AN INTRODUCTION TO BALANCED INCOMPLETE BLOCK DESIGNS

ANUSHKA TONAPI

ABSTRACT. In this expository paper, our goal is to present a comprehensive introduction
to balanced incomplete block designs. We elaborate on different types of designs such
as symmetric BIBDs (SBIBDs), and discuss the construction of designs. We also state
and prove the conditions of existence of a balanced incomplete block design. Subsequently,
relations between the parameters of a BIBD are explored and proved, and we state the Bruck-
Ryser-Chowla Theorem. Next, we consider alternate ways to represent BIBDs through
incidence matrices and graph colouring. We also discuss Steiner-Kirkman triple systems,
t-designs, and the Ray-Chaudhuri and Wilson theorem. Finally, we discuss the application
of BIBDs to statistical analysis and experimental design.
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1. INTRODUCTION

Combinatorial design is a field in combinatorics which is concerned with the construction
and analysis of arrangements in order to observe symmetry and satisfy certain balance prop-
erties. These arrangements can involve any objects, but are usually regarding finite sets. For
example, a sudoku is a combinatorial design since it represents the arrangement of nonzero
digits in a square grid. The area of combinatorial design is highly developed, although many
interesting problems and fundamental questions remain unsolved. Most of the methods for
constructing designs rely on an algebraic structure called a finite field and the more general
system of arithmetic.

Block design is a part of combinatorial design in which arrangements of points in subsets are
used to model several things ranging from graph colouring to experimental design. Balanced
incomplete block designs (BIBDs) are mathematical structures used in experimental design
and combinatorial mathematics, particularly in the field of statistics. Experimental design
itself connects applications in statistics to the theory of combinatorial mathematics.

The existence and properties of a balanced, symmetric block design are dependent on its
parameters. Richard Wilson in the 1970s showed that the trivial necessary conditions for
the existence of various kinds of designs are ”asymptotically sufficient”, which is a statistical
way of looking at design theory. It essentially means that given k, "there exists a design for
all but finitely many k satisfying these conditions.”, where k is an integer that represents
the number of finitely many items for which the design fails.

1.1. Definitions.

Definition 1.1. A block design is a structure that consists of two sets; a finite set of points
or varieties, denoted by V', and another of subsets of V', denoted by B. The cardinalities of
V and B are represented by v and b respectively. Since each B € B is a block, b the the
number of blocks in the design. Note that b and v are considered parameters of the design.

Definition 1.2. A regular design is a design in which every point appears in the same
number of blocks, which is denoted by the parameter r. For example, if the point 1 appears
thrice in three different blocks, and this is true for all the other points in V', then r = 3 and
the design is regular.

Definition 1.3. A uniform design is a design in which all the points are "uniformly” dis-
tributed among the blocks, i.e. all blocks have the same number of points, and this number
is denoted by k.

Definition 1.4. A balanced design is a design in which every pair of distinct points in V'
appears together in the same number of blocks, .

Definition 1.5. A (b,v, k,r, A) design is called a complete design if v = k, or it is simple and
contains (Z) blocks. Otherwise, if k = 1, it is called a trivial design, since, there is only one
point in every block. A regular, uniform balanced block design is also called a (b, v, 7, k, \)
design.

Further, our primary objects of study, balanced incomplete block designs, are designs that
are regular, uniform, balanced and incomplete, according to the definitions of the parameters
above.
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For example, a BIBD with parameters (20, 16,5.4,1) 1s
{1,2,3,4},{5,6,7,8},{9,10,11,12}, {13, 14, 15, 16}
{1,8,12,16},{2,5,10, 15}, {2.6,9,16}, {2, 7,12, 13}
{4,5,11,14},{4,6,12,13}, {4, 7,10, 16}, {4,8,9, 15}
{1,5,9,13}, {1.6,10, 14}, {1, 7, 11,15}, {2,8, 11, 14}

13,5,12,15}.{3,6,11,16}.4{3,7,9,.4}, {3,8,10, 13}

[uh S ST e

[k o

Figure 1. A BIBD with parameters (20, 16,5,4,1).

2. CONSTRUCTION OF DESIGNS

There are several methods for constructing BIBDs, a few of which are given below. Since
the parameters b and r can be expressed in terms of v,k and A for regular, balanced and
uniform designs as we will be doing in the following section, we may omit that notation for
now.

e We begin with a BIBD (v, k, A). We then create ¢ copies of each block for all blocks
in the design. The result is a BIBD of the form (v, k, t)\).

e We once again start with a pre-existing design, (v, k, \), from sets (V, B). We replace
each block B € B with its complementary block, B¢ =V \ B = {B°: B € B}. Then
(V,{B¢: B € B}). The design constructed by this method is called the complemen-
tary design or complement of the original design, and can be denoted by (V, B°).

