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1 Introduction

2 Elliptic Curves

2.1 History and Usage of Elliptic Curves

The history of elliptic curves is a long and rich one, dating back to the
ancient Greeks. The first known mention of elliptic curves is in the work
of Diophantus of Alexandria, who studied them in the 3rd century AD.
However, it was not until the 19th century that elliptic curves began to be
studied in a systematic way.

In the 1820s, Adrien-Marie Legendre and Carl Friedrich Gauss indepen-
dently discovered that elliptic curves could be used to define a new kind of
function, called an elliptic function. Elliptic functions have many impor-
tant properties, and they have been used in a wide variety of applications,
including number theory, physics, and engineering.

In the early 20th century, mathematicians began to study the group
structure of elliptic curves. They showed that the set of all points on an
elliptic curve forms an abelian group, which means that it is closed under
addition and has an identity element. This group structure has been used
to great effect in cryptography, where it is used to create secure encryption
algorithms.

In the 1980s, Victor Miller and Neal Koblitz independently developed
the idea of using elliptic curves in cryptography. They showed that elliptic
curves could be used to create public-key encryption schemes that were just
as secure as existing schemes, but required much smaller key sizes. This
made elliptic curve cryptography (ECC) an attractive option for applica-
tions where space was limited, such as in mobile devices and embedded
systems.

Today, ECC is one of the most widely used forms of cryptography. It
is used in a wide variety of applications, including secure web browsing,
electronic signatures, and digital certificates. Elliptic curves are also being
studied for their potential applications in other areas, such as quantum
computing and artificial intelligence.
Here are some of the key figures in the history of elliptic curves: -Diophantus
of Alexandria (3rd century AD)
-Adrien-Marie Legendre (1752-1833)
-Carl Friedrich Gauss (1777-1855)
-Henri Poincaré (1854-1912)
-André Weil (1906-1998)
-Victor Miller (born 1947)
-Neal Koblitz (born 1948)
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2.2 Definition and ...

An elliptic curve is a smooth, projective, algebraic curve of genus one, on
which there is a specified point O. An elliptic curve is defined over a field
K and describes points in K2, the Cartesian product of K with itself. If
the field’s characteristic is different from 2 and 3, then the curve can be
described as a plane algebraic curve which consists of solutions (x, y) for:

y2 = x3 + ax+ b

a, b ∈ K

The point O is called the “origin” of the elliptic curve. It is the point
that is always on the curve, no matter what the values of a and b are.

The set of all points on an elliptic curve forms an abelian group, which
means that it is closed under addition and has an identity element. The
identity element is the origin, O.

Elliptic curves are used in a variety of applications, including cryptog-
raphy, number theory, and physics. In cryptography, elliptic curves can be
used to create secure encryption algorithms.

Here are some examples of well-known elliptic curves:
Curve25519 is a 255-bit elliptic curve that is used in a variety of appli-

cations, including the Transport Layer Security (TLS) protocol. Curve448
is a 448-bit elliptic curve that is also used in TLS. E-521 is a 521-bit el-
liptic curve that is used in the NIST Digital Signature Algorithm (DSA)
standard.

2.3 Applications of Elliptic Cureves

The study of elliptic curves has had a profound impact on number theory.
One of the key connections between these two areas lies in the relationship
between rational solutions of elliptic curves and the arithmetic properties
of their coefficients.

Given an elliptic curve E defined over the rational numbers, the set of
rational solutions, denoted as E(Q), corresponds to the points on the curve
with rational coordinates. The set E(Q) forms an abelian group under the
group operation of the elliptic curve.

The Mordell-Weil theorem, also known as the Mordell-Weil theorem of
elliptic curves, states that E(Q) is a finitely generated abelian group. In

3



other words, the rational solutions of an elliptic curve can be generated by
a finite set of points.

