
PRIMALITY TESTING, FACTORING ALGORITHMS, AND THEIR
APPLICATIONS IN CRYPTOGRAPHY

ARHAM RAKHECHA

Abstract

Confirming primality and factoring large values are two areas in mathematics with roots
buried deep in history. This paper explores various primality tests, from basic probabilistic
tests such as Fermat’s primality test to deterministic algorithms such as the monumental
Agrawal-Kayal-Saxena (AKS) test. The AKS primality test signified a large shift in the
field, and the original theorem and lemmas are described within this paper. Following
this, various factoring algorithms are observed, going from simple to complex theorems.
The paper progresses by linking together these two crucial concepts to their cryptographic
applications, and ending with a practical analysis of factoring algorithms. The algorithms
included in this paper are the following: Fermat’s primality test, Miller-Rabin primality test,
Solovay-Strassen primality test, AKS primality test, Fermat’s factorization, Trial Division,
Generalized Trial Division, Quadratic Sieve and Pollard’s Rho.

Contents

Abstract 1
Introduction 2
1. Primality Testing 2
1.1. Fermat’s Primality Test 2
1.2. Miller-Rabin Primality Test 3
1.3. Solovay-Strassen Primality test 5
1.4. AKS Primality Test 8
2. Agrawal-Kayal-Saxena Primality Test Original Theorem and Proofs 8
3. Factoring algorithms 16
3.1. Fermat’s Factorization 16
3.2. Trial Division 17
3.3. Generalized Trial Division 17
3.4. Quadratic Sieve 18
3.5. Pollard’s Rho 19
4. Applications in Cryptography 19
4.1. Rivest-Shamir-Adleman Cryptography 19
4.2. Practical Applications 20
Conclusion 22
Acknowledgments 23
Bibliography 23
References 23

1

2 ARHAM RAKHECHA

Introduction

The mystery of prime numbers has a profound heritage, with mathematicians investigat-
ing their properties for over twenty-three centuries.1 This is most notably associated with
Euclid’s theorem on the infinitude of primes, circa 300 BCE.2 Primality testing itself can
be dated back to the third century BCE with the Sieve of Eratosthenes.3 These cases illus-
trate the significance assigned to prime numbers even in ancient Egypt and Greece. Prime
numbers emit an alluring aura, as they form part of the mathematical threads woven into
the fabric of the universe. Research involving prime numbers is thoroughly exciting and has
vast potential.

Carl Friedrich Gauss stated that “The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into their prime factors is known to be one of
the most important and useful in arithmetic.”4 Primality testing is simply the determination
of whether a given number n is prime or composite. The two types of tests considered in
this paper are probabilistic and deterministic primality tests. Probabilistic algorithms are
assigned an error probability, diminishing their accuracy, whilst deterministic algorithms
can identify prime and composite numbers without fault. Factoring algorithms refer to
processes that break down a given number into its prime factors. Various algorithms exist
that conduct this process, at distinct speeds and ranges, many of which are developments
on earlier techniques.

The focus of this paper stems from the applications of the aforementioned systems, namely
in asymmetric cryptography. This form of cryptography encompasses two mathematically
linked keys, of which one is freely shared, and the other is kept private. Primality testing
is incorporated in the generation of these keys, whilst factorization is necessary to decipher
them.

After beginning with a light overview of several primality tests, this paper more intensely
examines the Agrawal-Kayal-Saxena primality test. Developing further upon this, factoring
algorithms are presented. This is followed by applications in cryptography, which binds
the two ideas. It concludes with an evaluation of practical tests conducted on a portion of
algorithms.

1. Primality Testing

This section will cover several primality tests, including Fermat’s test, the Miller-Rabin
test, Solovay-strassen test and the basics of the Agrawal-Kayal-Saxena test.

1.1. Fermat’s Primality Test.

Theorem 1.1 (Fermat’s Little Theorem). Let p be a prime which does not divide the integer
a, then:

ap−1 ≡ 1 (mod p).

Proof. Begin by listing the first p− 1 positive multiples of a:

a, 2a, 3a, . . . , (p− 1)a.

1 [Me8]
2 [Me8]
3 [Pat21]
4 [Gau86]

PRIMALITY TESTING, FACTORING ALGORITHMS, AND THEIR APPLICATIONS IN CRYPTOGRAPHY3

Suppose wa and va are the same modulo p, then we have

wa ≡ va (mod p),

so the p − 1 multiples of a that are shown above are distinct and nonzero; they must have
congruence with

1, 2, 3, . . . , (p− 1)

in some order.
If we multiply these congruences together, we will get:

a ∗ (2a) ∗ (3a) ∗ · · · ∗ ((p− 1)a) ≡ 1 ∗ 2 ∗ 3 ∗ · · · ∗ (p− 1) (mod p),

which is:
a(p−1) ∗ (p− 1)! ≡ (p− 1)! (mod p).

Divide both sides by (p− 1)! to get Theorem 1.1 ■

Theorem 1.1 is not an “if, and only if” statement, as there exist Carmichael numbers,
which are composite numbers for which the conditions are satisfied.

Definition 1 (Carmichael Numbers). The composite integer n is a Carmichael number if
x(n−1) ≡ 1 (mod n) for all x ∈Z∗

n

Theorem 1.1 is the base of a very simple primality test, referred to as Fermat’s test.

Algorithm 1 (Fermat’s Test). (1) Choose x ∈ 1, . . . , (n− 1) uniformly at random.
(2) If x(n−1) ≡ 1 (mod n) output prime else output composite.

For all prime numbers n, Theorem 1.1 guarantees that Fermat’s test, Algorithm 1, will
correctly output that n is prime. However, a flaw of this algorithm is that it will fail if the
input n is a Carmichael number (Definition 1), to which it will still output that n is prime.
Therefore, Fermat’s primality test is a probabilistic algorithm, and only has applications in
certain scenarios in which a probabilistic result is sufficient. The time complexity of this
algorithm is O(K ∗ log(n)) where K is the number of iterations, and n is the number being
tested. This is drawn from the following: log(n) is used for the time complexity for a(n− 1)
and the algorithm is repeated K times.

1.2. Miller-Rabin Primality Test.

Definition 2 (Witness). [Wei23b] A witness refers to a number which satisfies a given cri-
terion, in this section it will be used as a determinant whether a number n is composite or
prime, as a result of its number theoretic properties.

Theorem 1.2 (Monier-Rabin). [Mon80,Rab80] Let N be a composite integer which is odd.
The probability that a random integer a for which a ∈ [1, N −1] us a witness for N is at least
0.75

For Theorem 1.2, the proofs of Monier and Rabin are too extensive for the purpose of the
paper, so we will use a proof inspired by one written by Andrew Sutherland.

