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Abstract. In this paper, we present two different proofs of the Weierstrass Approximation
theorem, a method of approximating a continuous real-valued function on a closed interval,
and explore its generalisation, the Stone-Weierstrass theorem, on real and complex algebras.

1. INTRODUCTION

In 1885, German mathematician Karl Weierstrass proved that a real-valued continuous
function on a closed interval could be approximated uniformly by a sequence of polynomials.
Until then, it was thought that a function had to be infinitely differentiable in order to be
approximated by polynomials.

Weierstrass’ result, which came to be known as the Weierstrass approximation theorem,
was later simplified and generalised by American mathematician Marshall Harvey Stone in
1948. Stone proved the theorem by replacing the closed real interval [a, b] with a compact
set and the set of real-valued continuous functions with a real algebra that separates points
and vanishes nowhere.

2. PRELIMINARIES: METRIC SPACE TOPOLOGY

In this section we introduce some background information on metric space topology which
will help us define ideas about the Weierstrass approximation theorem.

Definition 2.1. (Metric space) A metric space is a pair (X, d) consisting of a set X along
with a function d, also called the distance function or metric, which satisfies the following
properties:

(1) Positive definitiveness : For x, y ∈ X, d(x, y) ≥ 0 and d(x, y) = 0 only when x = y.
(2) Symmetry : For x, y ∈ X, d(x, y) = d(y, x).
(3) Triangle Inequality : For x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

Proposition 2.2. The set R of real numbers along with the distance function d(x, y) = |x−y|
is a metric space.

Proof. The absolute value function on x ∈ R is defined as:

|x| =
{

−x x < 0
x x > 0

Thus, the first property holds. Further, |x − y| = |y − x| because the distance between
two points on the real line is independent of the starting point. The triangle inequality on
R with the metric d(x, y) = |x− y| will look like:
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|x− z| ≤ |x− y|+ |y − z|.
We can consider the numbers

a = x− y

b = y − z.

Then, we have
a+ b = x− y + y − z = x− z

and our question reduces to showing that

|a+ b| ≤ |a|+ |b|.
We have, a + b ≤ |a| + b ≤ |a| + |b| and −a− b ≤ |a| − b ≤ |a| + |b|. From the definition

of the absolute value function, it follows that the third property holds. □

Definition 2.3. (Open ball) The open ball of radius r centred at a point p ∈ X is the set

Br(p) = {q ∈ X : d(p, q) < r}

Example. The open ball of radius r centred around a point x in R equipped with the standard
Euclidean metric d(x, y) = |x− y| is the open interval (x− r, x+ r).

Proof. We have,
Br(x) = {y ∈ X : |x− y| < r}.

Since |x− y| < r, we have x− r < y < x+ r. □

Definition 2.4. (Neighbourhood) The r-neighbourhood of a point p ∈ X is denoted by

Mr(p) = {q ∈ X : d(p, q) < r}

Remark 2.5. There seems to be no distinction between the definition of a neighbourhood and
that of an open ball. However, a neighbourhood of p ∈ X is a subset of X which contains a
open ball containing x.

Definition 2.6. (Open set) A subset S of a metric space X is said to be open if for each
point x ∈ S there exist an open ball Br(x), such that Br(x) ⊂ S.

Proposition 2.7. Every open interval (a, b) in R is an open set.

Proof. Choose a point x ∈ (a, b). We consider ϵ =min(x−a, b−x). Then (x−ϵ, x+ϵ) ⊂ (a, b).
Since x is an arbitrary, (a, b) is an open set.

□

Proposition 2.8. The infinite union of open sets is open.

Proof. Take U to be the union of open sets U1, U2 · · · , Un. Take x ∈ U . By the definition
of union of sets, x must lie in at least one of the Ui, which we know is open. Therefore, for
some r > 0, we have Br(x) ∈ Ui. This proves our theorem since x is arbitrary.

□

Definition 2.9. (Closed set) A subset S of a metric space X is said to be closed if its
complement Sc is open.
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Proposition 2.10. Every closed interval [a, b] in R is a closed set.

Proof. [a, b]c = (−∞, a) ∪ (b,∞). From the previous proposition we can say that (−∞, a),
(b,∞) are both open sets and the union of open sets is also open, so [a, b]c is an open set.
Thus [a, b] is a closed set. □

Definition 2.11. (Sequence in metric space) A sequence (an) in a metric space X is a
function an : N → X.

