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Abstract. Pattern avoidance is the counting of amount n-permutations that avoid a given
q-permutation or pattern. This paper will try to include more visuals to build intuition.
This kind of visual was briefly introduced by Bóna in Chapter 4 of his book, Combinatorics
of Permutations [B1́6], but largely overlooked for most of the material.

1. Introduction

We will begin by introducing the concept of a pattern and pattern avoidance. Consider
a permutation p of the first n natural numbers and a permutation q of the first m natural
numbers. We say n follows the pattern q if there exists subsequence of n such that it follows
the same ordering or ”pattern” as q. If no such subsequence exists, then we say n avoids q.

Example. Consider the 7-permutation 1653724 and the 3-permutation 132. Now based on the
conventions above, notice that 1653724 follows 132, because we can select the subsequence
374 which follows the same pattern as 132 since the first digit is the least in the subsequence,
the second the largest, and the third the middle. Note that this specific sequence contains
numerous other subsequences that follow this pattern. Looking at Figure 1, we can visually
compare the permutation and the pattern it follows.

As a brief explainer, the x-value of a point represents the position in the sequence while
the y-axis represents the value of the sequence at that position. We can visually see that in
the red nodes highlighted in the second grid follow the original pattern in the first grid.

Example. Similarly, we can say the permutation 1375642 avoids 213. Observe that in the
graph in Figure 2 we cannot select any three points that matches the shape of the given
pattern.

Now we will introduce a formal definition of what a pattern avoidance is.

Definition 1.1. Let q = (q1, q2, . . . , qk) ∈ Sk and p = (p1, p2, . . . , pn) ∈ Sn. We say p follows
q if there exists a sequence (pi1 , pi2 , . . . , pik), such that i1 < i2 < · · · < ik and pia < pib if and
only if qa < qb. If no such sequence exists, p avoids q.
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Figure 1. The pattern 132 and the permutation 1653724
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Figure 2. The pattern 213 and permutation 1375642.

Figure 3. The permutation, its reverse, its complement, and the reverse of
its complement.

It turns out that counting patterns that are followed is a tedious task. Instead the focus
will be more on counting permutations avoid a specific pattern.

Definition 1.2. Define Sn(M) to be the set of permutations in Sn that avoid all patterns
in the set M.

We will primarily be focusing on singleton classes of permutations where |M| = 1 or
there is just one pattern. In these scenarios we will typically use the single permutation q to
represent M.

Definition 1.3. If |Sn(M)| = |Sn(M′)|, for all n, then we sayM andM′ areWilf-equivalent

or M W∼ M′ .

2. 3-patterns

The first non-trivial insights on pattern avoidance come from patterns of size three. There
area total of 3! or 6 different 3-patterns:

123, 132, 213, 231, 312, 321.

We will try to establish equivalences between as much patterns as possible.

Definition 2.1. For a permutation p = (p1, p2, . . . , pn). We define the reverse as pr =
(pn, pn−1, · · · , p2, p1)

Definition 2.2. Similarly we define the complement of p as pc = (n+1−p1, n+1−p2, . . . , n+
1− pn)

Consider q = 132, then qr = 231, qc = 312 and (qr)c = (qc)r = 213. We graph this specific
case in Figure 3 Based on this we can prove a significant result about 3-patterns.

Theorem 2.3. Sn(132) = Sn(231) = Sn(312) = Sn(213)
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Figure 4. 67341258 and f(67341258)

Proof. Observe that qr is an x-axis reflection of q. Similarly, qc is a y-axis reflection and (qr)c

is both an x and y axis reflection. Therefore, we can conclude if and only if permutation p
avoids q, then pr avoids qr, pc avoids qc, and finally (pr)c avoids (qr)c. Now we can create a
bijection between every p that avoids q to every p that avoids qr, qc, and (qc)r. ■

Among the 6 3-patterns, we have established symmetry between 4 of them, leaving 123 and
321. Right off the bat, we can see that Sn(123) = Sn(321) , since they are both complements
and reverses of each other. We can unify all 6 patterns by creating a bijection between 123
and 132.

Definition 2.4. An element pi is described as a left-to-right minima of the permutation p
if for all k < i, pi < pk.