Theorem 1. The complement of a BIBD (v, k,\) is a BIBD (v,v — k,b—2r + \).

Proof. The complement of a design still has v points and b blocks. The corresponding block
of the complementary design will have the v — k elements of V' \ B.

We need to count the number of times any given pair of points appear together in a block
of the complementary BIBD. Two points appear together in a block of the complementary
BIBD if and only if neither of them was in the respective block of the original BIBD. Each
of the two points appeared in r blocks of the original BIBD, and they appear together in A
blocks of the original BIBD.

Now we use the principle of inclusion-exclusion to count the number of blocks in which
at least one point appears; it is r +r — X\ = 2r — A\. Therefore, the number of blocks in which
neither of the two points appears is b— (2r —\) = b—2r+ A, and thus b in the complementary
design equals b — 2r + \. Since this counting technique is independent of the choice of our
two points, the complement is indeed a BIBD, as every pair of points appears together in
some block b — 2r + X\ times. [ |

3. INCIDENCE MATRICES

Suppose we have a design on the vertex set V' = {0,1,2,3,4,5,6} as follows:
{0,1,2},{0,3,4},{0,5,6},{1,3,5},{1,4,6},{2,3,6},{2,4,5}.
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These blocks shall be denoted by By, Bs, Bs, - -+ , By respectively. Given these, there exists
an incidence relation R between V = {01,2,3,4,5,6} and B = {By, By, Bs,--- , B7}. This
incidence relation is defined by the point a;, where the ordered pair (a;, B;) € R if a; € B;.
We put a one in the (a;, B;) entry if (a;, Bj) € R, and a zero otherwise. It is represented by
the following table or matrix.

By By Bs By Bs B B
01112130405060 (lllnn[}n\I
11T 00 1 1 0 0 1001100
201 0 0 0 0 1 1 1000011
3]0 1 0 1 0 1 0 01 01 010
401 0 0 1 0 1 01 00101
0011001
510 0011 0 0 1 \Ut:} 01.0)
6/l0 0 1L 0 1 1 0 )1 1

Figure 3. Matrix of incidence

R

Figure 2. Table of incidence
R

Incidence matrices help us describe the information in a BIBD in a concise manner. It is
important to note here that the content of an incidence matrix can vary according to the
manner in which we label the points and blocks in a BIBD. Therefore, while arranging the
content in a BIBD into an incidence matrix, we must be very clear about the points and
blocks.

4. GRAPH COLOURING

In this section, we discuss the alternate representation of BIBDs using graph colouring.

Definition 4.1. A multigraph is a graph that includes loops, i.e. vertices that connect edges
to themselves, and parallel edges, i.e. multiple edges constructed between the same pair of
vertices.

Definition 4.2. A complete graph is a graph in which every pair of distinct vertices is
directly connected by a unique edge.

Note: Here K, denotes a simple, complete graph K on v vertices. Similarly, K} denotes
a simple complete graph K on k vertices. The multigraph AK, denotes the multigraph in
which each edge of K, has been replaced by A copies of that edge.

Theorem 2. Colouring the edges of the multigraph NK,, so that the edges of any given colour
form a Ky results in the BIBD (v, k, ).

Proof. Let the points in the design represent the set of vertices in the multigraph AK,. For
each colour n that we use, we will create a block whose points are the vertices in K} which

also have the colour n. Since it is a uniform, balanced design, all blocks will have cardinality
k.

Every vertex has degree A(v — 1), and every complete graph on k vertices (K}) of one
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colour containing that vertex will have k& — 1 edges incident with that vertex. Therefore,
every vertex appears in

Alv —1)

(=1)

blocks. Since any edge of AK, must appear in some K} that is coloured with the colour of
that edge, we may say that for any pair of points, these vertices are connected by A edges
each of which appears in some K. Therefore, these points may appear together in \ of the
K, subgraphs, or blocks.

r =

We label the vertices of K, with the points of the design, given a BIBD (v, k,\) and the
multigraph AK,. For every block in the design, we use a new colour for each of the edges of
a K} that connects the points in that block. Since every pair of points appears together in
exactly A blocks, there will be sufficiently many uncoloured edges joining these points, and
there will be A\ edges joining the respective vertices. Therefore, this results in every edge of
the multigraph being coloured. [ |

4.1. Block intersection graphs. Another method of representing BIBDs are through block
intersection graphs. Vertices of this graph correspond to the blocks of the design. Two
vertices are adjacent if their respective blocks have a non-empty intersection. For example,
a BIBD with parameters (20, 16,5,4,1) and its respective block intersection graph are as
follows.