Proof. [Sut17] Consider n be an odd composite number where n = 2st+1 with t odd, and let
n = q1 · · · qr represent n factorized into powers of distinct primes. For this, we bear in mind
that t is required to be coprime to all the qj. Here we choose a ∈ [1, (n − 1)] at random,
and set b := at. Therefore, if a is not a witness, then it must be true that either b ≡ 1
mod n, for which b ≡ 1 mod qj for all qj, or it must be true that b2

i ≡ −1 mod n for i

4 ARHAM RAKHECHA

such that 0 ≤ i < s. In the second possibility, b2
i ≡ −1 mod qj for all qj. If we set i := −1

in the first possibility, then b mod qj is an element of order 2i+1 in the 2-Sylow subgroup
Sj of (Z/pkZ)× for 1 ≤ j ≤ r. It can then be shown that the probability that every bj := b
mod qj lies in Sj which also has order 2i is at most 1/4 through the following cases.
Case 1: N is not square-free. Then some qj will be equal to pk with k > 1. Due to p being

odd, the group
(
Z/pkZ

)×
is cyclic with an order of ϕ

(
pk
)
= pk−1(p− 1), and t is coprime to

p, this means that the probability that bj is within Sj is at most 1/pk−1, which is less than
1/4 whilst pk > 0. If qj = pk = 9 then t ≡ ±1 mod 6 and only 2 of the 8 nonzero values of a
mod 9 lead to bj ∈ Sj.

Case 2: This case considers N as a product of r ≥ 3 distinct primes qj. Each 2-Sylow
subgroup Sj is a cyclic with an order of 2k,, for some kj > 1, and, at most, half the elements
in Sj can have any specific order. If we were to then assume that each bj is within Gj then
these are uniformly distributed due to the fact that t odd, and the probability they all have
the same order is at most 1/4.3

Case 3: The final case as done by Sutherland [Sut17], considers the chance that N = q1q2
is a product of 2 distinct primes. We first begin with q1 = 2s1t1 + 1, and q2 = 2s2t2 + 1 ,
with t1 and t2 having the quality of being odd. We then define the random variable Xj as
−1 if bi does not lie in Si and otherwise we put Xp = i, where bj has an order of 2i in Sj.
We then must show that

Pr [X1 = X2 ≥ 0] ≤ 1/4.

To do this, assume s1 > s2. Since half the elements which are in S1 have an order
of 2s1 > 2s2 , Pr [0 ≤ X1 ≤ s2] ≤ 1/2, and Pr [X2 = X1 | 0 ≤ X1 ≤ s2] ≤ 1/2; therefore
Pr [X1 = X2 ≥ 0] ≤ 1/4. We then assume that s2 = s2 so that we have

2st = N − 1 = q1q2 − 1 = (q1 − 1) (q2 − 1) + (q1 − 1) + (q2 − 1) = 2st1t2 + 2s1t1 + 2s2t2,

therefore if t is divisible by t1 then t1 also divides t2, and the reverse. If t1 and t2 both divide
t, then t1 = t2 and q1 = q2, which gives us a contradiction. So assume t1 ∤ t. This means
that t1 ̸= 1 must also be divisible by an odd prime ℓ ≥ 3 that does not divide t. This leads
to:

Pr [X1 ≥ 0] ≤ 1/3,

and as we also have
Pr

[
X1 = X2 | X̄1 ≥ 0

]
≤ 1/2,

we end with
Pr [X1 = X2 ≥ 0] ≤ 1/6 < 1/4.

■

Theorem 1.2, above, suggests that for a composite N , if we choose, say, 200 randomly
selected integers a ∈ [1, N − 1], then it is very likely that we will find a witness for N .
Theorem 1.2 also suggests that, if N is prime, then we shall not find a witness. Unless we
try more than a quarter of all a ∈ [1, N − 1], this will not prove that N is prime, however it
will support the possibility that is is prime.

The Miller-Rabin primality test is inspired by Theorem 1.2. This is another probabilistic
primality test, depicted below.

Algorithm 2 (Miller-Rabin Test). [Rab80]

(1) Choose a random integer a ∈ [1, N − 1].

PRIMALITY TESTING, FACTORING ALGORITHMS, AND THEIR APPLICATIONS IN CRYPTOGRAPHY5

(2) Write N = 2st+1, with t odd, and compute b = at mod N . If b ≡ ±1 mod N , return
true (a is not a witness, N is possibly prime).

(3) For i from 1 to s− 1 :
Set b← b2 mod N .
If b ≡ −1 mod N , return true (a is not a witness, N is possibly be prime).

(4) Return false (This is because if a is a witness this would mean that N is definitely
not prime).

The Miller-Rabin test, Algorithm 2, has a time complexity of O(K × log3 (n)), where
n is the number being tested for primality whilst K refers to the number of iterations of
Algorithm 2 that are performed. This deems the algorithm highly efficient, and can be
performed with many repeated iterations. In the case that all iterations return true, it can
be concluded that n is probably prime. This algorithm is a probabilistic algorithm because
if n is composite, the process will have the correct output of “false” with a probability of
75%, however if n is prime, the algorithm will always have the correct output of “true”.

1.3. Solovay-Strassen Primality test.

Definition 3 (Relatively prime). Two integers a and b are referred to as relatively prime to
each other if:

gcd(a, b) = 1.

Definition 4 (Legendre Symbol). We let a be an integer, and P be an odd prime with the
greatest common factor of a and P being 1, then the Legendre symbol a and P is defined
by: (

a

p

)
=

 1; If a is quadratic residue of P.
−1; If a is non quadratic residue of P.

0; If a ≡ 0(modP)

Legendre symbol is a number theoretic function with values of +1,−1 and 0.

Definition 5 (Jacobi Symbol). [Wei23a] Jacobi symbol is a generalized Legendre symbol.
For any integer a with any positive integer n the Jacobi symbol for the two is defined

as the product of the Legendre symbols, which correspond to the prime factor n. This is
depicted below. (a

n

)
=

(
a

P1

)
·
(

a

P2

)
·
(

a

P3

)
· · · · · ·

(
a

Pk

)
Definition 6 (Euler Witness). [Con16] Suppose n > 1 is an odd integer,
then an integer a ∈ {1, . . . , n− 1} such that either

(i) (a, n) > 1

or

(ii) a, n) = 1 and a(n−1)/2 ̸≡
(
a
n

)
mod n,

is what we refer to as an Euler witness for n. All other integers in {1, . . . , n − 1} are what
we consider Euler nonwitnesses for n.

If n is an odd prime then neither (i) or (ii) hold for any a ∈Z∗
n (from 1 to (n− 1)), this

means that n has no Euler witnesses. Therefore, if there is a single Euler witness for n, this
would prove that n is composite. The following theorem is written on this basis.

6 ARHAM RAKHECHA

Theorem 1.3 (Solovay-Strassen). [Con16] Consider an odd integer, which is composite: n.
An integer a exists in Z∗

n which gives us

(a, n) = 1

and

a(n−1)/2 ̸≡
(a
n

)
mod n.

Definition 7 (Square-free Integer). We consider an integer n square-free if the number’s
prime decomposition does not have any repeated factors. If an integer is not divisible by
any square number, other than 1, we refer to it as a square-free integer.

Theorem 1.3 has an essential facet. For a specific a which is in Z∗
n, that is relatively prime

to n, the following equation fails:

a(n−1)/2 ≡
(a
n

)
mod n.

Proof. Within this proof, we must consider two separate cases. The first case we consider is
that n is square-free and the second case is that n has a repeated prime factor.