Definition 2.12. (Convergent sequence) A sequence (an) in a metric space X is said to
converge to a point a if for each ϵ > 0 there exists some N ∈ N such that

n > N =⇒ d(an, a) < ϵ.

The point a is also called the limit point of (an) and we write

an → a.

Remark 2.13. If (an) is a convergent sequence converging to a, every neighbourhood of a
contains an infinite number of elements of (an).

Proof. Let ϵ > 0. Assume that the neighbourhoodM ′
ϵ(a) contains a finite number of elements

of (an), say a1, a2, ..., am.
Let δ1 = d(a, a1), δ2 = d(a, a2),...δm = d(a, am).
let δ = min{δ1, δ2, ..., δm}. Then, for δ > 0, ai /∈ Mδ(a) for i = 1, 2, 3, ...,m,. This

contradicts the fact that a is a limit point of (an). □

Theorem 2.14. A closed set contains all its limit points.

Proof. Consider a closed set S and a convergent sequence xn ∈ S. Assume, by contradiction,
that the limit x of xn lies in Sc, which, by Definition 2.9 is open. Now, by Remark 2.13, each
neighbourhood of x contains infinite elements of (xn) ∈ S, this contradicts the fact that Sc

is open. □

Definition 2.15. (Pointwise convergence) A sequence of functions fn : [a, b] → R is said to
converge pointwise to a limit function f : [a, b] → R if for all x ∈ [a, b] we have:

lim
x→∞

fn(x) = f(x)

Definition 2.16. (Uniform convergence) A sequence of functions fn : [a, b] → R is said to
converge uniformly to a limit function f : [a, b] → R if for each ϵ > 0 there exists an N ∈ N
such that for all n ≥ N and for all x ∈ [a, b],

|fn(x)− f(x)| < ϵ

Remark 2.17. Uniform convergence can be understood by visualising an ϵ-neighbourhood
around the graph of the limit function. For large n, the graphs of fn(x) must lie completely
inside the neighbourhood.

Definition 2.18. (Continuous function) The function f : X → Y is continuous if for each
ϵ > 0 and each x, y ∈ X there exists a δ > 0 such that

dX(y, x) < δ =⇒ dY (f(y), f(x)) < ϵ.
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Figure 1. Uniform convergence

Definition 2.19. (Uniformly continuous function) The function f : X → Y is uniformly
continuous if for each ϵ > 0, there exists a δ > 0 such that

dX(y, x) < δ =⇒ dY (f(y), f(x)) < ϵ ∀x, y ∈ X

Remark 2.20. Notice that in a uniformly continuous function, the choice of δ depends only
on ϵ and not on x and y.

Definition 2.21. (Boundedness) A subset S of a metric space (X, d) is said to be bounded
if there exists r > 0 such that for all (x, y) ∈ S, d(x, y) < r.

Theorem 2.22. Every continuous function on a closed and bounded interval of R is bounded.

Proof. Let us assume that f is not bounded on [a, b]. Then for each n ∈ N, there exists
xn ∈ [a, b] such that |f(xn)| > n. As xn ∈ [a, b], so {xn} is bounded, by Bolzano-Weierstrass
Theorem, there exists a limit point of {xn}, so there exists a subsequence of {xnk

} such that
xnk

→ x. Since a ≤ xnk
≤ b, we also have a ≤ x ≤ b.,i.e. x ∈ [a, b]. Since f is continuous

on [a, b], we must have f(xnk
) → x. But this is a contradiction since |f((xnk

)| > nk ≥ k, for
k ∈ N. □

Definition 2.23. (Covering) Let (X, d) be a metric space. A collection U of subsets of X
covers S ⊂ X if S is contained in the union of the sets belonging to U . If all the sets in the
covering of S are open U is said to be an open cover of S.

Definition 2.24. (Subcovering) If V and U both cover S and V ⊂ U , V is called a subcovering
of S.

Definition 2.25. (Covering compact) If every open convering of S reduces to a finite sub-
covering of S, S is said to be covering compact.

Theorem 2.26. Every continuous function on a compact metric space is uniformly contin-
uous.



THE WEIERSTRASS APPROXIMATION THEOREM AND ITS GENERALISATIONS 5

Proof. Let (X, d) and (Y, d′) be two metric spaces, where (X, d) is compact and suppose
f : X → Y is a continuous function.

