
Pattern Avoidance

Arjun Bhobe

Euler Circle

July 10, 2023



Table of Contents

Introduction

3-patterns

Higher Order Patterns

Stanley-Wilf Conjecture



Introduction to a Pattern Avoidance

Definition
A permutation p ∈ [n] is said to follow a permutation pattern
q ∈ [m] if there exists a subsequence of p such that the
subsequence matches the relative ordering or “pattern” of q.
Otherwise we say p avoids q.

Example
1653724 follows the 3-permutation 132 because we can select
the subsequence 374 which follows the same pattern as 132.

Example
The permutation 1375642 avoids 213 because we cannot
select a subsequence that follows the ordering of 213.
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Visual Examples

Figure. The pattern 132 and the
permutation 1653724.

Figure. The pattern 213 and
permutation 1375642.
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Figure. The pattern 213 and
permutation 1375642.



Definitions

Definition
Given a pattern q, Sn(q) is the set of permutations p ∈ [n]
such that p avoids q.

Definition
The reverse of permutation p = (p1, p2, . . . , pn) is defined as
pr = (pn, pn−1, . . . , p1).

Definition
The complement of permutation p ∈ [n] is pc where
pci = n + 1− pi .
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List of 3-patterns

There are a total of 3! or 6 3-patterns. Which are:

123, 132, 213, 231, 312, 321.

It would be nice if we could reduce the amount of
permutations we have to count. Which we can do with
complements and reverses. What’s interesting is that it turns
out that all 3-patterns are equivalent.
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Equivalent Patterns

Figure. 132, its reverse, complement, and reverse of its
complement.

This means we can now construct show an equivalence
between such related patterns.

Lemma
|Sn(q)| = |Sn(q

′)| if q′ is qc or qr .

Proof.
For all p ∈ Sn(q), f (p) = p′. If q′ is qr or qc , then p′ is pr or
pc , respectively. We know p′ avoids q′ because both are
equivalent rotations of p and q which have an avoidance. ■
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Unifying 3-patterns pt. 1

From complements and reverses, we now know

Sn(132) = Sn(231) = Sn(312) = Sn(213),

and
Sn(123) = Sn(321).

We’ve unified the 6 permutations into two different groups.
However, it turns out we can unify all 3-patterns.
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Unifying 3-patterns pt. 2

Theorem
|Sn(123)| = |Sn(132)|

Definition
Given permutation p, pi is a left-to-right minima if and only if
for all j < i , pj > pi .

Proof.
Given a 123 avoiding permutation p, we will construct a 132
avoiding permutation p′. First, fix all the left-right minima in
their positions and delete the remaining entries. Moving
left-to-right, in every open position, add the least available
entry greater than the closest left-to-right minima on the left.
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Unifying 3-patterns pt. 3
We begin with the 123 avoiding permutation 68371542.
Deleting all the non-minima, we get 6-3-1—. Adding entries
appropriately to the rule, we get 67341258.

Figure. 68371542 Figure. 67341258

Proof.
We complete the bijection with an inverse function. Given a
132-avoiding permutation, we remove all the non-minima and
return elements in decreasing order, avoiding 123. ■
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Enumerating 3-patterns

Now that we’ve shown equivalence between all 3-patterns.
Let’s actually enumerate the pattern avoidance.

Lemma
The recurrence

Cn =
n−1∑
i=1

Ci−1Cn−i

is satisfied if and only if Cn is the nth Catalan number.

Theorem

|Sn(132)| = Cn
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Enumerating 3-patterns cont.

Figure. 5648231, n = 8, i = 4

Proof.
Let p ∈ [n] ∩ Sn(132). Let n be at the ith position. All
elements preceding n should be greater than all elements
subsequent of n. There are i − 1 elements preceding n and
n − i elements succeeding n. We need to repeat the
arrangement on a smaller scale, being Ci−1Cn−i . Loop through
all possibilities of i and get the Catalan recurrence.

■



4-patterns

There are 24 4-patterns. Which we can reduce down to the
following 8:

1234, 1243, 1324, 1342, 1423, 1432, 2143, 2413.

Let’s look at some of their direct results.

n 1 2 3 4 5 6 7 8
|Sn(1342)| 1 2 6 23 103 512 2740 15485
|Sn(1234)| 1 2 6 23 103 513 2761 15767
|Sn(1324)| 1 2 6 24 103 513 2762 15793
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4-patterns cont.

Question
What makes patterns easier or harder to avoid?

Question
If for some n, Sn(q1) < Sn(q2), is SN(q1) < SN(q2) for all
N > n?
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Stanley-Wilf Conjecture

Theorem
For any permutation q, there exists a constant cq, such that
for all n,

Sn(q) ≤ cnq .
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