To begin, we assume n is both composite as well as square-free, therefore n = p1p2 · · · pr
where r ≥ 2 and all pi ’s are odd primes, separate from each other. There exists b ∈ Z for

which
(

b
p1

)
= −1. Certain a ∈ {1, . . . , n− 1} satisfy

a ≡ b mod p1, a ≡ 1 mod p2 · · · pr,

according to the Chinese remainder theorem.
Given that b ̸≡ 1 mod p, we can state a ̸= 1. This means that a is relatively prime to p1

and therefore a is also relatively prime to p2 · · · pr, thus (a, n) = 1.
Furthermore, we can say (

a

p1

)
=

(
b

p1

)
= −1

as well as: (
a

pi

)
=

(
1

pi

)
= 1

for i > 1, thus (a
n

)
=

(
a

p1

)(
a

p2

)
· · ·

(
a

pr

)
=

(
a

p1

)
= −1.

Suppose that

a(n−1)/2 ≡
(a
n

)
mod n,

this would then result with

a(n−1)/2 ≡ −1 mod n.

Due to p2 being able to divide n, it is possible for us to contract a(n−1)/2 ≡ −1 mod n to
modulus p2, which leads us to the following:

1 ≡ −1 mod p2,

due to the congruence a ≡ 1 mod p2. This is a contradiction to our assumption due to 2
being less than the modulus p2 . Continuing our proof, we complete the second case, where

PRIMALITY TESTING, FACTORING ALGORITHMS, AND THEIR APPLICATIONS IN CRYPTOGRAPHY7

n has a repeated prime factor, which we will refer to as p.5 With this assumption, n = pkm
for which (p,m) = 1 and k ≥ 2. Chinese remainder theorem can be used to show that there
exists an a ∈ {1, . . . , n− 1} which is able to satisfy

a ≡ 1 + p mod p2, a ≡ 1 mod m.

This leads on to give the following:

a ̸= 1,

and

a is not divisible by p,

and

(a,m) = 1

Therefore we have (a, n) = 1.
If a(n−1)/2 is congruent with

(
a
n

)
mod n then by squaring this will present us with an−1 ≡

1 mod n. The next part of this proof will demonstrate that this is not possible.
To do this, we begin by reducing the congruence to modulus p2, this is because it is a

factor of the number being considered, n. This results in the following congruence:

an−1 ≡ 1 mod p2.

We can then bring (1 + p)n−1 ≡ 1 mod p2 due to a ≡ 1 + p mod p2.

(1 + p)n−1 ≡ 1 + (n− 1)p mod p2,

by the Binomial theorem.
Therefore we can get to 1 + (n− 1)p ≡ 1 mod p2.
Next, we minus 1 from each side to get:

(n− 1)p ≡ 0 mod p2,

thus n−1 ≡ 0 mod p. However, since n is a multiple of p, we are left with a contradiction. ■

The Solovay-Strassen primality test can also be represented as an algorithm, shown below:

Algorithm 3 (Solovay-strassen Algorithm). To test a number n:

(1) Pick a, where a is a random number > than 1 but also < n(1 < a < n).
(2) See if the following is true:

(
a
n

)
≡ a(n−1)/2(modn).

(3) If the above equation is true, output “probably prime.” If not, output “composite.”

The Solovay-Strassen test in Algorithm 3 and Theorem 1.3 is a probabilistic test, however
it can be made into a deterministic primality test if the truth of an unsolved problem,
the Generalized Reimann Hypothesis, is assumed, as the Generalized Reimann Hypothesis
implies that any odd composite positive integer n has an Euler witness that is at most
2(log n)2 [Con16]. However, although many mathematicians believe the generalizations of
the Reimann hypothesis to be true, it remains unsolved.

5The proof in the original paper of Solovay and Strassen did not cover the case where n is a perfect square,
this was conducted later in [SS78].

8 ARHAM RAKHECHA

1.4. AKS Primality Test. The Agrawal-Kayal-Saxena primality test is the first simulta-
neously general, polynomial-time, deterministic, and unconditionally correct primality test,
and it is shown below in Algorithm 4. We will look into the Agrawal-Kayal-Saxena (AKS)
primality test in more depth in the next section, which is entirely dedicated to the original
theorem and Agrawal, Kayal and Saxena’s subsequent proofs.

But, preceding the original theorem and the corresponding proof, we observe the algorithm
for the AKS primality test.

Algorithm 4 (AKS Primality Test). [SS13] For n ∈ N, n > 1

(1) If b > 1 and n = ab for a ∈ N, return “composite.”
(2) The smallest r for which Or(n) > 4 log2 n is true, must be found.
(3) If it is true that 1 < GCD(a, n) < n for every a ≤ r, return “composite.”
(4) If it remains true that n ≤ r, return “prime.”

(5) For a = 1 to ⌊2
√

φ(r) log n⌋ do: if it is true that ((x+ a)n ̸= xn + a (modxr − 1, n)) ,
return “composite.”

(6) Return “prime.”

This AKS algorithm is executed in Õ
(
log10.5 n

)
time, and therefore as n grows larger,

the increase in time will be proportional to (log n)10.5. This polynomial time function is not
as quick as the probabilistic tests in earlier sections, such as Fermat’s test in Algorithm 1,
however it is advantageous as it is fully deterministic, unlike Fermat’s test which fails for
Carmichael numbers (defined in Definition 1).

We will now go through the steps of the Agrawal-Kaya-Saxena primality test as shown in
Algorithm 4. Step 1 tests if n is a perfect power, which, if true, would instantly determine
n as composite. Step 2 involves Fermat’s Little theorem, Theorem 1.1, this point is where r
is found as this value binds the following steps in the algorithm. Step 2 finds the smallest r
such that the order of n mod r is greater than 4log2n. Step 3 then determines the greatest
common factor for all values less than or equal to r, and n. This makes sure that all values
r and below are relatively prime, defined by Definition 3, to r. Step 4 is set to output prime
if n is less than or equal to r. The fifth step is the step which takes the most time,6 this step
tests a relation for all values of a from 1 to ⌊2

√
φ(r) log n⌋, if the tested relation holds true,

then the number n is determined prime.

2. Agrawal-Kayal-Saxena Primality Test Original Theorem and Proofs

Within the previous section, in the final subsection, the Agrawal-Kayal-Saxena primality
test was explained briefly, however this section did not refer to the original theorem written
by Manindra Agrawal, Neraj Kayal and Nitin Saxena. The AKS primality test is one which
is highly important in the field of mathematics concerning primality tests. This is the
first deterministic algorithm for primality testing that we have examined in this paper, and
deterministic algorithms differ from probabilistic algorithms as they ensure that the output
is always accurate. This allows the AKS primality test to provide a definitive answer about
the primality of a given number n, whilst probabilistic tests provide results which may be
incorrect with a given probability. The AKS primality test is also very prominent for other
reasons:

6 [SS13]

PRIMALITY TESTING, FACTORING ALGORITHMS, AND THEIR APPLICATIONS IN CRYPTOGRAPHY9

• Polynomial Time Complexity: Unlike several other primality testing algorithms, such
as the Miller-Rabin algorithm (shown in Algorithm 2), the AKS primality test runs
in polynomial time. This essentially means that the time that the algorithm takes
to determine the primality of the number is proportional to a polynomial funcion of
the number of digits in the input. This polynomial time complexity makes the AKS
algorithm very efficient in comparison to other primality tests.
• Theoretical Breakthrough: The AKS primality test represented a substantial shift
in computational complexity, as it proved that primality testing can be performed
in polynomial time, which contradicted the previous belief that primality testing
was inherently a computationally difficult problem. The development of AKS led to
several advancements in cryptography.
• Cryptographic Applications: Cryptographic algorithms such as Rivest-Shamir-Adleman
require the use of prime numbers, these algorithms are used for secure communica-
tion, digital signatures and encryption. The Agrawal-Kayal-Saxena primality test
provided a reliable and efficient method to confirm the primality of very large num-
bers that are used in cryptography, this enhanced the reliability of these systems.

