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Polynomials are special!

Figure 1: First few Taylor polynomials of f (x) = sin x

Given P(x) =
∑n

r=0 arx we can find the value of P(x) at a point x using just addition
and multiplication. Other functions are not as easy to compute, and that is why we
introduce ways to approximate them by series of polynomials. The Taylor polynomials
of a function can be used to approximate it for a given x , the accuracy of the
estimation increasing as more terms are included. However, using the Taylor series to
approximate a function requires it to be infinitely differentiable. The Weierstrass
Approximation theorem, proved by Karl Weierstrass in 1885, is a‘stronger’ method of
approximating a real-valued function on a closed interval as it only requires that the
function be continuous.
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Please note

Note that I will not be discussing the generalised form of the Weierstrass
Approximation theorem (the Stone-Weierstrass theorem) in my talk. You can learn
more in my paper.
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Definitions

Definition 1.1

(Convergent sequence in reals) A sequence {an} in a metric space X is said to
converge to a point a if for some N ∈ N and each ϵ > 0,

n > N =⇒ |an − a| < ϵ.

The point a is also called the limit point of {an} and we write

an → a.

Figure 2: Convergent sequence
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Definitions

Definition 1.2

(Uniform convergence in reals) A sequence of functions fn : [a, b] → R is said to
converge uniformly to a limit function f : [a, b] → R if for each ϵ > 0 there exists an
N ∈ N such that for all n ≥ N and for all x ∈ [a, b],

|fn(x)− f (x)| < ϵ.

Figure 3: For large n, fn is contained entirely in the ϵ-tube around f
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Definitions

Definition 1.3

(Continuity and uniform continuity) The function f : [a, b] → R is continuous if for
each ϵ > 0 and each x , y ∈ X there exists a δ > 0 such that

|y − x | < δ =⇒ |f (x)− f (y)| < ϵ.

A continuous function is said to be uniformly continuous if the choice of δ depends
only on ϵ and not on x and y .

Definition 1.4

(C([a, b],R) is defined as the set of all continuous functions from [a, b] → R.

Anika Chopra Weierstrass Approximation theorem



Preliminaries
Weierstrass Approximation theorem
Overview of Bernstein polynomials

Bernstein’s proof explained

Weierstrass Approximation theorem

Anika Chopra Weierstrass Approximation theorem



Preliminaries
Weierstrass Approximation theorem
Overview of Bernstein polynomials

Bernstein’s proof explained

Statement of the Weierstrass Approximation theorem

Theorem 2.1

(Weierstrass) Let f ∈ C([a, b],R). Then there is a sequence of polynomials pn(x) that
converges uniformly to f (x) on [a, b].

In other words, ∀f ∈ C([a, b],R) and every ϵ > 0, there is a polynomial function pn(x)
such that ∀x ∈ [a, b] and large enough n:

|f (x)− pn(x)| < ϵ.

Figure 4: Sequence of polynomials converging uniformly to f (x) = |x|
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Proof: Bernstein polynomials

A constructive proof given by Sergei Bernstein in 1912

A sequence of polynomials (Bernstein polynomials) that converge to the given
function is explicitly defined

Theorem 3.1

(Bernstein) Define the Bernstein polynomial Bnf (x) of a function f (x) by

Bnf (x) =
n∑

k=0

f

(
k

n

)(n
k

)
xk (1− x)n−k

We have Bnf → f uniformly on [0, 1].

Remark 3.2

Proving the theorem for [0, 1] and using the mapping ϕ(x) = (b − a)x + a (where
x ∈ [0, 1]) will suffice to show that it holds for [a, b].
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Heuristic of Bernstein’s proof

Coin-tossing game

Imagine a game where you toss a biased coin that lands heads with probability
x ∈ [0, 1]. Each time you get k heads from n tosses, you receive an amount of money
equal to f ( k

n
), where f is a continuous function. What is the expected value of the

return on one play of the game as the number of tosses n → ∞?