This remarkable result has profound implications in number theory. The
Mordell-Weil theorem allows us to investigate the structure of rational solu-
tions on elliptic curves and study their arithmetic properties. For example,
it enables us to understand the existence and behavior of rational points
on certain families of elliptic curves, which is closely related to Diophantine
equations and the study of integer solutions. One of the most significant
open problems in number theory is the Birch and Swinnerton-Dyer conjec-
ture. This conjecture establishes a deep connection between the arithmetic
properties of an elliptic curve and the behavior of its associated L-series.

The L-series associated with an elliptic curve E is a complex function
defined by an Euler product:

(2.1) L(E, s) =
∏
p

1

1− app−s + p1−2s
,

where ap represents the number of points on the elliptic curve modulo
p. The Birch and Swinnerton-Dyer conjecture suggests that the behavior
of L(E, s) near s = 1 is intimately connected to the arithmetic properties
of E.

More specifically, the conjecture states that if E(Q) has rank r, where
r is a non-negative integer, then the leading term of the Taylor series ex-
pansion of L(E, s) at s = 1 is given by:

(2.2) L(E, s) ∼ C(s− 1)r,

where C is a nonzero constant. The rank r corresponds to the number
of independent rational points on E, while the constant C relates to the
size of the torsion subgroup of E(Q).

The Birch and Swinnerton-Dyer conjecture has far-reaching implica-
tions in number theory. It provides a powerful tool for understanding the
behavior of rational points on elliptic curves and the distribution of prime
numbers. Moreover, the conjecture connects the algebraic and analytic
properties of elliptic curves, revealing profound insights into the deep con-
nections between number theory and elliptic curves. The relationship be-
tween elliptic curves and number theory has had significant applications in
cryptography, factorization algorithms, and solving Diophantine equations.
Elliptic curve cryptography (ECC), for example, relies on the difficulty of
solving the discrete logarithm problem on elliptic curves for its security.
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The efficient computation of elliptic curve points and their arithmetic op-
erations have revolutionized modern cryptographic protocols.

Furthermore, the development of sophisticated algorithms, such as the
elliptic curve method (ECM), has greatly improved the efficiency of factor-
ing large integers. ECM is based on the properties of elliptic curves and
has been instrumental in breaking several challenging factorization records.

The study of elliptic curves and their connection to number theory con-
tinues to be an active area of research. Advances in computational tech-
niques, the study of L-functions, and the development of new cryptographic
protocols have further deepened our understanding of this relationship and
its applications.

3 Complex Analysis background

Complex analysis is a branch of mathematics that deals with functions of
complex variables. It extends the concepts of calculus to the complex plane,
where complex numbers are represented by points in a two-dimensional
space. In this article, we will explore the fundamentals of complex analysis,
starting from basic operations in the complex plane and progressing to the
concept of analytic continuation.

3.1 Complex Numbers

Complex numbers are numbers of the form z = a + bi, where a and b are
real numbers and i is the imaginary unit defined as i2 = −1. The real part
of z, denoted as ℜ(z), is a, and the imaginary part, denoted as ℑ(z), is b.
The set of complex numbers is denoted by C.

Complex numbers can be added and multiplied in a straightforward
manner. For two complex numbers z1 = a1 + b1i and z2 = a2 + b2i, their
sum is obtained by adding their real and imaginary parts separately:

(3.1) z1 + z2 = (a1 + a2) + (b1 + b2)i.

Similarly, the product of two complex numbers is computed using the
distributive property:

(3.2) z1 · z2 = (a1a2 − b1b2) + (a1b2 + a2b1)i.
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3.2 Complex Functions

A complex function f(z) is a rule that assigns a complex number w to each
complex number z. In other words, f(z) takes an input z from the complex
plane and produces an output w also in the complex plane.

The behavior of complex functions can be visualized using the concept
of mappings. Consider a function f(z) that maps points from the com-
plex plane to another complex plane. Each point z is transformed to its
corresponding point w = f(z). These mappings can be visualized using a
diagram called a complex plane plot. For example, the function f(z) = z2

squares each point in the complex plane.