We will now explore the original theorem and lemmas.

Algorithm 5 (Agrawal-Kayal-Saxena Primality Test). [SS13] For n ∈ N, n > 1

(1) If b > 1 and n = ab for a ∈ N, return “composite.”
(2) The smallest r for which Or(n) > 4 log2 n is true, must be found.
(3) If it is true that 1 < GCD(a, n) < n for every a ≤ r, return “composite.”
(4) If it remains true that n ≤ r, return “prime.”

(5) For a = 1 to ⌊2
√

φ(r) log n⌋ do: if it is true that ((x+ a)n ̸= xn + a (modxr − 1, n)) ,
return “composite.”

(6) Return “prime.”

Theorem 2.1 (Theorem 4.1 in the original paper). [AKS04] Algorithm 5 returns “prime”
if and only if n is prime.

To prove this theorem, we will break Theorem 2.1 down into several separate lemmas,
which we will then prove individually.

Lemma 2.2 (Lemma 2.1 in the original paper). [AKS04] Assume a ∈ Z, n ∈ N , n ≥ 2,
and (a, n) = 1. This then means that n is prime if and only if

(X + a)n = Xn + a(modn).

Proof. For 0 < i < n, the coefficient of xi in ((X + a)n − (Xn + a)) can also be represented

by

(
n
i

)
an−i.

Assume that n is prime. This means that

(
n
i

)
= 0 (mod n) leading to the conclusion

that all of the coefficients are 0.
Then we assume that n is not prime. Consider a prime q which is a factor of n and

let qk∥n. This would bring us

(
n
q

)
is not divisible by qk and qk is coprime to an−q and

therefore the coefficient of Xq is not 0 (modn). This then brings us to the fact that the
following:

((X + a)n − (Xn + a)) ,

10 ARHAM RAKHECHA

is not identically zero over Zn.
■

Lemma 2.3 (Lemma 4.2 in the original paper). [AKS04] In the case that n is prime, the
output of the algorithm is “prime.”

Proof. In the case that n is actually prime then both step 1 and step 3 cannot possibly output
“composite.” Lemma 2.2 shows us that it is not possible for the loop to output “composite.”
This means that Algorithm 5 is able to correctly show that n is prime in either step 4 or
6. ■

The opposite of Lemma 2.3 demands a more lengthy proof. If in step 4 the output of the
algorithm is “prime,” then n cannot be composite, this is because otherwise the third step
would have been able to deduce a nontrivial factor of n. This leaves the remaining case of
when the output confirming primality is from step 6 in Algorithm 5. As in the work by the
original authors, we shall also assume this to be the case.

The main steps left of the algorithm are 2 and 5.
The second step is utilized in order to find a suitable r whilst the fifth step confirms an

equation for a range of a’s. Continuing the proof, we will set a bound for the magnitude of
the suitable r, but first a preliminary lemma must be proved.

Lemma 2.4 (Lemma 3.1 in the original paper). [AKS04] Let LCM(m) represent

lcm(1, 2, 3, . . . ,m).

For m ≥ 7:
LCM(m) ≥ 2m

In the initial proof of Theorem 2.1, Lemma 2.4 was not proven, however, for the compre-
hensiveness of this paper, we shall give a simple proof.

Proof. We begin by considering for 1 ≤ n ≤ m:

In,m =

∫ 1

0

xn−1(1− x)m−n =
m−n∑
r=0

ar
n+ r

for some ai ∈ Z

From here on,
ℓm = lcm(1, 2, . . . , n).

Note
ℓmIn,m ∈ Z

for
1 ≤ n ≤ n.

This makes evident the following:

In,m =
1

n

(
m
n

) .

This is identified through either reduction formulae or integration by parts. Following this,
we are left with:

n

(
m
n

)
| ℓm ∀1 ≤ n ≤ m

PRIMALITY TESTING, FACTORING ALGORITHMS, AND THEIR APPLICATIONS IN CRYPTOGRAPHY11

Typically,

m

(
2m
m

)
| ℓ2m and (2m+ 1)

(
2m
m

)
= (m+ 1)

(
2m+ 1
m+ 1

)
| ℓ2m+1.

Now since ℓ2m | ℓ2m+1 we have:

m(2m+ 1)

(
2m
m

)
| ℓ2m+1

=⇒ℓ2m+1 ≥ m(2m+ 1)

(
2m
m

)
≥ m · 4m ≥ 22m+2 for m ≥ 4.

The above penultimate inequality remains true due to

(
2m
m

)
being the greatest co-efficient

if we were to expand out (1 + x)2m. Thus, (1 + 1)2m ≤
(

2m
m

)
(2m+ 1). Also,

ℓ2m+2 ≥ ℓ2m+1 ≥ 22n+2 for m ≥ 4.

Thus completing the proof of

ℓm ≥ 2m for m ≥ 9.

■

Lemma 2.5 (Lemma 4.3 in the original paper). [AKS04] There is a case of

r ≤ max
{
3,
⌈
log5 n

⌉}
in which

or(n) > log2 n.

Proof. Lemma 2.5 can be readily proven true for the case of n = 2, due to the ability of
r = 3 to satisfy every required condition. To conduct the proof, we will continue with the
assumption that n > 2. This would mean that

⌈
log5 n

⌉
> 10, in which case Lemma 2.4 can

be utilized. We shall now continue by considering r1, r2, . . . , rt to be all of the numbers for
which n is divisible by either either ri or ori(n) ≤ log2 n. These numbers must all be able to
divide the following:

n ·
⌊log2 n⌋∏

i=1

(
ni − 1

)
< nlog4 n ≤ 2log

5 n.

The lcm of the first
⌈
log5 n

⌉
, according to Lemma 2.4, at the very least is 2⌈log

5 n⌉. Thus,
it must be true for some s ≤

⌈
log5 n

⌉
, that s /∈ {r1, r2, . . . , rt}. In the case that (s, n) = 1,

it can be seen that

os(n) > log2 n,

and the case would be complete.
In the case (s, n) > 1, due to the fact that (s, n) ∈ {r1, r2, . . . , rt} , and that n is not

divisible by s, r = s
(s,n)

/∈ {r1, r2, . . . , rt}, therefore:

or(n) > log2 n.

■

12 ARHAM RAKHECHA

There must be a prime factor p of n, due to oτ (n) > 1, for which oτ (p) > 1. The third
step or the fourth step in Algorithm 5 would decide about the primality of n unless:

p > r.

Furthermore, the third or the fourth step would correctly identify n unless:

(n, r) = 1.

From (n, r) = 1, we can understand that

p, n ∈ Z∗
r .

For the purpose of this proof, both p and r shall remain fixed until the next section. To
simplify further parts of this section, we shall also set

ℓ = ⌊
√
ϕ(r) log n⌋.