P(k heads from n tosses) =
(n
k

)
xk (1− x)n−k .

Expected value En(x) of return on one play (
∑

return · probability of return):

En(x) =
n∑

k=0

f

(
k

n

)(n
k

)
xk (1− x)n−k

For large n, we expect the number of heads to be approximately equal to nx

By the Law of Large Numbers, which states that the average of the results
obtained from a large number of trials should be close to the expected value, we
have:

average return = f ( nx
n
) = f (x) ≈ expected value for return = En(x)
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Sketch of proof

Our main goal is to prove that for a function f (x) : [0, 1] → R, we have a
sequence of polynomials pn(x) that approximates it really well on [0, 1].

We fix a point x0 ∈ [0, 1] and show that f (x0) is very close to Bnf (x0).

Since x0 was chosen arbitrarily, for each x ∈ [0, 1], we find that Bnf (x) → f (x) as
n → ∞.

Also, we will show that n is independent of x , which will help us establish the
condition for uniform convergence.
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Properties of Bernstein polynomials

Bnf (x) =
n∑

k=0

f

(
k

n

)(n
k

)
xk (1− x)n−k

Lemma 1

Bn(C) = C .

where C is a constant polynomial.

Lemma 2

Bn(f (x)− C) = Bn(f (x))− C .

Lemma 3

h ≥ g =⇒ Bn(h) ≥ Bn(g).

Lemma 4

f ≥ 0 =⇒ Bn(f ) ≥ 0.

Anika Chopra Weierstrass Approximation theorem



Preliminaries
Weierstrass Approximation theorem
Overview of Bernstein polynomials

Bernstein’s proof explained

Bernstein’s proof explained

Anika Chopra Weierstrass Approximation theorem



Preliminaries
Weierstrass Approximation theorem
Overview of Bernstein polynomials

Bernstein’s proof explained

Cases

Goal

Find an upper bound for |f (x)− f (x0)| where x0 is fixed in [0, 1]

Theorem 4.1

Every continuous function on a closed interval is uniformly continuous.

Consider x ∈ [0, 1].
Since f is continuous on [0, 1], it is uniformly continuous. By Definition 1.3, we
have, for all ϵ > 0.

|x − x0| ≤ δ =⇒ |f (x)− f (x0)| ≤ ϵ

for some δ which depends on ϵ.
Fix an ϵ > 0. We have 2 possibilities: |x − x0| ≤ δ and |x − x0| > δ.

The first case is accounted for by the definition of uniform continuity, the bound
for |f (x)− f (x0)| being ϵ.
We can focus on the case where |x − x0| > δ.
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Finding a bound

Goal

Find an upper bound for |f (x)− f (x0)| where x0 is fixed in [0, 1].

Theorem 4.2

Every continuous function on a closed interval is bounded

Since f is continuous on [0, 1], it is bounded. Take M = sup{f }.
Use the Triangle Inequality on |f (x)− f (x0)|

|f (x)− f (x0)| ≤ |f (x)|+ |f (x0)| ≤ 2M.

Since |x − x0| > δ, (x−x0)
2

δ2
> 1. Thus,

|f (x)− f (x0)| ≤ |f (x)|+ |f (x0)| ≤ 2M < 2M
(x − x0)2

δ2
.

Combining this with the case where |x − x0| ≤ δ,

|f (x)− f (x0)| < 2M
(x − x0)2

δ2
+ ϵ.

Anika Chopra Weierstrass Approximation theorem



Preliminaries
Weierstrass Approximation theorem
Overview of Bernstein polynomials

Bernstein’s proof explained

Finding a bound

Goal

Find an upper bound for |f (x)− f (x0)| where x0 is fixed in [0, 1].