ℜ(z)

ℑ(z)

-2 -1 1 2

-2

-1

1

2

Complex functions can exhibit various properties, including differentia-
bility and analyticity. A complex function f(z) is said to be differentiable
at a point z0 if the limit

(3.3) f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists. If f(z) is differentiable at every point in a region of the complex
plane, it is said to be analytic in that region. Analytic functions play a
crucial role in complex analysis and possess many important properties.

3.3 Complex Integration

Integration in complex analysis is an extension of the concept of integration
in real analysis. Given a complex function f(z) defined on a curve C in the
complex plane, the integral of f(z) over C is denoted as

∫
C
f(z)dz.
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The value of the complex integral depends on the path of integration
and the function being integrated. If the integral is independent of the
path taken, the function f(z) is said to be path-independent or holomor-
phic. Such functions can be integrated along any curve between two points
without changing the result. This property is a consequence of the Cauchy-
Riemann equations, which relate the real and imaginary parts of a holo-
morphic function.

3.4 Analytic Continuation

Analytic continuation is a powerful technique in complex analysis that al-
lows us to extend the domain of a given function. It deals with the concept
of continuation of a function beyond its initially defined region of conver-
gence.

Consider a function f(z) that is defined on a certain region of the com-
plex plane. Analytic continuation involves finding another region where
f(z) is defined and coincides with the original function in their common
domain. By extending the function in this manner, we gain insight into its
properties in a broader context.

The idea of analytic continuation can be illustrated using the Riemann
zeta function as an example. The Riemann zeta function, denoted as ζ(s),
is initially defined for complex numbers s with real part greater than 1 as

(3.4) ζ(s) =

∞∑
n=1

1

ns
.

However, this series only converges for ℜ(s) > 1. By using techniques
such as the functional equation and the Euler product formula, we can
analytically continue the Riemann zeta function to the entire complex plane
except for s = 1, where it has a simple pole.

Analytic continuation allows us to explore the behavior of a function
in regions where its initial definition does not hold. It plays a vital role in
many areas of mathematics, such as number theory, quantum field theory,
and complex dynamics.

3.4.1 The Riemann Zeta Function

One of the most famous examples of analytic continuation in number theory
is the Riemann zeta function, denoted by ζ(s). It is defined for complex
numbers s with real part greater than 1 as the infinite series:
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(3.5) ζ(s) =

∞∑
n=1

1

ns
.

The series representation of the zeta function converges for Re(s) >
1. However, the zeta function can be analytically continued to the entire
complex plane except for the point s = 1, where it has a simple pole.

Analytic continuation of the zeta function is achieved through the use
of functional equations and the Euler product formula. The functional
equation relates the values of ζ(s) to its values at 1− s and introduces the
complex conjugate:

(3.6) ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

This functional equation allows us to extend the zeta function beyond
its initial region of convergence and investigate its behavior in other parts
of the complex plane. Analytic continuation of the zeta function is crucial
in the study of prime numbers, the distribution of primes, and the Riemann
Hypothesis.

3.4.2 The Hurwitz Zeta Function

Another example of analytic continuation related to number theory is the
Hurwitz zeta function, denoted by ζ(s, a). It is a generalization of the
Riemann zeta function and is defined for complex numbers s with real part
greater than 1 and a positive real parameter a as:

(3.7) ζ(s, a) =

∞∑
n=0

1

(n+ a)s
.

Similar to the Riemann zeta function, the Hurwitz zeta function can be
analytically continued beyond its initial region of convergence. The process
of analytic continuation allows us to explore the behavior of the Hurwitz
zeta function for values of s where the series does not converge.

Analytic continuation of the Hurwitz zeta function has significant ap-
plications in number theory, particularly in the study of special values of
zeta functions and the distribution of prime numbers. It provides a power-
ful tool for investigating the behavior of zeta functions in various contexts,
leading to valuable insights and conjectures.
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3.4.3 The Dedekind Zeta Function

The Dedekind zeta function, denoted by ζK(s), is a special function asso-
ciated with number fields and algebraic number theory. It is defined for a
number field K as an infinite series:

(3.8) ζK(s) =
∑
a

1

N(a)s
,

where the sum is taken over all non-zero ideals a of the ring of integers
of K, and N(a) represents the norm of the ideal.