Theorem 2.5. Sn(123) = Sn(132)

Proof. Given a 132 avoiding permutation p, we will prove we can construct a unique 123
avoiding permutation using the function f(p). First we ”fix” all the left-to-right minima
or essentially deleting all elements in the sequence except the minima and retaining their
positions. Next we add back the remaining numbers in decreasing order, which certainly
avoids the increasing 123 pattern.

We show f is bijective by showing it has an inverse g which will return a unique 132-
avoiding permutation. First. we fix the left-to-right minima and then add the least available
element greater than closest left-to-right minima on the left. Notice that this makes it
impossible to create a 132 pattern because for each entry before the next minima, the adjacent
entry is the lowest entry greater than previous entry preventing a possible middle value as
the 3rd element in the pattern from being selected since it must be the 2nd element. This
can be visually seen in Figure 4.

■

Now that we have shown a sort of equivalence between all 3-patterns. It will be worth
generalizing enumerations. Note that this task of enumeration becomes more tedious as we
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Figure 5. A somewhat symmetric example illustrating the Catalan
recurrence of 132-avoiding permutations.

increase the size of q, but the 3-pattern yields a particularly beautiful result in relation to
Catalan numbers. This is best done with the pattern 132.

Theorem 2.6. Sn(132) = Cn where Cn denotes the nth Catalan number.

Lemma 2.7.

Cn =
n−1∑
i=1

Ci−1Cn−i

It follows the if we can show that Sn(132) satisfies this recurrence, Sn(132) is the nth
Catalan number.

Proof. Let us consider n (the maximal element) is pi in a 132 avoiding permutation p. All
elements preceding n must greater than all elements after n. Otherwise, we introduce a
contradiction by creating 132 permutation. This means the set of elements preceding n is
{n−1, n−2, . . . , n−i+1} and set of elements succeeding n is just [n−i]. In order to continue
avoiding 132, these subsequences will need to go through the same process. Which means
going through all possibilities given the predefined i, Ci−1Cn−i is the number of 132-avoiding
permutations. Now we must add up all possibilities of i, effectively representing the Catalan
recurrence, and completing the proof.

■

3. 4-patterns

Now that we’ve enumerated 3-patterns, naturally we’d look more at 4-patterns. This is
where we begin to see the more interesting results of pattern avoidance (i.e. symmetries
start to break). Right of the bat, we see there are a total of 24 4-patterns. Through inverses,
complements, and both at the same time we can reduce the total number of patterns down
to the following 8:

1234, 1243, 1324, 1342, 1423, 1432, 2143, 2413.

We can still reduce the amount of cases to consider. To do that, we will use an alternative
means of referring to a permutation using matrices.

Definition 3.1. A permutation p of length n can be written as the following permutation
matrix

P =


P11 P12 . . . P1n

P21 P22 . . . P2n

...
...

. . .
...

Pn1 Pn2 . . . Pnn

 .
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Figure 6. The (5,4,4,2,1) Young diagram with a transversal.

Where Pij = 1 if and only if pi = j. Otherwise, Pij = 0.

Definition 3.2. The inverse p′ of a permutation p is defined as the permutation equivalent
to the transpose of the permutation matrix of p. Since it is a square matrix, P ′

ij = Pij.

Furthermore, we can extend our definition of pattern avoidance to this method as well.

Definition 3.3. A permutation p in the form of a permutation matrix P is said to follow or
contain the pattern q of size m if there exists two subsets of matrix indices [n], R = {r1 <
r2 < · · · < rm} and C = {c1 < c2 < · · · < cm} such that

Pr1,c1 Pr1,c2 . . . Pr1,cm

Pr2,c1 Pr2,c2 . . . Pr2,cm
...

...
. . .

...
Prm,c1 Prm,c2 . . . Prm,cm

 = C

Notice that a permutation matrix is the same thing as if our diagrams were rotated 90
degrees clockwise we replaced every point with 1 if it had a circle and a 0 otherwise.

Now the inverse of the permutation equates to a reflection over the line y = x.