The fifth step of the Agrawal-Kayal-Saxena primality test, given in Algorithm 5, is what
confirms ℓ equations. As we are maintaining a similar format and sequence to Agrawal,
Kayal and Saxena’s work, we have assumed that the case we are going to consider is the
case when the algorithm outputs “prime” in the sixth step. Therefore, the algorithm does
not return “composite” in the fifth step, thus we can deduce the following:

(X + a)n = Xn + a (modXr − 1, n)

in the case of every a, given that 0 ≤ a ≤ ℓ. The following equation can then be deduced:

[1]

(X + a)n = Xn + a (modXr − 1, p)

with the range 0 ≤ a ≤ ℓ.
Due to Lemma 2.2, we can also deduce:

[2]

(X + a)p = Xp + a (modXr − 1, p)

with the same range 0 ≤ a ≤ ℓ.
From [1] and [2] above, we have:

[3]

(X + a)
n
p = X

n
p + a (modXr − 1, p)

with the same range 0 ≤ a ≤ ℓ. Through the equation above, it can be seen that both n
p

and n behave similar to prime p. There has been a name given to this property:

Definition 8. [AKS04] Given a number m that is in N and a polynomial f(X), it is said
that m is introspective for f(X) provided that

[f(X)]m = f (Xm) (modXr − 1, p) .

We can see from equations [2] and [3] above, that both p as well as n
p
are introspective,

when 0 ≤ a ≤ ℓ, for X + a.
We will use the lemma below to demonstrate that introspective numbers are closed under

multiplication:

Lemma 2.6 (Lemma 4.5 in the original paper). [AKS04] m ·m′ is an introspective number
for f(X) if the numbers m and m′ are introspective for f(X).

PRIMALITY TESTING, FACTORING ALGORITHMS, AND THEIR APPLICATIONS IN CRYPTOGRAPHY13

Proof. Considering that m is introspective for f(X), it can be seen that:

[f(X)]m·m′
= [f (Xm)]m

′
(modXr − 1, p) .

Furthermore, we must also consider that m′ has the same introspective property for f(X).
By replacing X with Xm in the introspection equation for m′, we are able to reach:

[f (Xm)]m
′
= f

(
Xm·m′

)
(modXm·r − 1, p)

= f
(
Xm·m′

)
(modXr − 1, p) (since Xr − 1 divides Xm·r − 1) .

Combining the 2 equations above, we finally reach:

[f(X)]m·m′
= f

(
Xm·m′

)
(modXr − 1, p) .

■

We can use this to show that, given a number m, the set of polynomials such that m is
introspective is closed under multiplication.

Lemma 2.7 (Lemma 4.6 in original paper). [AKS04] It must be true that m is introspective
for f(X) · g(X), on the condition that m is introspective for both f(X) and g(X).

Proof. This will give us:

[f(X) · g(X)]m = [f(X)]m · [g(X)]m

= f (Xm) · g (Xm) (modXr − 1, p) .

■

Both Lemma 2.7 and Lemma 2.6 can be used to demonstrate that all numbers within the
below set

I =

{(
n

p

)i

· pj | i, j ≥ 0

}
,

are introspective for all of the polynomials that belong to the set

P =

{
ℓ∏

a=0

(X + a)ea | ea ≥ 0

}
.

In order to carry on parallel to the original authors’ proof,7 we will create and define 2
groups that are required to complete the proof. These are derived from the above sets.

The first group defined in the paper by Agrawal, Kayal and Saxena is “the set of all
residues of numbers in I mod r.” We have seen that:

(n, r) = (p, r) = 1,

and this can be used to determine that the first group we have defined is a subgroup of Z∗
r .

We will refer to this group as G1, and we will define v as |G1| = v. We generate the group
G by p modulo r and n, and because we know that

or(n) > log2 n,

we can see
v > log2 n.

7 [AKS04]

14 ARHAM RAKHECHA

We will now define the next group as the set of all residues of polynomials in P modulo
h(X) and p. However, for us to define this group, we must give meaning to h(X), and this
is done by recalling some essential principles of cyclotomic polynomials over finite fields.
Firstly, we will refer to the rth cyclotomic polynomial over Fp using Qr(X). Xr − 1 is
divisible by this polynomial, and Qr(X) also factors into irreducible factors with the degree
or(p)

8. We will now be able to define h(X), and we will set this to be one such irreducible
factor. The degree of h(X) is larger than 1 due to or(p) > 1. This group is generated by the
following elements:

X,X + 1, X + 2, . . . , X + ℓ

in the field
F = Fp[X]/(h(X)).

We will refer to this group as G2. This G2 is also a subgroup of the multiplicative group of
F .

To progress with the proof, we must now prove, for the group G2, a lower bound. The
lower bound which we shall prove is a refined version of the bound which was presented in
Agrawal, Kayal and Saxena’s earlier papers.

Lemma 2.8 (Lemma 4.7 in original paper). [AKS04]

|G| ≥
(

v + ℓ
v − 1

)
.

Proof. We know that X is a primitive rth root of unity within F , due to h(X) being a factor
of the cyclotomic polynomial Qr(X).
It can then be demonstrated that we can map two polynomials, which are distinct, of

degree less than v in P to separate elements in the earlier defined group G. From this point,
we move forward by using g(X) and f(X) as two of these polynomials in P . We assume
that g(X) is equal to f(X), in field F . We will also use m such that m ∈ I. Thus, in the
field F , we also have:

[g(X)]m = [f(X)]m.

As h(X) divides Xr − 1 and m is also introspective for g as well as f , we can state that in
F :

g (Xm) = f (Xm) .

The above suggests that, for each m ∈ G, Xm is a root of the polynomial Q(Y) = f(Y) −
g(Y). We can see that every such Xm is a primitive rth root of unity, as we know that
(m, r) = 1. This would then mean that there are |G| = v distinct roots of Q(Y) in F , but
v is greater than the degree of Q(Y) by the choice of g and f . As this is a contradiction we
can state that, in F ,

g(X) ̸= f(X).

We then follow along with the original authors’ proof to show that the following elements
are distinct in F :

X,X + 1, X + 2, . . . , X + ℓ.

This is done as we can conclude that, becauseℓ = ⌊
√

ϕ(r) log n⌋ <
√
r log n < r and p > r,

i ̸= j in Fp for 1 ≤ i ̸= j ≤ ℓ. Furthermore, X + a ̸= 0 in F for every a, 0 ≤ a ≤ ℓ, as we can
know the degree of h is larger than 1. This means that at least ℓ + 1 distinct polynomials

8 [LN94]

PRIMALITY TESTING, FACTORING ALGORITHMS, AND THEIR APPLICATIONS IN CRYPTOGRAPHY15

exist that have degree one, in G. Following this we can conclude our proof that at least(
v + ℓ
v − 1

)
with a degree less than v exist in G. ■

We are also able to set an upper bound for the size of G, which must be considered in the
case where n is not actually a power of p.

Lemma 2.9 (Lemma 4.8 in original paper). [AKS04] |G| ≤ n
√
v, considering that n is not

a power of p.

Proof. As in the original authors’ proof, we will first look at the below subset of I,

Î =

{(
n

p

)i

· pj | 0 ≤ i, j ≤ ⌊
√
t⌋

}
.

The set Î should contain (⌊
√
v⌋ + 1)2 > v distinct numbers, in the case we are considering.

It must be true that a minimum of two numbers in Î should be equal modulo r, as we know
that |G| = t. We will denote these with m1 and m2 with m1 < m2. This would lead us to
the following:

Xm1 = Xm2 (modXr − 1) .