The Dedekind zeta function is initially defined for Re(s) > 1, where the
series converges. However, it can be analytically continued to the entire
complex plane except for the point s = 1. Analytic continuation of the
Dedekind zeta function is closely connected to the study of algebraic number
fields and their arithmetic properties.

Analytic continuation of the Dedekind zeta function plays a crucial role
in algebraic number theory, particularly in the investigation of class num-
bers, units, and the behavior of zeta functions associated with number
fields. The connection between the Dedekind zeta function and algebraic
number theory provides deep insights into the properties of number fields
and their arithmetic structures.

3.4.4 The Riemann Hypothesis

Analytic continuation plays a central role in the study of the Riemann zeta
function and its connection to the Riemann Hypothesis. The Riemann
Hypothesis is one of the most famous unsolved problems in mathematics
and states that all non-trivial zeros of the Riemann zeta function lie on the
critical line Re(s) = 1

2 .
The Riemann zeta function can be analytically continued to the entire

complex plane except for the point s = 1, where it has a simple pole. By
analyzing the behavior of the zeta function and its zeros, mathematicians
have made significant progress towards understanding the distribution of
prime numbers and related arithmetic properties.

The connection between the Riemann zeta function, analytic continua-
tion, and the Riemann Hypothesis demonstrates the profound relationship
between complex analysis and number theory. The study of the zeta func-
tion and its zeros continues to be an active area of research, with numerous
applications in both mathematics and physics.
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4 Modular Forms

4.1 History of Modular Forms

The history of modular forms can be traced back to the work of the 18th-
century mathematician Carl Friedrich Gauss. In his study of the arithmetic-
geometric mean, Gauss found several functions that satisfied certain trans-
formation properties under the action of the modular group. These func-
tions were later called modular forms.

The first systematic study of modular forms was carried out by Felix
Klein in the late 19th century. Klein showed that modular forms could be
used to construct elliptic functions, and he also developed some important
theorems about modular forms.

In the early 20th century, Erich Hecke made major contributions to the
theory of modular forms. Hecke introduced many new functions, including
the Hecke operators, which are used to study the structure of modular
forms.

In the second half of the 20th century, modular forms became increas-
ingly important in number theory. Modular forms were used to prove a
number of important theorems, including the modularity theorem, which
states that elliptic curves over rational numbers can be represented by mod-
ular forms.

Today, modular forms are studied in a variety of fields, including num-
ber theory, algebraic geometry, and mathematical physics. Modular forms
continue to be a source of new and interesting mathematical results.

Theorem 4.1. A modular form of weight k is a holomorphic function f(τ)
on the upper half-plane H that satisfies the following two properties:

1. f(τ) is invariant under the action of the modular group SL2(Z),
meaning that for any g ∈ SL2(Z), we have f(g · τ) = f(τ).
2. f(τ) has a Fourier series expansion of the form

f(τ) =
∑
n≥0

anq
n+k,

where q = e2πiτ and an ∈ C.

4.2 Properties of Modular Forms

Modular forms have a number of interesting properties. For example, they
are all related to each other by a process called modular transformation.
This means that if we apply a modular transformation to a modular form,
we will get another modular form.
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Modular forms also have a number of important applications in number
theory. For example, they can be used to construct elliptic curves, which are
a type of algebraic curve that has important applications in cryptography.

4.3 Applications of Modular Forms in Number Theory

One of the most important applications of modular forms in number the-
ory is the construction of elliptic curves. An elliptic curve is a smooth,
projective curve of genus 1 that has a marked point. Elliptic curves have
a number of important applications in cryptography, including the Diffie-
Hellman key exchange protocol and the Elliptic Curve Digital Signature
Algorithm (ECDSA).