Proposition 3.4. Sn(q) = Sn(q
′)

Proof. We can create a bijection between all permutations p that avoid q and all permutations
p′ that avoid q′. We know that q′ is the inverse of q, so we define our bijective function f
as f(p) = p′ where for all p ∈ Sn(q), p

′ is the inverse of p. This p′ avoids q′ because both
are reflections of p and q respectively and p avoids q, maintaining the same pattern avoiding
shape. We define the inverse g as g(p′) = (p′)′ = p for all p′ ∈ Sn(q

′). A transpose/inverse is
symmetric so its an inherent property of the function to be bijective. ■

Based of this we get that Sn(1423) = Sn(1342), the former we shall remove from our list.
Next we will use a special case of the theorem by Backelin, West, and Xin [BWX07].

This is arguably one of the most significant results in the literature of higher-order pattern
avoidance as it generalizes significant subset of permutation patterns.

Theorem 3.5. Let k be any positive integer and q be a permutation of the set {k + 1, k +
2, k + 3, . . . , k + r}. Then for all positive integers n,

Sn(123 . . . kq) = Sn(k . . . 321q).

The proof for this requires some new background we have not defined before, specifically
concerning Young diagrams. A Young diagram λ is a grid board of a total of n Each row λi

of this diagram has at least as many boxes as λj if and only if i < j.

Definition 3.6. A transversal L of a Young diagram is an assignment of 1s and 0s to each
square on the board such that each row and column of the board contains exactly one 1.
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Figure 7. Coloring the Young diagramms as by 3.12

We will now extend our definition of pattern avoidance to Young diagrams.

Definition 3.7. The Young diagram λ is said to contain the k × k permutation matrix
M if there are k rows r1 < r2 < · · · < rk and k columns c1 < c2 < · · · < ck and k rows
r1 < r2 < · · · < rk such that (ri, cj) ∈ λ and (ri, cj) ∈ T if and only if Mi,j = 1. Otherwise
we say λ avoids M

Note that for a transversal to even be able to exist, λi ≥ n− i+ 1.

Definition 3.8. Let Sλ(M) to be the number of transversals of λ that avoid M.

Definition 3.9. We say permutations M and M ′ are shape-Wilf-equivalent if for all Young

diagrams λ, if |Sλ(M)| = |Sλ(M
′)|. This is represented as M

sW∼ M ′.

We can see how shape-Wilf-equivalence implies standard Wilf-Equivalence. Now we will
restate our main theorem with our new definitions.

Theorem 3.10. Let M and M ′ be the following permutation matrices:

M =

[
It 0
0 A

]
M ′ =

[
Jt 0
0 A

]
.

Where It = 12 . . . t and Jt = t . . . 21. Then M
sW∼ M ′.

The theorem can be derived from the following general propositions.

Proposition 3.11. For all t > 0, It
sW∼ Jt.

Proposition 3.12. Let C and D be two square matrices of order n and let M and M ′ be
the following

M =

[
C 0
0 A

]
,M ′ =

[
D 0
0 A

]
.

If C
sW∼ D, then M =

sW∼ M ′.

Proof. Since we assume C
sW∼ D, let Ππ be a bijection from Sπ(C) to Sπ(D), for all Young

diagrams π. For this proof, we will construct a bijection α between Sλ(M) and Sλ(M
′).

Assume N ∈ Sλ(M).

(1) For any square (i, j) ∈ λ, if the subboard below and right of it contains A, then color
it white, else color it blue.

(2) Color the entire row and column blue for all the squares that contain 1 and are
colored blue. Delete all the blue squares.

(3) Let the remaining white board be denoted as π and its transversal L. We transform
L to Ππ(L)., avoiding D. This implies the whole board altogether α(N) avoids M ′.
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Before resolving the caveats we should note that what this is doing is saying that if there
is a subboard that contains A, we can isolate it and transform the rest of the board which
avoids C to a board that avoids D, implying that the whole transformed board avoids M ′.
Now we’ll show that the isolated board itself is a Young diagram allowing it to undergo
the entire transformation. In step 1, assume a given square (r, c) is colored white, then all
squares to the top and left of it also should be colored white as well since they also contain a
subbboard that contains A. This creates the white rectangle board with partial transversal
from (1, 1) to (r, c), a valid Young diagram but not a valid transversal. However, in step
2, we color the respective rows and columns with blue 1s blue as well, leaving all the white
board to have exactly one 1 in each row and column, creating the valid transversal.