From here, maintaining the essence of Agrawal, Kayal and Saxena’s proof, we will set f(X) ∈
P to lead us to

[f(X)]m2 = f (Xm2) (modXr − 1, p)

= f (Xm1) (modXr − 1, p)

= [f(X)]m1 (modXr − 1, p) .

Which would then suggest that in the field F

[f(X)]m1 = [f(X)]m2 .

This means that f(X) ∈ G is a root of the polynomial Q′(Y) = Y m2 − Y m1 in the field
F .9 We can also state that the polynomial Q′(Y) has a minimum |G| distinct roots in F , as
we know that f(X) is an arbitrtrary element of G. This means that the degree of Q′(Y) is

m2 ≤
(
n

p
· p
)⌊

√
v⌋

≤ n
√
v.

Finally giving us:

|G| ≤ n
√
t.

■

Giving that we have bounds for the size of G, we can finally finish our proof to establish
the AKS algorithm given in Algorithm 5. Our final lemma is below.

Lemma 2.10 (Lemma 4.9 in original paper). [AKS04] Algorithm 5 outputs “prime” if and
only if n is prime.

9 [KSS02]

16 ARHAM RAKHECHA

Proof. We will begin by assuming that Algorithm 5 outputs “prime.” By Lemma 2.8 it can
be suggested that for v = |G| and ℓ = ⌊

√
ϕ(r) log n⌋ :

|G| ≥
(

v + ℓ
v − 1

)
≥

(
ℓ+ 1 + ⌊

√
v log n⌋

⌊
√
v log n⌋

)
(since v >

√
v log n)

≥
(

2⌊
√
v log n⌋+ 1
⌊
√
v log n⌋

)
(since ℓ = ⌊

√
ϕ(r) log n⌋ ≥ ⌊

√
v log n⌋)

> 2⌊
√
v logn⌋+1 (since ⌊

√
v log n⌋ >

⌊
log2 n

⌋
≥ 1

)
≥ n

√
v.

We then consider Lemma 2.9 and use this to state that if n is not a power of p:

|G| ≤ n
√
t.

This would mean that n = pk for a k > 0, and if k > 1 then this would mean that Algorithm 5
would output “composite” in the very first step. This completes our proof, as this means
that n = p. ■

3. Factoring algorithms

3.1. Fermat’s Factorization. Fermat’s factorization algorithm is a very basic process,
where to factor a numberN , we express the number as a difference of two squares. Essentially,
it is the principle that if we can interpretN as a2−b2, where both a and b are positive integers,
we are able to factor N into (a+ b)(a− b). This factorization is non-trivial if a− b > 1.

In order to be made into an algorithm, we use values of a from ⌈
√
N⌉ to N as in the

following:

a = ⌈
√
N⌉, ⌈

√
N⌉+ 1, ⌈

√
N⌉+ 2,

We then test to see if the value of a2−N is square. In the chance that the determined value
is square, b2, then we will get N = a2− b2 = (a+ b)(a− b). Fermat factorization is easier to

use for values of N that have a factor which is near to
√
N or are odd and the product of

two close integers.
The time complexity of the Fermat factorization algorithm is exponential, but the gen-

eral basis of most known algorithms which are below exponential complexity, such as the
quadratic sieve and number field sieve algorithms, is dependent on Fermat factorization.

Algorithm 6 (Fermat Factorization). [Sah11] This algorithm is for an input of N to generate
the factors of N .

(1) for a from ⌈
√
N⌉ to N

(2) bsqr = a× a−N
(3) if isSquare(bsqr) then

b =
√
bsqr

s = a− b
v = a+ b
if s ̸= 1 and s ̸= N then output s, v

PRIMALITY TESTING, FACTORING ALGORITHMS, AND THEIR APPLICATIONS IN CRYPTOGRAPHY17

endif
(4) endif
(5) endfor

The “isSquare” function takes a square root, and then rounds the value received to an
integer, then squares the outcome of that, and then checks if the result is the number that
was first inputted.

3.2. Trial Division. Trial division is often regarded as factorization at its simplest. It is a
fundamental algorithm which forms the basis of algorithms that we will consider.

This factorization algorithm simply divides N by each odd integer up until ⌊
√
N⌋ and

therefore if the number N being considered has a small prime factor p, then we are able to
deduce the value of p very easily through the use of trial division.

Another way this can be used is to divide N by every odd integer down from ⌊
√
N⌋ all

the way to 2. This would be in situations where the prime p is close to
√
N , also making

the process efficient. The algorithm is as follows below.

Algorithm 7. [Sah11] This algorithm is for an input of N to generate the factors of N .

(1) for x from 2 to ⌊
√
N⌋

if x divides N then output x,N/s
endif

(2) endfor

This algorithm is a key fundamental required for a better understanding of the following
subsection.

3.3. Generalized Trial Division. The factorization algorithm we will now examine can
be considered a generalization of the trial division method in Algorithm 7, developed by
Sahin.10 Once again, slightly similar to how we did for Algorithm 6, we take numerous
values of x, as in the following:

x = ⌊
√
N⌋, ⌊

√
N⌋ ± 1, ⌊

√
N⌋ ± 2,

We then see if the greatest common factor between x and N is a proper factor of N , where
⌊
√
N⌋ is the largest integer which is either equal to or less than

√
N .

Now we continue by setting N = pq, where both p and q are prime numbers and q is less
than p. The Generalized Trial Division factoring algorithm must take at least ⌊

√
N⌋ − q

and p − ⌊
√
N⌋ steps and therefore it is effective when

√
N is close to q. If we consider

Algorithm 7, in a situation where we look for the prime divisor q from ⌊
√
N⌋ down until 2

then trial division will be more efficient than the generalization that we are currently looking
at. Also, if we consider Algorithm 6, we would see that it would take

q + p

2
−
√
N =

q + N
q

2
−
√
N =

(
√
N − q)2

2q

steps, for Fermat factoring. This would mean that both are more efficient than this gener-
alization. However, the Generalized Trial Division is effective in situations where there is a
positive integer d > 1 such that d times any prime factor of N is close to

√
N , and not only

if q is close to
√
N .

10 [Sah11]

18 ARHAM RAKHECHA

The generalization is effective in the cases where a positive integer d d > 0 that satisfies
dp or dq being near

√
N . The algorithm below is able to find the prime factor q in c0 steps

because q is the greatest common factor between N and dq.

Algorithm 8 (Generalized Trial Division). [Sah11] This algorithm is for an input of N to
generate the factors of N .

(1) for x from 1 to ⌊
√
N⌋

a1 = ⌊
√
N⌋+ 1

a2 = ⌊
√
N⌋ − 1

A1 = gcd(N, a1)
A2 = gcd(N, a2)
if Ak divides N then (k = 1, 2) and output Ak, N/Aj

endif
(2) endfor

3.4. Quadratic Sieve. We will also describe the Quadratic Sieve factoring algorithm, al-
though in less detail than previous sections, in order to grasp the concept. For a given
number N , the quadratic sieve factoring algorithm aims to reach two numbers a, b which
satisfy the two following conditions:

a2 ≡ b2 (modN)

and

a ̸≡ ±b (modN).

If numbers are found that satisfy those conditions, it would suggest that (a+ b)(a− b) ≡
0 (modN). From here it is very straightforward to check if (a− b,N) is a divisor, by using
the Euclidean Algorithm.11 There is at least a 50% chance that the factor is nontrivial.