Theorem 4.2

Every continuous function on a closed interval is bounded

Since f is continuous on [0, 1], it is bounded. Take M = sup{f }.
Use the Triangle Inequality on |f (x)− f (x0)|

|f (x)− f (x0)| ≤ |f (x)|+ |f (x0)| ≤ 2M.

Since |x − x0| > δ, (x−x0)
2

δ2
> 1. Thus,

|f (x)− f (x0)| ≤ |f (x)|+ |f (x0)| ≤ 2M < 2M
(x − x0)2

δ2
.

Combining this with the case where |x − x0| ≤ δ,

|f (x)− f (x0)| < 2M
(x − x0)2

δ2
+ ϵ.

Anika Chopra Weierstrass Approximation theorem



Preliminaries
Weierstrass Approximation theorem
Overview of Bernstein polynomials

Bernstein’s proof explained

Finding a bound

Goal

Find an upper bound for |f (x)− f (x0)| where x0 is fixed in [0, 1].

Theorem 4.2

Every continuous function on a closed interval is bounded

Since f is continuous on [0, 1], it is bounded. Take M = sup{f }.

Use the Triangle Inequality on |f (x)− f (x0)|

|f (x)− f (x0)| ≤ |f (x)|+ |f (x0)| ≤ 2M.

Since |x − x0| > δ, (x−x0)
2

δ2
> 1. Thus,

|f (x)− f (x0)| ≤ |f (x)|+ |f (x0)| ≤ 2M < 2M
(x − x0)2

δ2
.

Combining this with the case where |x − x0| ≤ δ,

|f (x)− f (x0)| < 2M
(x − x0)2

δ2
+ ϵ.

Anika Chopra Weierstrass Approximation theorem



Preliminaries
Weierstrass Approximation theorem
Overview of Bernstein polynomials

Bernstein’s proof explained

Finding a bound

Goal

Find an upper bound for |f (x)− f (x0)| where x0 is fixed in [0, 1].

Theorem 4.2

Every continuous function on a closed interval is bounded

Since f is continuous on [0, 1], it is bounded. Take M = sup{f }.
Use the Triangle Inequality on |f (x)− f (x0)|

|f (x)− f (x0)| ≤ |f (x)|+ |f (x0)| ≤ 2M.

Since |x − x0| > δ, (x−x0)
2

δ2
> 1. Thus,

|f (x)− f (x0)| ≤ |f (x)|+ |f (x0)| ≤ 2M < 2M
(x − x0)2

δ2
.

Combining this with the case where |x − x0| ≤ δ,

|f (x)− f (x0)| < 2M
(x − x0)2

δ2
+ ϵ.

Anika Chopra Weierstrass Approximation theorem



Preliminaries
Weierstrass Approximation theorem
Overview of Bernstein polynomials

Bernstein’s proof explained

Finding a bound

Goal

Find an upper bound for |f (x)− f (x0)| where x0 is fixed in [0, 1].

Theorem 4.2

Every continuous function on a closed interval is bounded

Since f is continuous on [0, 1], it is bounded. Take M = sup{f }.
Use the Triangle Inequality on |f (x)− f (x0)|

|f (x)− f (x0)| ≤ |f (x)|+ |f (x0)| ≤ 2M.

Since |x − x0| > δ, (x−x0)
2

δ2
> 1.

Thus,

|f (x)− f (x0)| ≤ |f (x)|+ |f (x0)| ≤ 2M < 2M
(x − x0)2

δ2
.

Combining this with the case where |x − x0| ≤ δ,

|f (x)− f (x0)| < 2M
(x − x0)2

δ2
+ ϵ.

Anika Chopra Weierstrass Approximation theorem



Preliminaries
Weierstrass Approximation theorem
Overview of Bernstein polynomials

Bernstein’s proof explained

Finding a bound

Goal

Find an upper bound for |f (x)− f (x0)| where x0 is fixed in [0, 1].