Let ϵ > 0. Since f is continuous on at each point x ∈ X, then there is some δx > 0 such
that f(B(x, δx)) ⊆ B(f(x), ϵ

2
).

Now {B(f(x), ϵ
2
)}x∈X is an open cover of X, and since X is compact, there exist a finite

subcover {B(xi,
δxi
2
)} for i = 1, 2, ..., n. Now consider δ = mini(

δxi
2
). Let d(x, y) < δ. Since

x ∈ B(xi,
δxi
2
) for some i, we get y ∈ B(xi, δxi

). Thus

d(y, xi) ≤ d(y, x) + d(x, xi) <
δxi

2
+

δxi

2
= δxi

.

Finally if d(x, y) < δ, then

d′(f(x), f(y)) ≤ d′(f(x), f(xi)) + d′(f(xi), f(y)) <
ϵ

2
+

ϵ

2
= ϵ.

□

3. Weierstrass Approximation Theorem: Proof using Bernstein Polynomials

In this section, we provide the statement of the Weierstrass approximation theorem using
the Bernstein polynomials [Sur11]

Theorem 3.1. (Weierstrass) Let f ∈ C([a, b],R). Then there is a sequence of polynomials
pn(x) that converges uniformly to f(x) on [a, b].

In other words, ∀f ∈ C0 and every ϵ > 0, there is a polynomial function p(x) such that
∀x ∈ [a, b]:

|f(x)− p(x)| < ϵ.

The proof provided by Bernstein is by far the most well-known of all the proofs of the
Approximation theorem since it is constructive (the sequence pn(x) is explicitly defined) and
it relies only on the elementary properties of the Bernstein polynomials, which we shall see
below.

Proof.

Theorem 3.2. (Bernstein) Define the Bernstein polynomial Bnf(x) of a function f(x) by

Bnf(x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k

We have Bnf → f uniformly on [0, 1].

Remark 3.3. Notice that proving Bernstein’s theorem for the interval [0, 1] is sufficient to
prove the approximation theorem for any closed interval [a, b]. We can use the mapping

ϕ(x) = (b− a)x+ a.

Proof. We first consider a few properties of the Bernstein polynomials:

Lemma 3.4.
Bn(C) = C

where C is a constant polynomial.
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Proof. Using binomial expansion, we have

Bn(C) =
n∑

k=0

C

(
n

k

)
xk(1− x)n−k = C(x+ (1− x)n = C · 1n = C.

□

Lemma 3.5.

Bn(f(x)− C) = Bn(f(x))− C.

Proof. Follows directly from Lemma 3.4 and the definition of the Bernstein polynomial (re-
place f

(
k
n

)
with f

(
k
n
− C

)
). □

Lemma 3.6. For h ≥ g,

Bn(h) ≥ Bn(g).

Proof. h ≥ g implies that h( k
n
) ≥ g( k

n
) for all k.

□

Lemma 3.7. If f > 0,

Bn(f) ≥ 0

Proof. f ≥ 0 implies that f( k
n
) ≥ 0 for all k.

□

First, we want to find an upper bound for |f(x) − f(x0)| where x0 is fixed in [0, 1] and
x is variable. By Theorem 2.26, f(x) is uniformly continuous. By the definition of uniform
continuity, we have for all ϵ > 0.

|x− x0| ≤ δ =⇒ |f(x)− f(x0)| ≤ ϵ

for some δ which depends on ϵ.
Now, we fix an ϵ > 0. We have 2 possibilities: |x− x0| ≤ δ and |x− x0| > δ. he first case

is accounted for by the definition of uniform continuity, the bound for |f(x) − f(x0)| being
ϵ. For the second case, we use Theorem 2.22 and take M = sup{f}. Using the Triangle
Inequality on |f(x)− f(x0)|

|f(x)− f(x0)| ≤ |f(x)|+ |f(x0)| ≤ 2M.

Now, since |x− x0| > δ, (x−x0)2

δ2
> 1. Thus,

|f(x)− f(x0)| ≤ |f(x)|+ |f(x0)| ≤ 2M < 2M
(x− x0)

2

δ2
.

Combining this with the case where |x− x0| ≤ δ,

|f(x)− f(x0)| < 2M
(x− x0)

2

δ2
+ ϵ.