1]

1,
{1,

.3,4},{5,6,7,8},{9,10, 11,12}, {13, 14, 15, 16}
,12,161,12,5,10,15},{2,6,9, 16}, {2, 7,12, 13}
{4,5,11,14}, {4,6,12,13}, {4,7,10, 16}, {4,8,9,15} }
{1,5,9,13},{1,6,10,14},{1,7.11, 15}, {2,8,11, 14} |
[3,5,12,15}, 13,6, 11,16}, {3,7,9,4}, {3,8, 10, 13}

o0

[y S i §

5. CONDITIONS FOR THE EXISTENCE OF A REGULAR, UNIFORM, BALANCED DESIGN

Theorem 3. Two parametric conditions for the existence of a (b,v,r, k,\) design are as
follows:

(1) bk =vr

(2) r(k—1)=Av—-1)

We provide combinatorial proofs for these conditions that are based on counting the num-
ber of appearances of certain points.

Proof. There are b blocks and each has k points, so the total number of points in the design
(counting repetitions as well) is bk, using the multiplication principle of counting. In the set
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V' there are v points, each of which appear r times. Both the LHS and RHS of the equation
represent the total number of points in the design, so bk = vr.

For the second condition, consider a certain point x in the design. This point appears
in 7 blocks. Besides x, each block has k — 1 points, each of which are potential choices for
the point z. So the total number of appearances of the point x is r(k — 1). Another way to
count this is: for every point y € V' such that x # y, the pair (x,y) appears in A different
blocks (this is only possible if the design is balanced). Since y can be any point among the
remaining v — 1 points, the number of appearances of x along with v — 1 choices for y in a
pair is A(v — 1). |

A design is either called a (v, k, A) design or a (b,v,r, k,\) design. Only regular, uniform
and balanced designs are called (v, k, \) designs, since given that they are regular, uniform
and balanced, b and r can be derived directly from the values of v, k and A. The method of
derivation is explained in the proof of the following theorem.

Theorem 4. A reqular, balanced, uniform BIBD has

Av(v—1)
k(k—1)

blocks.

Proof. Since bk = vr and 7(k — 1) = Av — 1), and b = % and r = ’\(k”__ll) result from

rearrangement. Substituting the value of r from the first equation into the second gives
A(v—1)

b_vr_“ 1) v AMo—1)  X(v-1)

ok k ko k-1 kk-1)"

Since b and r are parameters that can be deduced from A, v and k, as demonstrated above,
a regular, uniform, balanced design can also be called a (v, k, ) design.

Theorem 5. For a (v,k,\) BIBD,
Av—=1)=0 (modk—1) and M(w—-1)=0 (mod k(k—1)).

Proof. Note that b and r are compulsorily integers since they represent the number of blocks
in different ways. We know from the parametric conditions of the existence of a BIBD that
Av—1) =r(k—1), we know that

Av—1)=0 (mod k—1)

Av(v—1)
k(k—1)

. Since b = , we know that

Mv—=1)=0 (mod k(k—1))
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6. PARAMETER RELATIONS
Theorem 6. Suppose that r | b in a (b,v,r, k,\) design. Then
b>v+r—1.
Proof.

Aln—1
Lemma 6.1. % 1§ an integer.
Proof. Given that b is a divisor of r, we know that b = 0 (mod r) and thus b = nr for
some positive integer n. Since we know that one of the existence conditions for a BIBD is

AMv —1) =r(k — 1) as discussed earlier, we may say that
RICENY
- (k-1)
We know from earlier that bk = ovr, and thus substituting b = nr into bk = wvr gives

vr = nrk or v = nk. This is an interesting observation, since this relation occurs between
these parameters only when b divides r. Now we have a new substitution for v in

~ Ank—1)
ICESV
Since n and A are positive integers, An is also a positive integer. Since
A(n—1)
=——>=4A
T ] + AN

must also be a positive integer since it is a parameter and counts a positive quantity, we
know that
An—1
g c Z T
(k—1)
|

Assume for the sake of contradiction that b < v + r — 1. Substituting b = nr in this
inequality gives nr < v+r—1. Rearranging and factoring gives nr —r <v—1lorr(n—1) <
v— 1.

From our parameter condition A(v — 1) = r(k—1), we have v — 1 = @ Substituting this
value of v — 1 into r(n — 1) < v — 1 gives

r(n—l)<r<k—)\_1)
r(n—1)~ﬁ<1
A(n—1)

—(k‘—l) <1

We thus arrive at a contradiction as the above expression is a positive integer, which cannot
be less than one. Therefore our assumption that b < v +r — 1 is false and we may conclude
that b>v+r — 1. [ |
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6.1. Bruck-Ryser-Chowla Theorem. This theorem was originally proposed by mathe-
maticians R.H. Bruck, S. Chowla, and H.J. Ryser in [13].

Theorem 7 (Bruck-Ryser-Chowla Theorem). A symmetric (v,k,\) BIBD must satisfy the
following conditions:

e if v is even, then k — \ is a square
e if v is odd, then the Diophantine equation

22— (k= Ny* + (—1)117_1/\22 =0

has a nontrivial integer solution.