Theorem 4.2

Every continuous function on a closed interval is bounded

Since f is continuous on [0, 1], it is bounded. Take M = sup{f }.
Use the Triangle Inequality on |f (x)− f (x0)|

|f (x)− f (x0)| ≤ |f (x)|+ |f (x0)| ≤ 2M.

Since |x − x0| > δ, (x−x0)
2

δ2
> 1. Thus,

|f (x)− f (x0)| ≤ |f (x)|+ |f (x0)| ≤ 2M < 2M
(x − x0)2

δ2
.

Combining this with the case where |x − x0| ≤ δ,

|f (x)− f (x0)| < 2M
(x − x0)2

δ2
+ ϵ.

Anika Chopra Weierstrass Approximation theorem



Preliminaries
Weierstrass Approximation theorem
Overview of Bernstein polynomials

Bernstein’s proof explained

Back to Bernstein polynomials

Bnf (x) =
n∑

k=0

f

(
k

n

)(n
k

)
xk (1− x)n−k

Goal

Find an upper bound for |Bn(f (x)− f (x0))|.

By Lemma 3, we know that h ≥ g =⇒ Bn(h(x)) ≥ Bn(g(x)). Thus,

|Bn(f (x)− f (x0))| ≤ Bn(2M
(x−x0)

2

δ2
+ ϵ).

By Lemma 2, we have that Bn((f (x) + C)) = Bn((f (x)) + C . Since ϵ is a

constant, we have Bn(2M
(x−x0)

2

δ2
+ ϵ) = Bn(2M

(x−x0)
2

δ2
) + ϵ.

We know that 2M
δ2

is a constant present in each term of the summation. Thus, we

can factor it out so that Bn(2M
(x−x0)

2

δ2
) + ϵ = 2M

δ2
Bn((x − x0)2) + ϵ.

Therefore,

|Bn(f (x)− f (x0))| ≤
2M

δ2
Bn((x − x0)

2) + ϵ.
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Simplifying the individual terms

Bnf (x) =
n∑

k=0

f

(
k

n

)(n
k

)
xk (1− x)n−k

Goal

Find an expression for Bn((x − x0)2)

Bn((x − x0)2) =
∑n

k=0

(n
k

)
xk (1− x)n−k ( k

n
− x0)2.

Using some combinatorial identities and factorisation, we obtain

n∑
k=0

(n
k

)
xk (1− x)n−k (

k

n
− x0)

2 = (x − x0)
2 +

1

n
(x − x2).
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Completing the proof

Goal

Find an upper bound for |Bn(f (x0))− f (x0)|

By Lemma 2, we obtain that |Bn(f (x))− f (x0)| = |Bn(f (x)− f (x0))| since f (x0)
is a constant.
Substitute the expression we obtained for Bn((x − x0)2) in our bound for
|Bn(f (x)− f (x0))|.
Substitute x = x0 and use max(x0 − x20 ) =

1
4
in

|Bn(f (x))− f (x0)| ≤
2M

δ2
(x − x0)

2 +
2M

δ2n
(x − x2) + ϵ.

Thus

|Bn(f (x0))− f (x0)| ≤
M

2δ2n
+ ϵ.

Choose n sufficiently large for M
2δ2n

< ϵ.
Finally

|Bnf (x0)− f (x0)| < 2ϵ.

Remark 4.3

This proves our theorem since ϵ is arbitrary.
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Recap of steps

Our main goal was to find an upper bound for |Bn(f (x))− f (x)|.

We started by creating a bound for |f (x)− f (x0)| using the possibilities for the
distance between x and a fixed x0.

We extended our bound for |f (x)− f (x0)| to find the maximum of
|Bnf (x)− f (x0)|.
We took x = x0 in our expression for the bound of |Bnf (x)− f (x0)|, establishing
that the distance between the a function and its corresponding Bernstein
polynomial is arbitrarily small.
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Thank you for your attention! You can learn more about generalisations and
applications of the Weierstrass Approximation theorem from my paper.
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