Another important application of modular forms in number theory is
the study of the Riemann zeta function. The Riemann zeta function is a
function that is defined for all complex numbers with real part greater than
1. It is a very important function in number theory, and it has been studied
by mathematicians for centuries.

Modular forms can be used to study the Riemann zeta function because
they are related to the Fourier coefficients of the zeta function. This means
that by studying modular forms, we can learn more about the behavior of
the Riemann zeta function. The connection between modular forms and
the Riemann zeta function arises through a beautiful result known as the
Eichler-Selberg trace formula. The trace formula relates the coefficients
of a modular form f to the values of the zeta function ζ(s) evaluated at
certain points.

Let f be a modular form of weight k and n be a positive integer. The
Eichler-Selberg trace formula states that the nth Fourier coefficient of f is
related to the values of ζ(s) as follows:

(4.2) an(f) =
1

nk−1

∑
d|n

dk−1λ(n/d) +
(k − 1)!

(4π)k−1

∑
cusp κ

A(κ)Γ(k− 1, πd2yκ),

where an(f) is the nth Fourier coefficient of f , λ(m) is the Liouville
function, A(κ) is the area of the cusp κ, Γ(k − 1, πd2yκ) is the incomplete
gamma function, and yκ is the width of the cusp κ. This remarkable for-
mula connects the arithmetic properties of modular forms to the analytic
properties of the zeta function. The relationship between modular forms
and the Riemann zeta function has important applications in number the-
ory. For example, this connection has been used to prove the celebrated
modularity theorem, which states that certain types of elliptic curves are
associated with modular forms.
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Furthermore, the Eichler-Selberg trace formula provides a powerful tool
for studying the distribution of prime numbers. By analyzing the coeffi-
cients of modular forms, one can derive information about the behavior of
the Riemann zeta function at critical points. This has led to significant ad-
vancements in understanding the Riemann Hypothesis and the distribution
of prime numbers.

4.4 Modular Forms and L-Functions

Analytic continuation also plays a significant role in the study of modu-
lar forms and their associated L-functions. Modular forms are complex
functions that satisfy certain transformation properties under the modular
group. They have deep connections to number theory, especially through
their associated L-functions.

The L-function associated with a modular form f is defined as an infinite
series:

(4.3) L(f, s) =

∞∑
n=1

an
ns

,

where an represents the Fourier coefficients of the modular form. The
L-function is initially defined for Re(s) > 1, where the series converges.
However, it can be analytically continued to the entire complex plane except
for certain points, such as those where the modular form has a pole.

Analytic continuation of L-functions associated with modular forms is
of great importance in number theory, particularly in the study of the dis-
tribution of prime numbers, the Birch and Swinnerton-Dyer conjecture,
and the Langlands program. The connection between modular forms, L-
functions, and analytic continuation provides deep insights into the inter-
play between complex analysis and number theory. Analytic continuation
also plays a significant role in the study of modular forms and their associ-
ated L-functions. Modular forms are complex functions that satisfy certain
transformation properties under the modular group. They have deep con-
nections to number theory, especially through their associated L-functions.

The L-function associated with a modular form f is defined as an infinite
series:

(4.4) L(f, s) =

∞∑
n=1

an
ns

,
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where an represents the Fourier coefficients of the modular form. The
L-function is initially defined for Re(s) > 1, where the series converges.
However, it can be analytically continued to the entire complex plane except
for certain points, such as those where the modular form has a pole.

Analytic continuation of L-functions associated with modular forms is of
great importance in number theory, particularly in the study of the distribu-
tion of prime numbers, the Birch and Swinnerton-Dyer conjecture, and the
Langlands program. The connection between modular forms, L-functions,
and analytic continuation provides deep insights into the interplay between
complex analysis and number theory.