7. FISHER’S EXISTENCE THEOREM

Fisher’s Existence Theorem is a fundamental result that provides a necessary condition
for the existence of a (v, k, A) block design. We present the statement and subsequent proof
of Fisher’s Existence Theorem. While this is essentially a major necessary condition for
the existence of a BIBD, this condition has a significantly more elaborate proof, and there
are other existence conditions that can directly derived from this theorem, which will be
elaborated on later in this section as consequences of this theorem.

Theorem 8 (Fisher’s Existence Theorem). Suppose there ezists a BIBD (v, k, \). Then the
following must hold:
v=b=A=0 (modk—1).

Proof. We begin by assuming the existence of a BIBD (v, k, A). Let the number of blocks
containing the point 7 as r(i). Since the design is balanced and all points appear at least
once in the same number of blocks, we have r(1) = r(2) =r(3) = --- = r(v).

Since each block contains k£ points and the number of blocks is b, the total number of
points across the design is bk. Therefore, we know that

v

(7.1) > (i) = bk

i=1

Consider the number of pairs of the points occurring together in the blocks. Since each
block contains k points, and the pair of points appears A times across the design, the total
number of pairs across all blocks is bA. This can be expressed alternatively as

CICEal) SOS TS
2

Simplifying this, we obtain

v(v—1)

-

Consider any two points ¢ and j. Each point appears r(i) and r(j) times respectively.
Suppose the number of blocks containing both treatments is denoted by r(i, 7). Since each
pair of treatments appears A times, we obtain

(7.3) r(i, ) x A=r(i) -r(J).

(7.2) b=
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Creating the summation of the above equation over all points in the point set gives

(7.4) Y (r(i.5)-A) =Y (i) - r()-

Expanding the summations gives

(7.5) A (i g) =Y @) > r().

We may substitute the value of Y r(i) and > r(j) with bk, which results in

(7.6) > r(ig) = (bi)2.

Since 7(i,j) = b as defined earlier, we have

(bk)*

b:
A

Therefore

(7.7) A:@:b.k?

We can derive from existence conditions that
(78) b-k*=0 (mod (k—1)) = b-k=0 (mod (k—1)) = b=0 (mod (k—1)).

Similarly, we have

(7.9) A=b-k2=0 (mod (k—1)).
Therefore, we may conclude that v = 0 (mod (k — 1)),b = 0 (mod (k — 1)) and A = 0
(mod (k —1)). |

7.1. Consequences of Fisher’s Existence Theorem.

7.1.1. Bose’s Theorem. Bose’s Theorem focuses specifically on the existence of resolvable
BIBDs. As we will see in a later section, a resolvable BIBD is a BIBD whose blocks can be
partitioned into sets, each of which is a partition of the point set.

Theorem 9. Suppose there exists a resolvable BIBD (v, k,\). Then the following must hold
true:

1 (mod k)
0 (mod k)

[ —
e b=
7.1.2. Paley’s Theorem. Paley’s Theorem is particularly useful in constructing BIBDs with
specific block sizes based on prime powers congruent to 1 modulo 4.

Theorem 10. Suppose there exists a BIBD (v, k,\) where k is a prime power congruent to
1 modulo 4. Then the following conditions must hold:

e v=1 (mod k)
e h=1 (mod k)
e \=1 (mod k)
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8. FISHER’S INEQUALITY

Theorem 11. Any BIBD (v, k, \) must satisfy b > v.
Proof. We know from Theorem [3| that

b — (v —1)
k(k—1)7
So attempting to prove that b > v would mean proving that
Aoy —
v(v—1) "
kE(k—1) —
Dividing both sides of the inequality by v gives
Mo—1) o 1.
k(k—1) —

Therefore, we can say that b > v is equivalent to A(v — 1) > k(k — 1).

Let A be an arbitrary yet particular block of the BIBD (v, k, \). For all values of i between
0 and k inclusive, suppose n; denotes the number of distinct blocks A and A’ such that the
cardinality of the intersection of these two blocks is 1.

Now we shall define a few equations using simple combinatorial statements.

k
(8.1) S b1
=0

Note that the right hand side counts all the blocks excluding A, and the left hand side does
the same thing, representing all blocks other than A in a summation of n;.

(8.2) Zm =r(k—1)

Note that the RHS and LHS both count the number of times that points present in A appear
in a distinct block in the BIBD.

Counting the number of times all ordered pairs of points that are present in A appear
in some other block in the design gives

(8.3) i(i— )ny = k(k — 1)(A — 1).

