

if 1

1

1

4
add 5 5 output5

2

2
add 4

3

1

0

2
add 2

0

1

0
add 1

1

2

2

1

1
add 2

1

1 2

Figure 2: An Example showing J101K = 5



Converting Bn to N

Anything we do is only correct modulo our meaning function J·K.
Jbn−1 · · · b1b0K = Jb0K + 2Jbn−1 · · · b1K (1)

= Jb0K + 2Jb1K + 4Jb2K + · · ·+ 2n−1Jbn−1K (2)

Input

1

0

1

1

1

0

if 1
1

0

1

0

if 0

0

1

1

0

if 1

1

1

4
add 5 5 output5

2

2
add 4

3

1

0

2
add 2

0

1

0
add 1

1

2

2

1

1
add 2

1

1 2

Figure 2: An Example showing J101K = 5



Half-Adder Specification

A half adder is a function that adds two bits (possibly with a carry).

·+H · : B× B → B2 (3)

We need a correctness specification for a half-adder.

∀A,B ∈ B1 JA +H BK = JAK +N JBK (4)



Half-Adder Specification

A half adder is a function that adds two bits (possibly with a carry).

·+H · : B× B → B2 (3)

We need a correctness specification for a half-adder.

∀A,B ∈ B1 JA +H BK = JAK +N JBK (4)



Half-Adder Example

∀A,B ∈ B1 A +H B = (A ∧ B,A ⊕ B) (5)

Input
1

1
1

1
xor 0

1

1

1

1
and 1

1

1

1

0
output

0

1

Figure 3: An Example Showing 1 +H 1 = 10



Full-Adder Specification

A full-adder adds 3 bits with possibly a carry.

+F(·, ·, ·) : B× B× B → B2 (6)

∀A,B,C ∈ B1 J+F(A,B,C)K = JAK + JBK + JCK (7)



Full-Adder Example

∀A,B,C ∈ B1 +F (A,B,C) = (A ∧ B ∨ (A ⊕ B) ∧ C,A ⊕ B ⊕ C) (8)

Input

1

0

1

1

0
half-adder

0

1

1

0

1

1
half-adder

1

0
1

1

0
output

1

0

1
or 1

0

0

1
1

Figure 4: An Example Showing +F(1, 0, 1) = 10



Ripple Adder Specification

·+·
Bn · : B1 × Bn × Bn → Bn+1 (9)

∀A,B ∈ Bn ∀C ∈ B1 JA +C
Bn BK = JAK +N JBK +N JCK (10)



Ripple Adder Specification

1 11 10 1
+ 1 1 1
1 1 0 0

Table 2: Grade-School Addition

an−1 · · · a2a1a0 +
c0
Bn bn−1 · · · b2b1b0 = (an−1 · · · a2a1 +

c1
Bn−1 bn−1 · · · b2b1)r0

where
c1r0 = +F(a0, b0, c0)

(11)



Ripple Adder Picture

Input 1

1

0

1

1

1

0

Full-Adder
1

0

1

0

1

1

Full-Adder
1

0

0
1

1

1

Full-Adder
1

1

1

Input 2

1

1

1

1

1

1
1

1

0

0

Output

0

1

0

1 1

1

Figure 5: An Example Showin 101 +0
B3 111 = 1100



Ripple Adder Proof

Proof.
Induct on n. If n = 1, we just have a full-adder. Otherwise, let n = n + 1.

Jan · · · a2a1a0 +
c0
Bn+1 bn · · · b2b1b0K (12)

= J(an · · · a2a1 +
c1
Bn bn · · · b2b1)r0K (13)

= 2Jan · · · a2a1 +
c1
Bn bn · · · b2b1K + Jr0K (14)

= 2(Jan · · · a2a1K + Jbn−1 · · · b2b1K + Jc1K) + Jr0K (15)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + 2Jc1K + Jr0K (16)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Jc1r0K (17)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + J+F(a0, b0, c0)K (18)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Ja0K + Jb0K + Jc0K (19)
= 2Jan · · · a2a1K + Ja0K + 2Jbn−1 · · · b2b1K + Jb0K + Jc0K (20)
= Jan · · · a2a1a0K + Jbn · · · b2b1b0K + Jc0K (21)



Ripple Adder Proof

Proof.
Induct on n. If n = 1, we just have a full-adder. Otherwise, let n = n + 1.