In order to do this we first set:

Q(a) = (a+ ⌊
√
n⌋)2 − n = ã2 − n,

then process:

Q (a1) , Q (a2) , . . . , Q (ak) .

To reach ai, continue with the following: from the calculated Q(a), choose a subset for which
Q (ai1)Q (ai2) . . . Q (air) is the square, b2. We then recall for each a,Q(a) ≡ ã2 (modN),
giving us:

Q (ai1)Q (ai2) . . . Q (air) ≡ (ai1ai2 . . . air)
2 (modN).

In cases where the earlier defined conditions remain true, we are left with divisors of N .
[Lan01]

11 [Lan01]

PRIMALITY TESTING, FACTORING ALGORITHMS, AND THEIR APPLICATIONS IN CRYPTOGRAPHY19

3.5. Pollard’s Rho.

Algorithm 9 (Pollard’s Rho Algorithm). [WG23] For an input N , our assumption is that N
has a small factor.

• Choose some x0, often given the value of 2, and some equation, generally f(x) =
x2 + 1.
• Compute x1 = f (x0) mod N , x2 = f (x1) mod N , x3 = f (x2) mod N and so
forth, with general equation x(n+ 1) = f (xn) mod N .
• For subscripts which are even for x2y, we continue with the following:

Calculate greatest common factor of (x2y − xy) and N
Continue until greatest common factor is > 1.

• The greatest common factor is a factor, completing the algorithm.

We will now demonstrate this with an example from below: We will use the algorithm
with N = 1234. We set x0 = 2 and f(x) = x2 + 1. Now we calculate:

x1 = 5
x2 = 26 gcd(26− 5, 1234) = 1
x3 = 677
x4 = 516 gcd(516− 26, 1234) = 2

This leads us to 2 as the factor, completing the algorithm.

4. Applications in Cryptography

Primality testing and factoring algorithms are two key components of modern cryptogra-
phy. They are utilized primarily in asymmetric, or public-key, cryptography. The concept
involves two mathematically related keys, one which is openly distributed and one which is
held confidential.

Primality tests are simply used to determine whether a given number, n, is prime or
composite. This is used to generate secure keys, as the security of the keys (in many forms
of encryption) relies on the difficulty of factoring large numbers into prime factors. To
maximize the protection of the system, the prime numbers must be chosen effectively and
with care. The primality tests such as in Algorithm 5, ensure potential numbers are prime.
This is why it is crucial to have accurate and reliable primality tests.

The most prominent application of factoring algorithms is to decipher encrypted messages.
Factorizing the public-key can enable attackers to determine the prime factors used, which
breaches the security of the encryption. This is known as factorization-based cryptanalysis.
The ongoing research and development of factoring algorithms is crucial for defending against
potential attacks and recognizing alternative techniques which can withstand these factoring
algorithms. Factoring algorithms are mainly associated with the security of Rivest-Shamir-
Adleman cryptography.

4.1. Rivest-Shamir-Adleman Cryptography. RSA cryptography is a form of asymmet-
ric encryption which relies on the difficulty of factoring large numbers into their prime factors
as described above. To generate a key, two large prime numbers, p and q, are chosen. Pri-
mality testing is used to verify that p and q are indeed prime. The product of these numbers
N is calculated, whilst keeping the values of p and q private.
The public key is made up of two values, the modulus, N , and the public exponent,

denoted by e. The public key space K, can be defined as the set that describes all pairs of

20 ARHAM RAKHECHA

integers (e,N) where N is as defined above and 1 < e < ϕ(N) and the greatest common
factor of the pair is 1. This public key is easily accessible, and can be used to send encrypted
messages to the owner of the corresponding private key.

The private key is constructed using the prime factors of N , p and q, and also consists
of the private exponent, denoted by d. For the public key (e,N), the corresponding private
key is represented by (d,N), for which ed ≡ 1 mod ϕN . This private key is used to decrypt
messages. The assumption made is that factoring large numbers into prime factors is com-
putationally infeasible, which is why key size is highly important to the level of security. If
the key size is doubled, the difficulty of deciphering increases exponentially.

4.2. Practical Applications. There have been numerous tests conducted utilising factor-
ing algorithms to compare efficiency in factorizing public keys. Here we will analyse data
collected on the speed and success rate of Fermat’s factorization (Algorithm 6), and Pollard’s
Rho algorithm (Algorithm 9).

Table 1 [ABC21]: Fermat’s Factorization on Public Keys from 10/16 to 20/32 bytes

No. Public Key n
Length of
Public Key
n (bytes)

p q
Execution Time
(ms)

Success
Rate
(%)

1.
291642541
1

10/16 65357 44623 561 ms 100%

2.
117527008142
59

14
343051

7
3425927 2 ms 100%

3.
1341849068550
433

16
393584
47

3409303
9

18497 ms 100%

4.
4172366223726
2923

17
209763
919

1989077
17

13207 ms 100%

5.
4325011719545
94013

18
779594
677

5547769
69

1640872 ms 100%

6.
8763301721976
902561

19
344668
3453

2542531
637

6688088 ms 100%

7.
4980853165476
5413631

20/32
707853
7649

7036556
719

6162 ms 100 %

Fermat’s Factorization method was successful for all public key sizes within the range of
Table 1. There was a 100% success rate, as the algorithm found both the values of p and q.

Table 2 [ABC21]: Pollard’s Rho on Public Keys from 10/16 to 20/32 bytes

PRIMALITY TESTING, FACTORING ALGORITHMS, AND THEIR APPLICATIONS IN CRYPTOGRAPHY21

No. Public Key n
Length of
Public Key
n (bytes)

p q
Execution Time
(ms)

Success
Rate
(%)

1. 2916425411 10/16 44623 65357 8892 ms 100%

2.
1175270081425
9

14 3425927 3430517 7394 ms 100%

3.
1341849068550
433

16
3935844

7
3409303

9
9843 ms 100%

4.
4172366223726
2923

17
1989077

17
2097639

19
8564 ms 100%

5.
4325011719545
94013

18
5547769

69
7795946

77
5148 ms 100%

6.
8763301721976
902561

19
2542531
637

3446683
453

8440 ms 100%

7.
4980853165476
5413631

20/32
7078537
649

7036556
719

28704 ms 100 %

Pollard’s Rho was also successful in generating values for p and q, for all public key sizes
within Table 2.

Comparing the two, we can see that Pollard’s Rho had greater consistency in execution
time. Although Fermat’s Factorization was faster for specific sizes of the public key n, on
average Pollard’s Rho was 1184343.43 milliseconds faster.

Table 3 [ABC21]: Fermat’s Factorization on Public Keys from 22 to 38/64 bytes

No. Public Key n
Length of
Public Key
n (bytes)

p q
Execution Time
(ms)

Success
Rate
(%)

1.
293665345516073845
3027

22 - - 28144000 ms 0%

2.
528910732087107271
20157

23 - - 23014000 ms 0%

3.
147307994954025982
9229771

25 - - 23140000 ms 0%

4.
1236935240376865945
3215077

26 - - 31020000 ms 0%

5.
268889892902937863
375973328747

30 - - 32405000 ms 0%

6.
568396900241882051
50194976305169

32 - - 58058000 ms 0%

7.
2057779950536923409
32379163614957396549

38/64 - - 30357000 ms 0 %

Examining Fermat’s Factorization dealing with larger public keys, it is seen that their was
a 0% success rate from 22 bytes to 38/64 bytes. This means that p and q were not able to
be deduced, and the public key is considered secure against Fermat’s Factorization.