=0

Since i(i — 1)n; = 0 whenever ¢ = 0 and i = 1, the index of the summation is actually
2 if we include these cases. Therefore, we can rewrite Equation 10.3 as

Zi(i —Dng =Y (i — )n; = k(k — 1)(A = 1).
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The addition of equations 10.2 and 10.3 results in

k
(8.4) > ing =k(k— 1)(A—1) + k(r — 1).
i=0
We switch perspective from this point and consider the polynomial in z given by
k k k k k
Z(m —i)’n; = 2(132 — 224 + i%)n; = 2° an — 2z Z in; + ZZQTM
i=0 i=0 i=0 i=0 i=0

Substituting values from Equations 10.1, 10.2, and 10.4 results in
22(b—1) = 2zk(r — 1)+ k(k—1)(A=1)+k(r —1).

Since this polynomial originated from an expression that was the product of a sum of squares
and nonnegative integers, its value must be nonnegative V & € R. Since the polynomial is a
quadratic, its discriminant must be negative. This is due to the fact that if the quadratic is
positive for all real values, then its graph is above the x-axis, and it does not have any real
roots. Calculating its discriminant accordingly gives

(—2k(r —1))? —4(b - D)(k(k — 1A =1)+ k(r — 1)) <0.

Therefore, this can be simplified to
(8.5) Eir—12=kb-1)((k—1)A=1)+r—-1)<0

by factoring out k from the expression on the left hand side.

We know from earlier that bk = vr, so
k(b—1)=bk —k =vr — k.
Therefore, we may substitute k(b — 1) in Equation 10.5 with vr — k to get
E(r—1)* = (vr —k)((k—=1(A—=1)+7r—1) <0.

We partially expand the second term in the above equation to get

E(r—1)7%—=(r—k)(k—1)A—=1)— (vr —k)(r—1) <0.

We multiply both sides of the inequality by (v — 1) to obtain
8.6) K (r—172w—-1)—(r—kk-1)N-1@w—-1)— (vr —k)(r—1)(v—1) <0.

Note that the expression (A — 1)(v — 1) is present in the second term of the above equation.

Since we know that A(v — 1) = r(k — 1) = 2C¢D) e have

(1)
r(k—1) _1:7’(]6—1)—(1}—1).

Ao (v—1)
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Rearranging this gives
A=1Dw—-1)=rk-1)—v+1

With our new substitution for (A — 1)(v — 1), our Equation 10.6 becomes
Er—172wv—-1)—(wr—kk—-1)rk—r—v+1)— (vr —k)(r—1)(v—1) <0.
Expanding and factoring this, we obtain
r(k —r)(v—k)* <0.

Notice r is a positive integer, and (v — k)? is a perfect square so it must be nonnegative.
Thus, (k —r) must also be nonnegative, and subsequently we get k& < r and we can conclude

k? k
greater than 1, we may subsequently conclude that b > v. [

-
that z > 1. Since bk = vr, we know that b = 9- = b = v - 1, and since the ratio 1 is

9. SyMMETRIC BIBDs

Definition 9.1. A BIBD is called symmetric if b = v, i.e. its incidence matrix is a square
matrix. It is often abbreviated as a SBIBD.

For example, the following collection
{0,1,2},{0,3,4},{0,5,6},{1,3,5},{1,4,6},{2,3,6},{2,4,5}

consists of subsets of {0,1,2,3,4,5,6}. It is an SBIBD with parameters b=v =7,k =r =
3, A=1.

9.1. Construction of an SBIBD. We begin with a set S, = {0,1,2,--- ,0 — 1} and
consider a k—subset P of S,. Then Vi € S,, the translate ¢+ P is also a k—subset of S,,. The
subsets P,P+1,P+2,---,P+ v —1 are the blocks developed from P and the preexisting
set P is the starter block. If the set P’ ={P, P+ 1,P+2,--- ,P+v — 1} is a BIBD, then

it is a symmetric BIBD with parameters b = v,k = r, and \ = k((vkjll)).

10. T-DESIGNS

Definition 10.1. A t — (v, k, \) design is a design on v points with block cardinality & such
that every t-subset of V' appears in A blocks.

k—1

Theorem 12. In a t-design, <t Y _?

)‘A( )‘v’isuchthatogigt—l.

—1 t—1

Proof. We know that there are (;’) t-subsets (subsets with cardinality ¢) from the v points

in the design. Each appears in A blocks, and therefore, )\(;’) t-subsets are present in total.

Now we shall consider the event where + = 0. In each of the b blocks, there are (’;) t-

subsets in that block. Thus, across the whole design, there are b(';) t-subsets present in total.