Jan · · · a2a1a0 +
c0
Bn+1 bn · · · b2b1b0K (12)

= J(an · · · a2a1 +
c1
Bn bn · · · b2b1)r0K (13)

= 2Jan · · · a2a1 +
c1
Bn bn · · · b2b1K + Jr0K (14)

= 2(Jan · · · a2a1K + Jbn−1 · · · b2b1K + Jc1K) + Jr0K (15)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + 2Jc1K + Jr0K (16)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Jc1r0K (17)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + J+F(a0, b0, c0)K (18)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Ja0K + Jb0K + Jc0K (19)
= 2Jan · · · a2a1K + Ja0K + 2Jbn−1 · · · b2b1K + Jb0K + Jc0K (20)
= Jan · · · a2a1a0K + Jbn · · · b2b1b0K + Jc0K (21)



Ripple Adder Proof

Proof.
Induct on n. If n = 1, we just have a full-adder. Otherwise, let n = n + 1.

Jan · · · a2a1a0 +
c0
Bn+1 bn · · · b2b1b0K (12)

= J(an · · · a2a1 +
c1
Bn bn · · · b2b1)r0K (13)

= 2Jan · · · a2a1 +
c1
Bn bn · · · b2b1K + Jr0K (14)

= 2(Jan · · · a2a1K + Jbn−1 · · · b2b1K + Jc1K) + Jr0K (15)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + 2Jc1K + Jr0K (16)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Jc1r0K (17)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + J+F(a0, b0, c0)K (18)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Ja0K + Jb0K + Jc0K (19)
= 2Jan · · · a2a1K + Ja0K + 2Jbn−1 · · · b2b1K + Jb0K + Jc0K (20)
= Jan · · · a2a1a0K + Jbn · · · b2b1b0K + Jc0K (21)



Ripple Adder Proof

Proof.
Induct on n. If n = 1, we just have a full-adder. Otherwise, let n = n + 1.

Jan · · · a2a1a0 +
c0
Bn+1 bn · · · b2b1b0K (12)

= J(an · · · a2a1 +
c1
Bn bn · · · b2b1)r0K (13)

= 2Jan · · · a2a1 +
c1
Bn bn · · · b2b1K + Jr0K (14)

= 2(Jan · · · a2a1K + Jbn−1 · · · b2b1K + Jc1K) + Jr0K (15)

= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + 2Jc1K + Jr0K (16)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Jc1r0K (17)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + J+F(a0, b0, c0)K (18)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Ja0K + Jb0K + Jc0K (19)
= 2Jan · · · a2a1K + Ja0K + 2Jbn−1 · · · b2b1K + Jb0K + Jc0K (20)
= Jan · · · a2a1a0K + Jbn · · · b2b1b0K + Jc0K (21)



Ripple Adder Proof

Proof.
Induct on n. If n = 1, we just have a full-adder. Otherwise, let n = n + 1.

Jan · · · a2a1a0 +
c0
Bn+1 bn · · · b2b1b0K (12)

= J(an · · · a2a1 +
c1
Bn bn · · · b2b1)r0K (13)

= 2Jan · · · a2a1 +
c1
Bn bn · · · b2b1K + Jr0K (14)

= 2(Jan · · · a2a1K + Jbn−1 · · · b2b1K + Jc1K) + Jr0K (15)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + 2Jc1K + Jr0K (16)

= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Jc1r0K (17)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + J+F(a0, b0, c0)K (18)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Ja0K + Jb0K + Jc0K (19)
= 2Jan · · · a2a1K + Ja0K + 2Jbn−1 · · · b2b1K + Jb0K + Jc0K (20)
= Jan · · · a2a1a0K + Jbn · · · b2b1b0K + Jc0K (21)



Ripple Adder Proof

Proof.
Induct on n. If n = 1, we just have a full-adder. Otherwise, let n = n + 1.