5 Modularity Theorem

The Modularity Theorem, also known as the Taniyama-Shimura-Weil Con-
jecture, is a groundbreaking result in number theory that establishes a
deep connection between elliptic curves and modular forms. It was first
proposed as a conjecture by Yutaka Taniyama and Goro Shimura in the
1950s and was finally proved in 1994 by Andrew Wiles, marking one of the
most significant achievements in the history of mathematics.

5.1 Statement of the Modularity Theorem

The Modularity Theorem states that every elliptic curve over the rational
numbers is modular, meaning that it can be associated with a specific
modular form. More precisely, for any given elliptic curve E, there exists a
corresponding modular form f such that the L-series associated with E is
essentially the same as the L-series associated with f .

The L-series associated with an elliptic curve E is defined as:

(5.1) L(E, s) =

∞∑
n=1

an
ns

,

where an represents the coefficients of the Fourier expansion of a mod-
ular form associated with E. The Modularity Theorem asserts that there
exists a modular form f such that L(E, s) is equal to L(f, s) up to certain
factors.

5.2 Applications and Significance

The Modularity Theorem has profound implications in number theory and
other areas of mathematics. One of its most notable applications is the
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proof of Fermat’s Last Theorem, which states that there are no non-trivial
integer solutions to the equation xn + yn = zn for n > 2. Andrew Wiles’
proof of Fermat’s Last Theorem relied heavily on the Modularity Theorem
and its connection between elliptic curves and modular forms.

Furthermore, the Modularity Theorem provides a powerful tool for
studying the arithmetic properties of elliptic curves and modular forms. It
allows us to translate questions about elliptic curves into questions about
modular forms, which often have well-established properties and techniques
for analysis.

The Modularity Theorem has also revolutionized the field of algebraic
number theory. It connects algebraic number theory, elliptic curves, and
modular forms through the language of L-series and their analytic proper-
ties. This connection has led to numerous advances in the study of prime
numbers, the distribution of prime ideals, and other important number-
theoretic problems.

5.3 Proof of the Modularity Theorem

The proof of the Modularity Theorem, as accomplished by Andrew Wiles
and Richard Taylor, involved a deep and complex combination of mathe-
matical techniques from various fields, including algebraic geometry, num-
ber theory, and complex analysis. The proof builds upon previous mathe-
matical work and introduces new insights and techniques to establish the
long-sought connection between elliptic curves and modular forms. While a
detailed exposition of the entire proof is beyond the scope of this response,
we can provide an overview of the key ideas and steps involved.

The main strategy in the proof revolves around the concept of modu-
lar forms and their associated Galois representations. Modular forms are
complex functions that satisfy certain transformation properties under the
modular group, while Galois representations provide a link between the al-
gebraic structure of elliptic curves and the arithmetic properties of modular
forms.

Wiles’ proof of the Modularity Theorem can be divided into several key
stages:

5.3.1 Reduction to Semi-stable Elliptic Curves

The proof begins by reducing the general case of an arbitrary elliptic curve
to the special case of semi-stable elliptic curves. This reduction is achieved
by constructing a Galois representation associated with the elliptic curve
and establishing certain properties of this representation. By employing
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techniques from algebraic geometry, Wiles was able to reduce the problem
to the study of semi-stable elliptic curves.

5.3.2 Modular Parametrization of Semi-stable Elliptic Curves

The next step involves establishing a modular parametrization for semi-
stable elliptic curves. Wiles demonstrated that every semi-stable elliptic
curve can be parameterized by a certain class of modular forms known
as cuspidal eigenforms. This parametrization provides a correspondence
between elliptic curves and modular forms, thereby establishing the modu-
larity of semi-stable elliptic curves.

5.3.3 Modularity of Non-semi-stable Elliptic Curves

To extend the result to the more general case of non-semi-stable elliptic
curves, Wiles introduced a novel idea known as ”Frey’s Elliptic Curve
Method.” This method involves assuming the existence of a counterexample
to the Modularity Theorem and using the properties of elliptic curves to
derive a contradiction. By applying this method, Wiles was able to prove
that there are no counterexamples, thereby establishing the modularity of
non-semi-stable elliptic curves.