So we may conclude from this combinatorial proof that

(i) =)
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If we consider any set of ¢ points, there are (::Z’) t-subsets that include these points, and
each such subset is present in A blocks. For each of the blocks that contain these i points, we

may complete our i-set and convert it to a t-set in (l;:f) ways. Therefore, we have counted

such a block (IZ::) times in the previous combinatorial proof. We may conclude that (’;:Z) is

indeed a divisor of A(::i), as required. [ |

i

{1,5,6,10}, {1,2,8,9}, {2,3.6,7}, {3,4,9,10}, {4.5,7.8}, {1,3.4,7T},
{2,4,5,10}, {1,3,5,8}, {1,2,4,6}, {2,3,5,9}, {4,6,89}, {1,7.9 10},

{3,6,8,9}, {5.6,7,9}, {2.7,8,10}. {1,2,3,10}, {1,2,5,7}, {1,4,5,0},
{1,3,6,9}, {1,6,7,8}, {1.4,8,10}, {2,3,4.8}, {2.4,7,9}, {2,5.6,8),
{2,6,9,10}, {3.4,5,6}, {3.5,7,10}, {3,7,8,9}, {4,6,7,10}, {5,8,9,10}

Figure 4. A 3-(10,4,1) design, t = 3

11. STEINER & KIRKMAN TRIPLE SYSTEMS

This type of design traces back its origin to Kirkman’s schoolgirl problem, proposed by
Reverend Thomas Pennyngton Kirkman in 1847. It goes as follows:

In a boarding school, there are fifteen schoolgirls who always take their daily
walk 1n rows of threes. How can it be arranged so that each schoolgirl walks
in the same row with every other schoolgirl exactly once a week?

We may think of the schoolgirls as individual points in a block design, and since they
must travel in threes, there are always five blocks with three points in each block. If every
schoolgirl walks in the same row with every other schoolgirl exactly once a week, then every
possible pair of points must appear together in a block exactly once, which means A = 1.
This problem can be solved using a Kirkman triple system, which is elaborated on shortly.

Definition 11.1. A triple system is a regular, balanced design wherein all blocks have
cardinality three. This is a BIBD with parameters (v, 3, A).

Definition 11.2. A Steiner triple system (STS) is a triple system with A = 1.

A BIBD that is also a Steiner triple system is of the form (v, 3,1). Since there is a singular
variable v in this system, we use ST'S(v) to denote a Steiner triple system on v points.

Definition 11.3. A BIBD is resolvable if its blocks can be partitioned into sets, each of
which is a partition of the point set. A resolvable STS is called a Kirkman triple system.

Theorem 13. In a Steiner triple system,
A(v—1)

r =

and
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Proof. The characteristic of a Steiner triple system is that &k = 3, and since we already know
that AM(v — 1) = r(k — 1), rearranging and substituting & = 3 implies

Av—=1) Av-=1)

T k-1 2

Since bk = vr, we have
b_m"_)\v(v—l)_)\v(v—l)
k k=1 6

Theorem 14 (Kirkman). There ezists ST'S(v) if and only if v=1,3 (mod 6).

An STS is usually constructed using Latin squares, which are another type of combinatorial
design. In order to prove the above condition for the existence of an STS(v), we require proofs
of two main results on Latin squares.

11.1. Latin Squares. Latin squares are another type of combinatorial design, that somehow
resemble a sudoku. They are most simply described as an n x n array.

Definition 11.4. A Latin square on a set of X points is an n X n array such that each point
in X appears exactly once in each row and once in each column.

1 2 3 4
4 1 2 3
J 4 1 2
2 3 4 1

Figure 5. A 4 x 4 Latin square on the set X = {1,2,3,4}.

Definition 11.5. A symmetric Latin square is a special Latin square in which the point in
row ¢ and column j is equal to the point in row j and column ¢, i.e. if this point is represented
by A, a symmetric Latin square has A jy = Ag).

Lemma 11.6. For every odd value of n we can construct a symmetric n X n Latin square
with its elements appearing in order down the central diagonal (bottom right to top left).

Proof. Let the entries of the first row in our Latin square be as follows:

n+3 _ . n+5d n—1 n+1
) 27 ) 37 Ty y 1,
2 2 2 2
Following this pattern, for all © > 2, the elements of row j will be the elements of row
J — 1 shifted to the left. Since all elements in a row are distinct according to our definition
of a Latin square, and since it takes n shifts to the left in an n x n array to return to our

original position, all the entries in any column are distinct.

L,
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01 111234

| 2 3 4 0

2031410 1

3 | 4 U 1 2

4 10 1 2 3

Figure 6. Symmetric Latin Square of order 4

Note that the element in (p,q) moves to (p+ 1,¢q+ 1) (mod n).

Therefore, the positions in which this element appears will be (z,y) for which z+y = p+¢q
mod n. Since i+j = j+1, (1,7) = (4,7) and we may conclude that the resulting Latin square
is symmetric.

Similarly, we may argue that (i,7) = (1,2¢ — 1 (mod n)). However, since this is the ex-
act position of 7, we obtain the desired result. [ |

Note: this argument is invalid when n is even, since that would imply the existence of
non-integer values in some positions in the Latin square. However, we can adapt this result
to whenever n is even as seen below.