Jan · · · a2a1a0 +
c0
Bn+1 bn · · · b2b1b0K (12)

= J(an · · · a2a1 +
c1
Bn bn · · · b2b1)r0K (13)

= 2Jan · · · a2a1 +
c1
Bn bn · · · b2b1K + Jr0K (14)

= 2(Jan · · · a2a1K + Jbn−1 · · · b2b1K + Jc1K) + Jr0K (15)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + 2Jc1K + Jr0K (16)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Jc1r0K (17)

= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + J+F(a0, b0, c0)K (18)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Ja0K + Jb0K + Jc0K (19)
= 2Jan · · · a2a1K + Ja0K + 2Jbn−1 · · · b2b1K + Jb0K + Jc0K (20)
= Jan · · · a2a1a0K + Jbn · · · b2b1b0K + Jc0K (21)



Ripple Adder Proof

Proof.
Induct on n. If n = 1, we just have a full-adder. Otherwise, let n = n + 1.

Jan · · · a2a1a0 +
c0
Bn+1 bn · · · b2b1b0K (12)

= J(an · · · a2a1 +
c1
Bn bn · · · b2b1)r0K (13)

= 2Jan · · · a2a1 +
c1
Bn bn · · · b2b1K + Jr0K (14)

= 2(Jan · · · a2a1K + Jbn−1 · · · b2b1K + Jc1K) + Jr0K (15)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + 2Jc1K + Jr0K (16)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Jc1r0K (17)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + J+F(a0, b0, c0)K (18)

= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Ja0K + Jb0K + Jc0K (19)
= 2Jan · · · a2a1K + Ja0K + 2Jbn−1 · · · b2b1K + Jb0K + Jc0K (20)
= Jan · · · a2a1a0K + Jbn · · · b2b1b0K + Jc0K (21)



Ripple Adder Proof

Proof.
Induct on n. If n = 1, we just have a full-adder. Otherwise, let n = n + 1.

Jan · · · a2a1a0 +
c0
Bn+1 bn · · · b2b1b0K (12)

= J(an · · · a2a1 +
c1
Bn bn · · · b2b1)r0K (13)

= 2Jan · · · a2a1 +
c1
Bn bn · · · b2b1K + Jr0K (14)

= 2(Jan · · · a2a1K + Jbn−1 · · · b2b1K + Jc1K) + Jr0K (15)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + 2Jc1K + Jr0K (16)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Jc1r0K (17)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + J+F(a0, b0, c0)K (18)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Ja0K + Jb0K + Jc0K (19)

= 2Jan · · · a2a1K + Ja0K + 2Jbn−1 · · · b2b1K + Jb0K + Jc0K (20)
= Jan · · · a2a1a0K + Jbn · · · b2b1b0K + Jc0K (21)



Ripple Adder Proof

Proof.
Induct on n. If n = 1, we just have a full-adder. Otherwise, let n = n + 1.

Jan · · · a2a1a0 +
c0
Bn+1 bn · · · b2b1b0K (12)

= J(an · · · a2a1 +
c1
Bn bn · · · b2b1)r0K (13)

= 2Jan · · · a2a1 +
c1
Bn bn · · · b2b1K + Jr0K (14)

= 2(Jan · · · a2a1K + Jbn−1 · · · b2b1K + Jc1K) + Jr0K (15)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + 2Jc1K + Jr0K (16)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Jc1r0K (17)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + J+F(a0, b0, c0)K (18)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Ja0K + Jb0K + Jc0K (19)
= 2Jan · · · a2a1K + Ja0K + 2Jbn−1 · · · b2b1K + Jb0K + Jc0K (20)

= Jan · · · a2a1a0K + Jbn · · · b2b1b0K + Jc0K (21)



Ripple Adder Proof

Proof.
Induct on n. If n = 1, we just have a full-adder. Otherwise, let n = n + 1.

Jan · · · a2a1a0 +
c0
Bn+1 bn · · · b2b1b0K (12)

= J(an · · · a2a1 +
c1
Bn bn · · · b2b1)r0K (13)

= 2Jan · · · a2a1 +
c1
Bn bn · · · b2b1K + Jr0K (14)

= 2(Jan · · · a2a1K + Jbn−1 · · · b2b1K + Jc1K) + Jr0K (15)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + 2Jc1K + Jr0K (16)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Jc1r0K (17)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + J+F(a0, b0, c0)K (18)
= 2Jan · · · a2a1K + 2Jbn−1 · · · b2b1K + Ja0K + Jb0K + Jc0K (19)
= 2Jan · · · a2a1K + Ja0K + 2Jbn−1 · · · b2b1K + Jb0K + Jc0K (20)
= Jan · · · a2a1a0K + Jbn · · · b2b1b0K + Jc0K (21)



Multiplication



Multiplication Specification

Before we implement multiplication, we first need a specification.