5.3.4 Completing the Proof

The final step in the proof involves establishing the connection between the
Galois representations associated with elliptic curves and modular forms.
Wiles introduced a new technique called ”Iwasawa theory” to analyze the
relationship between these representations and demonstrate their compat-
ibility. This compatibility implies that the L-series associated with the
elliptic curve and the L-series associated with the modular form are essen-
tially the same, which completes the proof of the Modularity Theorem.

It is important to note that the proof of the Modularity Theorem re-
quired significant advancements in various mathematical fields, and Wiles’
work built upon the contributions of numerous mathematicians. For in-
stance, it drew heavily from the theory of Galois representations, the Taniyama-
Shimura Conjecture, and the profound mathematical insights of mathe-
maticians such as Yutaka Taniyama, Goro Shimura, Jean-Pierre Serre, and
others.

The proof of the Modularity Theorem stands as a monumental achieve-
ment in the history of mathematics. It not only resolved a long-standing
conjecture but also introduced new techniques and deep connections be-
tween diverse areas of mathematics. The Modularity Theorem has had
a profound impact on number theory, algebraic geometry, and the study
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of modular forms, opening up new avenues of research and inspiring fur-
ther investigations into the profound interplay between elliptic curves and
modular forms.

5.4 Generalizations and Ongoing Research

The Modularity Theorem has stimulated further research and generaliza-
tions in the field of number theory. One such generalization is the study of
higher-dimensional modular forms and their connection to abelian varieties,
which are higher-dimensional analogues of elliptic curves.

Moreover, the Modularity Theorem has opened up new avenues for ex-
ploring the Langlands program, a far-reaching and profound conjecture
connecting number theory, representation theory, and harmonic analysis.
The Langlands program seeks to establish deep connections between auto-
morphic forms, Galois representations, and L-functions.

The Modularity Theorem has also inspired research in other branches
of mathematics, such as algebraic geometry, where it has implications for
the study of moduli spaces and the geometry of curves.

6 Fermat’s Last Theorem

Fermat’s Last Theorem is one of the most famous and long-standing conjec-
tures in the history of mathematics. It states that there are no non-trivial
integer solutions to the equation xn + yn = zn for n > 2. This conjecture,
proposed by Pierre de Fermat in the 17th century, remained unproven for
over 350 years and captivated the attention of mathematicians around the
world. The eventual proof of Fermat’s Last Theorem by Andrew Wiles in
1994 marked a historic moment in mathematics.

The equation xn + yn = zn is a special case of Diophantine equations,
which involve finding integer solutions to polynomial equations. The case
where n = 2 corresponds to Pythagorean triples, which have been studied
since ancient times. However, Fermat’s Last Theorem deals with the case
where n is greater than 2, and Fermat famously claimed to have found
remarkable proof for the general case, but he left no record of it.

Andrew Wiles’s proof of Fermat’s Last Theorem relies on advanced
mathematical techniques from various areas, including algebraic number
theory, elliptic curves, and modular forms. Wiles’ approach involved es-
tablishing a deep connection between elliptic curves and modular forms
through the concept of modularity. The proof of the Modularity Theorem
by Andrew Wiles has a profound implication for Fermat’s Last Theorem.
By establishing the modularity of elliptic curves, Wiles demonstrated a deep
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connection between these curves and modular forms. Since the Modularity
Theorem provides a correspondence between elliptic curves and modular
forms, Wiles’ proof implies that any potential counterexample to Fermat’s
Last Theorem would contradict the modularity of the associated elliptic
curve. This contradiction conclusively proves that there are no non-trivial
integer solutions to the equation xn + yn = zn for n > 2, thus resolving
Fermat’s Last Theorem. Therefore, the proof of the Modularity Theo-
rem effectively implies the truth of Fermat’s Last Theorem, establishing
a remarkable connection between these two celebrated results in number
theory.
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