1 7 2 8 3 9 4 10 5 11 6
T2 8 3 9 4 10 5 11 6 1
2 8 3 9 4 10 5 11 6 1 7
& 3 9 4 10 5 11 6 1 7 2
3 9 4 10 5 11 6 1 7 2 8
9 4 10 5 11 6 1 7 2 8 3
4 10 5 11 6 1 7 2 & 3 9
w 5 1 6 1 7 2 8 3 9 4
5 11 6 1 7 2 8 3 9 4 10
11 6 1 7 2 8 3 9 4 10 5
6 1 2 8 3 9 4 10 5 11

Figure 7. A symmetric Latin square when n = 11 for an odd value of n.

Lemma 11.7. For every even value of n there is a symmetric n x n Latin square with values
n n
L2108

Proof. Suppose the entries of the first row in our Latin square are as follows:
n+2 n+4 n—2

2 3. ...
) 7 ) 2

17 Y Y
2 2

M.
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1 6 2 7 3 8 4 9 5 10
6 2 7 3 88 4 9 5 10 1
2 7T 3 8 4 9 5 10 1 6
7 3 8 4 9 5 101 6 2
3 8 4 9 5 10 1 6 2 7T
8 4 9 5 10 1 6 2 7T 3
4 9 5 10 1 6 2 7 3 8
9 5 101 6 2 7 3 8 4
5 10 1 6 2 7T 3 &8 4 9
w1 6 2 7 3 & 4 9 5

Figure 8. A symmetric 10x10 Latin square, for an even value of n

Once again, note that the elements in (7, j) are the same as that of (i—1), j shifted to the left.

Similar arguments as those in the previous lemma prove the symmetry of this Latin square,

since (i,7) = (1,2i —1 (mod n)). These are the elements 1,2, --- % and since we know that
2 27
W—lz%—l (mod n)
subsequently (j,7) = ("J;—%, %2]), each element is repeated in that order to obtain the desired
result. [

11.2. Kirkman Problem.

Kirkman. Necessary condition: Given that A = 1 in a Steiner triple system, we know that
v is odd since v — 1 = 2r is even. Since v(v — 1) = 6b is a multiple of 6, we conclude that
either 3| vor 3| (v—1).

Case 1: 3 | (v —1). Since v — 1 is even, then v — 1 is a multiple of 6, i.e., there is a
nonnegative integer n that satisfies v — 1 = 6n. Thus v = 6n + 1.

Case 1: 3 | v. Since v is odd, then v is 3 times an odd number. This means that v = 3(2n+1)
for any nonnegative integer n. Thus v = 6n + 3.

Sufficient condition: Suppose that v = 1,3 (mod 6). We shall look at separate construc-
tions of Steiner triple systems on v points, depending on whether v = 1 (mod 6) or v = 3
(mod 6). We aim to find colour classes for the edges of the complete graph on k vertices Kj,
such that each colour class contains K3.

v =3 (mod 6). Suppose v is of the form 6p + 3. Label the vertices of K¢, 3 with

Upy -y U2p415 V1,7 V2pt1,

and wy, - - - Wapt+1. From what we found earlier, we know that there exists a ((2¢+1) x (2¢+1))
Latin square since it exists for 1 < ¢ < 2p + 1. The element i appears in (i,7). For all
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1 <4,5 <2q+1such that ¢ # j, if (i,7) = [ then we colour the edges that join the vertices
in each of the following sets with a different colour:

{uia uja vl}v {Uia Uj? wl}a {wiv wja ul}'

We find that (i, j) and (4, 7) both give rise to the same colour classes due to the fact that our
Latin square is symmetrical. Every edge of the form w;u;, v;v;, or w;w; has been coloured,
since we consider every pair ¢ # j and this must hold true for such an edge to exist. Since
we are dealing with Latin squares, every possible entry [ occurs somewhere in the row 1.
Therefore, every edge of the form w;v;, v;w;, or w;v; has been coloured.

Now we consider the case where i = j. We know that (i,7) = i if i < g and (i,7) =i — ¢ if
1> q.

Therefore, the only edges that are not yet coloured are of the form w;v;, v;w;, w;u; when
t < ¢ and w;v;_gq, V;w;—q, and w;u;—q when ¢ > ¢. For all values ¢ such that 1 < i < ¢, we
make the edges joining u;, v;, w; into one colour class. Note that among the remaining edges
that are not incident to a certain vertex x, every other vertex is at the receiving end of one
of the edges. Therefore, if for every ¢+ 1 < i < 2¢ we use new colours for the edges that join
the vertices in the aforementioned sets, every edge incident with x will have been coloured.
Since each colour class additionally forms a complete graph on three vertices K3, we have
constructed a Steiner triple system. [