The specification for
multiplication is very similar to that of addition.

∀A ∈ Bm B ∈ Bn JA ×Bm,n BK = JAK ×N JBK
N N

Bn Bn

×N

×Bn

J·K J·K J·K

Figure 6: Specification of Multiplication



Multiplication Specification

Before we implement multiplication, we first need a specification. The specification for
multiplication is very similar to that of addition.

∀A ∈ Bm B ∈ Bn JA ×Bm,n BK = JAK ×N JBK
N N

Bn Bn

×N

×Bn

J·K J·K J·K

Figure 6: Specification of Multiplication



Multiplication Specification

Before we implement multiplication, we first need a specification. The specification for
multiplication is very similar to that of addition.

∀A ∈ Bm B ∈ Bn JA ×Bm,n BK = JAK ×N JBK
N N

Bn Bn

×N

×Bn

J·K J·K J·K

Figure 6: Specification of Multiplication



Bit Multiplier

Our first building block is multiplication by a single bit.

The correctness specification is

∀b ∈ B1 A ∈ Bn Jb ×B1,n AK = JbK ×N JAK
One implementation is

· ×B1,m · : B1 × Bn → Bn

a ×B1,m B = if(a,B, 0)



Bit Multiplier

Our first building block is multiplication by a single bit. The correctness specification is

∀b ∈ B1 A ∈ Bn Jb ×B1,n AK = JbK ×N JAK

One implementation is

· ×B1,m · : B1 × Bn → Bn

a ×B1,m B = if(a,B, 0)



Bit Multiplier

Our first building block is multiplication by a single bit. The correctness specification is

∀b ∈ B1 A ∈ Bn Jb ×B1,n AK = JbK ×N JAK
One implementation is

· ×B1,m · : B1 × Bn → Bn

a ×B1,m B = if(a,B, 0)



Shift Right

We also need the ability to double a number, which we will call · ≪ 1.

We will have
specification

∀B ∈ Bn JB ≪ 1K = 2JBK
We can implement the specification by just appending a 0 to the end.

bn−1 · · · b1b0 ≪ 1 = bn−1 · · · b1b00



Shift Right

We also need the ability to double a number, which we will call · ≪ 1. We will have
specification

∀B ∈ Bn JB ≪ 1K = 2JBK

We can implement the specification by just appending a 0 to the end.

bn−1 · · · b1b0 ≪ 1 = bn−1 · · · b1b00



Shift Right

We also need the ability to double a number, which we will call · ≪ 1. We will have
specification

∀B ∈ Bn JB ≪ 1K = 2JBK
We can implement the specification by just appending a 0 to the end.

bn−1 · · · b1b0 ≪ 1 = bn−1 · · · b1b00



Shift and Add

1 0 1 1
× 1 1 1 0

0 0 0 0
1 0 1 1

1 0 1 1
+ 1 0 1 1
1 0 0 1 1 0 1 0

Table 3: An Example shift-and-add multiplication

bn−1 . . . b1b0 ×Bn,m A = b0 ×B1,m A + (bn−1, . . . , b1 ×Bn−1,m A) ≪ 1 (22)



Future Work

1. Carry-Lookahead Adders

2. Binary Subtraction
3. Binary Division



Future Work

1. Carry-Lookahead Adders
2. Binary Subtraction
3. Binary Division



Key Takeaways

1. We can formally prove the correctness of software and hardware components.
2. Homomoprhisms and category theory can give us more elegant and precise specifications.



Key Takeaways

1. We can formally prove the correctness of software and hardware components.

2. Homomoprhisms and category theory can give us more elegant and precise specifications.



Key Takeaways

1. We can formally prove the correctness of software and hardware components.
2. Homomoprhisms and category theory can give us more elegant and precise specifications.



Questions?

Ask me any questions. Or if you have any questions later

1. Email me at atticusmkuhn@gmail.com
2. On Discord at Euler#2074


	Preliminaries
	Addition
	Multiplication