Now, we use our upper bound for |f(x) − f(x0)| to find an upper bound for |Bn(f(x) −
f(x0))|. By Lemma 3.6, we have |Bn(f(x)−f(x0))| ≤ Bn(2M

(x−x0)2

δ2
+ ϵ). By Lemma 3.5 we

have Bn(2M
(x−x0)2

δ2
+ ϵ) = Bn(2M

(x−x0)2

δ2
)+ ϵ. Now, 2M

δ2
is a constant present in each term of

the summation. Thus, we can factor it out so that Bn(2M
(x−x0)2

δ2
)+ϵ = 2M

δ2
Bn((x−x0)

2)+ϵ.
Finally, we have



THE WEIERSTRASS APPROXIMATION THEOREM AND ITS GENERALISATIONS 7

|Bn(f(x)− f(x0))| ≤
2M

δ2
Bn((x− x0)

2) + ϵ.

Simplifying the term Bn((x−x0)
2) =

∑n
k=0

(
n
k

)
xk(1−x)n−k( k

n
−x0)

2, we have, using some
combinatorial identities and factorisation

n∑
k=0

(
n

k

)
xk(1− x)n−k(

k

n
− x0)

2 = (x− x0)
2 +

1

n
(x− x2).

Now, we return to our main goal of finding a bound for |Bn(f(x0))− f(x0)|, the function
and its Bernstein polynomial. By Lemma 3.4, we obtain that |Bn(f(x))−f(x0)| = |Bn(f(x)−
f(x0))| since f(x0) is a constant. We substitute x = x0 and use max(x0 − x2

0) =
1
4
in

|Bn(f(x))− f(x0)| ≤
2M

δ2
(x− x0)

2 +
2M

δ2n
(x− x2) + ϵ

to obtain

|Bn(f(x0))− f(x0)| ≤
M

2δ2n
+ ϵ.

Now, we choose n sufficiently large for M
2δ2n

< ϵ, so we have

|Bn(f(x0))− f(x0)| < 2ϵ.

Remark 3.8. This proves our theorem since ϵ is arbitrary.

Remark 3.9. Since n in Bn(x) is depends only on ϵ from our definition of uniform continuity
and M , the supremum of f(x), and not on x, we have established the condition for uniform
convergence.

□

Thus, we found that the Bernstein polynomial of a function f approximates it on a closed
interval [a, b].

□

4. Weierstrass’s approximation theorem: Weierstrass’ proof

Weierstrass published a self-contained proof of the approximation theorem [Hip13].

Theorem 4.1. For a continuous real-valued bounded function f : R → R and h > 0, we
define the function Shf(x) by

Shf(x) =

∫ ∞

−∞

1

h
√
π
f(x)e−(u−x

h
)2du.

The sequence Shf(x) converges uniformly to f(x) as h → ∞.

Proof. The first part of this proof is similar to the proof of Bernstein’s theorem. Based on
the uniform continuity of f , we choose an ϵ > 0 which guarantees the existence of a δ > 0
such that for |x − y| < δ we have |f(x) − f(y)| < ϵ

2
with x, y ∈ R. Now, we take M to be

the supremum of f(x) so that we have |f(x)| ≤ M for all x ∈ R.
Now, we have ∫ ∞

−∞
e−v2dv =

√
π.
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This is known as theGaussian integral and can be proved using polar coordinates or Laplace’s
method.

Using this, we have
1

h
√
π

∫ ∞

−∞
e−(u−x

h
)2du = 1.

This means we can write f(x) as

1

h
√
π

∫ ∞

−∞
f(x)e−(u−x

h
)2du.

Now, we choose an h0 > 0 which satisfies h < h0 <
eδ

√
π

2M
. By the Triangle Inequality, we

have

|Shf(x)− f(x)| ≤ |Shf(x)|+ |f(x)| = 1

h
√
π

∫ ∞

−∞
|f(u)− f(x)|e−(u−x

h
)2du.

Now, we just try and bound our expressions:

1

h
√
π

∫ ∞

−∞
|f(u)− f(x)|e−(u−x

h
)2du ≤ ϵ

2
+

1

h
√
π

∫
|x−u|≥δ

|f(u)− f(x)|e−(u−x
h

)2du

By an application of the Triangle Inequality and using M = sup{f},
ϵ

2
+

1

h
√
π

∫
|x−u|≥δ

|f(u)− f(x)|e−(u−x
h

)2du ≤ ϵ

2
+

1

h
√
π

∫
|x−u|≥δ

||f(u)|+ |f(x)||e−(u−x
h

)2du

≤ ϵ

2
+

2M

h
√
π

∫
|x−u|≥δ

e−(u−x
h

)2du.