We use the above theorem to attempt to find the solution to the Kirkman Schoolgirl Prob-
lem by constructing an STS(15). We have 15 = 6(2) + 3, thus ¢ = 2. The points of our
design are wu;,v; and w; for all ¢ such that 1 < i < 2¢+ 1 = 5, so we require a symmetric
5 x 5 Latin square. The square is as follows: The blocks formed from this Latin square are

1 4 2 5 3
4 2 5 3 1
2 5 31 4
5 3 1 4 2
31 4 2 5

Figure 9. Symmetric 5x5 Latin square

as follows. Note that although the initial requirement of the Kirkman Schoolgirl Problem

{u,ug, va}, {vi,vo,wye}, {wi,wo,uy}, {ur,ug, v}, {vi,v3,wa}, {wy,ws, usl,
{'1!1_.'1!-4,'1-‘5}, {'U[_.'L"t._?_l'_-'t_:,}, {'wlrwm'uE}r {'11-1,'11-5._1—‘3}._ {?.-‘1,'1-‘5_.?.;'..‘3}, {?.I'.-'l_.'ws._ug},
{ug, u3,vs}, {vo,vs,ws}, {wo,ws us}, {ug,uq,va}, {vo,vs,wa}, {wa, wy, ua},
{ug,us,v1}, {vo,vs, w1}, {wo,ws,u1}, {us,ug, 1}, {vs,va,wr}, {ws, ws,u1},
{UE:H‘S::'UfI}: {'1;351'5-_?-1'-"4}, {'wﬂrWS:a'u=l}r {ud:'u's-. ?-'12}’-. {?_-‘4,'1-‘5_.1;'}2}, ‘lu"a‘-lr'wﬁ-.u‘l}:a

{ug,vi,wi }, {ug, vo, wa}, {ug, vs, wa}, {uy, va, wy}, {us, vs, ws}
Figure 10. STS(15)

is to find an STS(15), it also has the additional condition that this design is resolvable into
seven groups of five girls each, one for every day of the week.
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We conclude with an important theorem regarding the existence of a Kirkman triple
system, that is proven in [12].

11.3. Ray-Chaudhuri & Wilson.

Theorem 15. There exists a Kirkman triple system whenever v =3 (mod 6).

12. EXPERIMENTAL DESIGN

Definition 12.1. Randomized block designs refer to the arrangement of blocks of experimen-
tal units or subjects, proposed intially by Sir Ronald Fisher during his study of the design
of experiments in agriculture.

Experimental design plays a crucial role in various scientific disciplines, enabling re-
searchers to draw reliable conclusions from their studies. A balanced incomplete block design
(BIBD) is a mathematical structure that provides a systematic approach to efficiently design
experiments and analyze data. BIBDs have found extensive applications in diverse fields,
including agriculture, biology, medicine, psychology, social sciences, and engineering.

The need for balanced incomplete block designs arises from the limitations of complete
block designs and completely randomized designs. While complete block designs involve
partitioning experimental units into homogeneous blocks and treating each block separately,
they often require a large number of blocks, which can be impractical or costly. On the
other hand, completely randomized designs lack the ability to account for potential sources
of variability, leading to inefficient use of resources and reduced statistical power.

Definition 12.2. A nuisance factor is a factor that has a negative or adverse effect on the
results of an experiment.

Nuisance factors may not be of primary interest but have potential to become statistical
inaccuracies or sources of inaccurate experimental variation. They include factors such as
the person who prepared the experiment, the time when the experiment was conducted,
testing equipment, temperature of the room the experiment was conducted in, batches or
quantities of raw material, and so on.

The usage of the word block is intended to describe the plots of agricultural land used for
conducting experiments for fertilizers, fungicides and so on for varieties of crops. In agricul-
tural studies, a block is defined as a set of contiguous plots of land under the assumption
that nuisance factors such as fertility, moisture and climate are all identical.

Randomized Block Designs are used when experimental material is non homogeneous. It
was first developed by R.A. Fisher in 1924. A unique characteristic of randomized blocking
is that the number of blocks is equal to the number of blocked treatments. It is based on
three principles of experimental design: replication, randomization, and local control. It is
the most commonly used experimental design method in agriculture, and in the case of field
experiments, the experimental material is divided among a number of equal blocks.
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plot: 1 plot: 2 plot: 3 plot: 4
“ ﬂ “ “ Fertilizer
plot: 5 plot: 6 plot: 7 plot: 8 . Low
“ ﬁ “ ﬁ ngh
15 20 2505 15 20 2505 15 20 2505 15 20 25
col

Figure 11. Agricultural field with varying irrigation and randomised
blocking of fertilizer supply

Balanced Incomplete Block Design
Total Size (N) = 12, Treatments (t) =
Treatment Size (n) = 3, Replication (r) = 3,
Block Size (s) = 3, Blocks (b) =4

Figure 12. Blocking of treatments in a BIBD
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