Table 4 [ABC21]: Pollard’s Rho on Public Keys from 22 to 38 bytes

22 ARHAM RAKHECHA

No. Public Key n
Length of
Public Key
n (bytes)

p q
Execution Time
(ms)

Success
Rate
(%)

1.
29366534551607384
53027

22
49865
64726
7

58891313
281

27737 ms 100%

2.
14730799495402598
29229771

25
11043
88782
851

13338418
24921

108280 ms 100%

3.
12369352403768659
453215077

26
34822
18272
409

35521473
48653

224082 ms 100%

4.
26888989290293786
3375973328747

30
53122
50579
49433

50616944
5283459

6003859 ms 100%

5.
56839690024188205
150194976305169

32

80319
78041
99680
9

70766739
80804041

24835270 ms 100%

6.
20577799505369234
09323791636149573
96549

38 - - 71674000 ms/ 0%

Successful from 22 bytes to 32 bytes, Pollard’s Rho is able to factor larger public keys.
However, Table 4 depicts the lack of effectiveness of Pollard’s Rho for 38 bytes, illustrating
the existence of a limit.

The greater range of efficacy of Pollard’s Rho is evident through Table 3 and Table 4,
as this algorithm’s performance has a larger limit for successful factorization. Furthermore,
it was seen that the average execution time for Pollard’s Rho was 8831137.775 milliseconds
faster than that of Fermat’s Factorization. Fermat’s Factorization was indeed faster for
10/16 bytes, 14 bytes and 20/32 bytes, however, with superior average speed and size range,
Pollard’s Rho algorithm is the preferable choice for overall success. Altogether, this practical
analysis of the two factoring algorithms displays their utility, highlighting the significance of
factoring algorithms.

Conclusion

Upon exploring several algorithms and theorems, including primality tests such as the
Agrawal-Kayal-Saxena primality test, Algorithm 5, and factoring algorithms such as Trial
Division, Algorithm 7, we conclude with possible routes for further learning. To pursue
practical aspects of factoring algorithms, one can explore Performance Analysis of Fermat
Factorization Algorithms by Bahig, Mahdi, Alutaibi, AlGhadhban and Bahig12 and A Gen-
eral Number Field Sieve Implementation by Bernstein and Lenstra.13 For an example of
modern algorithms, The Number Field Sieve by Manasse, Pollard, Lenstra and Lenstra Jr.14

12 [BMA+20]
13 [BL93]
14 [LLMP]

PRIMALITY TESTING, FACTORING ALGORITHMS, AND THEIR APPLICATIONS IN CRYPTOGRAPHY23

Finally, to study these concepts with their links to cryptography, The Improvement of Elliptic
Curve Factorization Method to Recover RSA’s Prime Factors by Somsuk15 and Modified trial
division algorithm using KNJ-factorization method to factorize RSA public key encryption
by Lal, Singh and Kumar.16 The author’s future research will involve examining complexity
theory and modifications of existing algorithms in order to provide a helpful contribution to
research in the field.

Acknowledgments

The author would like to express their gratitude to Sawyer Anthony Dobson and Simon
Rubinstein-Salzedo.

Bibliography

References

[ABC21] Aminudin Aminudin and Eko Budi Cahyono. A practical analysis of the fermat factorization and
pollard rho method for factoring integers. Lontar Komputer : Jurnal Ilmiah Teknologi Informasi,
12(1):33, Mar 2021.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of Mathematics,
160(2):781–793, Sep 2004.

[BL93] Daniel J. Bernstein and A. K. Lenstra. A general number field sieve implementation. In Arjen K.
Lenstra and Hendrik W. Lenstra, editors, The development of the number field sieve, pages
103–126, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[BMA+20] Hazem M. Bahig, Mohammed A. Mahdi, Khaled A. Alutaibi, Amer AlGhadhban, and Hatem M.
Bahig. Performance analysis of fermat factorization algorithms. International Journal of Ad-
vanced Computer Science and Applications, 11(12), 2020.

[Con16] Keith Conrad. The solovay–strassen test. 2016.
[Gau86] Carl Friedrich Gauss. Disquisitiones Arithmeticae. Springer New York, New York, NY, 1986.
[KSS02] Adam Kalai, Amit Sahai, and Madhu Sudan. Notes on primality test and analysis of aks. Private

communication, August, 2002.
[Lan01] Eric Landquist. The Quadratic Sieve Factoring Algorithm. 2001.
[LLMP] A.K Lenstra, H.W Lenstra, M.S Manasse, and J.M Pollard. The number field sieve.
[LN94] Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and their Applications. Cam-

bridge University Press, 2 edition, 1994.
[LSK15] Nidhi Lal, Anurag K Singh, and Shishupal Kumar. Modified trial division algorithm using knj-

factorization method to factorize rsa public key encryption. CoRR, Jan 2015.
[Me8] Romeo Meštrović. Euclid’s theorem on the infinitude of primes: a historical survey of its proofs

(300 b.c.–2017) and another new proof, 2018.
[Mon80] Louis Monier. Evaluation and comparison of two efficient probabilistic primality testing algo-

rithms. Theor. Comput. Sci., 12:97–108, 1980.
[Pat21] Jaival Patel. Sieve of eratosthenes: One of the oldest algorithms still prevalent as if it were born

yesterday, Sep 2021.
[Rab80] Michael O Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory,

12(1):128–138, 1980.
[Sah11] Murat Sahin. Generalized trial division. Int. J. Contemp. Math. Sciences, 6(2):59–64, 2011.
[Som21] Kritsanapong Somsuk. The improvement of elliptic curve factorization method to recover rsa’s

prime factors. Symmetry, 13(8):1314, Jul 2021.
[SS78] R. Solovay and V. Strassen. Erratum: A fast monte-carlo test for primality. SIAM Journal on

Computing, 7(1):118–118, 1978.
[SS13] Robert G. Salembier and Paul Southerington. An implementation of the aks primality test, 2013.

15 [Som21]
16 [LSK15]

24 ARHAM RAKHECHA

[Sut17] Andrew Sutherland. 2 Primality proving. 2017.
[Wei23a] Eric W. Weisstein. Jacobi symbol, 2023.
[Wei23b] Eric W Weisstein. Witness, 2023.
[WG23] Justin Wyss-Gallifent. Pollard’s rho method, Feb 2023.

Email address: arrakhecha@gmail.com

	Abstract
	Introduction
	1. Primality Testing
	1.1. Fermat's Primality Test
	1.2. Miller-Rabin Primality Test
	1.3. Solovay-Strassen Primality test
	1.4. AKS Primality Test

	2. Agrawal-Kayal-Saxena Primality Test Original Theorem and Proofs
	3. Factoring algorithms
	3.1. Fermat's Factorization
	3.2. Trial Division
	3.3. Generalized Trial Division
	3.4. Quadratic Sieve
	3.5. Pollard's Rho

	4. Applications in Cryptography
	4.1. Rivest-Shamir-Adleman Cryptography
	4.2. Practical Applications

	Conclusion
	Acknowledgments
	Bibliography
	References