To complete the bijection we will show the inverse α−1(N ′). Note that since Ππ is a
bijection, we can use its inverse Π−1

π . Assume N ′ ∈ Sλ(M
′).

(1) For any square (i, j) ∈ λ, if the subboard below and right of it contains A, then color
it white, else color it blue.

(2) Color the entire row and column blue for all the squares that contain 1 and are
colored blue. Delete all the blue squares.

(3) Let the remaining white board be denoted as π and its transversal L′. We transform
L′ to Π−1

π (L′), avoiding C. This implies the whole board altogether α(N ′) avoids M.

The procedure is the same up to the final step for both α and α−1. However, the only
difference in step 3 is that Ππ and Π−1

π change the positions of the 1s on the board but
maintaining the same coloring implying the boards are equivalent.

Backelin et al. does note that we can extend the proposition of A beyond the singleton
case with a class of matrices without any additional proof. However, they also note that
a major caveat of this proposition is that it exclusively applies to shape-Wilf-equivalence

and breaks with standard Wilf-equivalence. The example they provide is that 1234
W∼ 2143,

but 123456 ̸W∼ 214356 since |S9(123456)| = 344, 837 which is not equal to S9(214356) =
344, 838. ■

Moving on to Proposition 3.11, Backelin et al. instead proves an equivalent proposition:

Proposition 3.13. Let Ft be the following:

Ft =

[
Jt−1 0
0 1

]
.

Then for all t > 0, Ft
sW∼ Jt.

Proof of equivalence of Propositions 3.11 and 3.13. If we assume Proposition 3.11 to be true,

then Jt
sW∼ It. We also know that It−1

sW∼ Jt−1. Now using 2.3 where C = It−1, D = Jt−1, A =

I1., we show It
sW∼ Ft.

Now let’s show the other direction, assume 3.12 is true. Then we define for all 0 ≤ k ≤ t,
Gt,k as

Gt,k =

[
Jt−k 0
0 Ik

]
.

Now for all 0 ≤ k ≤ t, we can use proposition 2.3 where C = Jt−k, D = Ft−k, and A = Ik to

show that Gt,l
sW∼ Gt,k+1 eventually showing that Gt,0

sW∼ Gt,t, which is proposition 3.11.
■
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Figure 8. Selecting the 321-pattern from the 123-avoiding permutation over
2 iterations.

Now that we have determined the equivalence between the two propositions, Backelin et
al. states that the proof for Proposition 3.13 is a bijection from Sγ(Ft) and Sγ(Jt).

They proceed to give the following algorithm. Let G the t×t submatrix that is isomorphic
to (or follows) Jt, and let θ(G) be the submatrix that follows Ft but in the same squares as
G.

We will now use the following algorithm as our bijection from Sγ(Ft) with transversal L
to Sγ(Jt).

(1) If L contains no Jt, end.
(2) Find the highest square a1 containing a 1, such that there is a Jt in L where a1 is

the leftmost 1.
(3) Find the leftmost square a2 counting a 1, such Jt in L where a1 and a2 are the leftmost

1s.
(4) Repeat step 3 one-by-one for a3 through at, to get our set G.
(5) Leaving all other squares fixed, replace G with θ(G)
(6) Repeat the procedure until no Jt is left, leaving us with T ∈ Sγ(Jt)S.

If we did undergo steps 2-5, (i.e L contains Jt), then we represent the transformation as
ϕ(L). In Figure 8 we can see how we select the highest 1 element in the permutation matrix
(leftmost in graph), and repeatedly select the leftmost element in the matrix (lowest in the
graph).

Now we’ll construct the inverse bijection from Sγ(Jt) with transversal T to Sγ(Ft).

(1) If T contains no Ft, end.
(2) Find the lowest square bt containing a 1, such that there is a Ft in T where bt is the

rightmost 1.
(3) Find the rightmost square bt− 1 containing a 1, such that there is an Ft in T where

bt and bt−1 are the leftmost 1s.
(4) Repeat step 3 one-by-one for bt−2 through b1, to get our set H isomorphic to Ft.
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(5) Leaving all other squares fixed, replace H with θ−1(H).
(6) Repeat the procedure until no Ft is left, leaving us with L ∈ Sγ(Ft)S.
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