We can take |x−u|
h

= v in our expression to get

ϵ

2
+

2M

h
√
π

∫
|x−u|≥δ

e−(u−x
h

)2du =
ϵ

2
+

2M√
π

∫
|v|≥ δ

h

e−v2dv ≤ 2Mh

δ
√
π

∫
|v|≥ δ

h

|v|e−v2dv.

Since |v|(h
δ
) ≥ 1,

2Mh

δ
√
π

∫
|v|≥ δ

h

|v|e−v2dv ≤ ϵ

2
+

4Mh

δ
√
π

∫ ∞

0

ve−v2dv =
ϵ

2
+

2Mh

δ
√
π
.

Since we took h < h0 <
eδ

√
π

2M
,

ϵ

2
+

2Mh

δ
√
π

< ϵ+

(
M

δ
√
π

)(
ϵδ
√
π

4M

)
= ϵ

This proves our theorem since ϵ is arbitrary.
□

Now we examine Weierstrass’ proof of the approximation theorem using Theorem 4.1.

Theorem 4.2. Let f ∈ C([a, b],R). Then there is a sequence of polynomials pn(x) that
converges uniformly to f(x) on [a, b].
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Proof. We consider f ∈ C([a, b],R). We extend f to a bounded uniformly continuous func-
tion from R → R, which we also call f . We give a piecewise definition of f as follows:

f(x) =

 f(a)(x− a+ 1) x ∈ [a− 1, a)
−f(b)(x− b− 1) x ∈ (b, b+ 1]
0 x /∈ [a− 1, b+ 1]

There must exist a J > 0 such that f(x) = 0 for all |x| > J . We fix an ϵ > 0 and observe
that there must exist an M such that |f(x)| < M for all x ∈ R. By Theorem 4.1 there exists
an h0 > 0 such that for all x ∈ R∣∣∣∣ 1

h0

√
π

∫ ∞

−∞
f(u)e

−(u−x
h0

)2
du− f(x)

∣∣∣∣ < ϵ

2
.

For |u| > J , f(u) = 0. Thus, we have∣∣∣∣ 1

h0

√
π

∫ J

−J

f(u)e
−(u−x

h0
)2
du− f(x)

∣∣∣∣ < ϵ

2
.

We know that the power series of e−v2 converges uniformly on the interval [−2J
h0
, 2J
h0
]. Thus,

there exists an N such that∣∣∣∣∣ 1

h0

√
π
e
−(u−x

h0
)2 − 1

h0

√
π

N∑
k=0

(−1)k

k!

(
u− x

h0

)2k
∣∣∣∣∣ < ϵ

4JM

for all |x| < J and for all |u| < J , which would imply |u − x| < 2J (triangle inequality).
Thus, we have∣∣∣∣∣ 1

h0

√
π

∫ J

−J

f(u)e
−(u−x

h0
)2
du− 1

h0

√
π

∫ J

−J

f(u)
N∑
k=0

(−1)k

k!

(
u− x

h0

)2k
∣∣∣∣∣

for all |x| ≤ J .
We define the function p(x) as:

p(x) =
1

h0

√
π

∫ J

−J

f(u)
N∑
k=0

(−1)k

k!

(
u− x

h0

)2k

which is a polynomial of degree at most 2N such that∣∣∣∣ 1

h0

√
π
e
−(u−x

h0
)2 − p(x)

∣∣∣∣ < ϵ

2
.

for all |x| < J . Thus, we have

|f(x)− p(x)| < ϵ

for all x ∈ [a, b].
□
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5. Topology

Definition 5.1. (Topological space) Let X be a set. A topology T on X is a collection of
subsets of X that satisfies the conditions below:

(1) T contains the set X along with the empty set ϕ: X,ϕ ∈ T
(2) The infinite union of subsets of X is in T : If Ui ∈ T , ∪Ui ∈ T .
(3) The finite intersection of subsets of X is in T : If Ui ∈ T , ∩Ui ∈ T for finite i.

The pair (X, T ) consisting of X and a collection of its subsets T satisfying the properties
listed above is called a topological space.

Definition 5.2. (Continuous) A functionX → Y from a topological spaceX to a topological
space Y is said to be continuous if the inverse image of an open set U in Y is open in X.

6. Algebras

Lemma 6.1. The function |x| on a closed interval [a, b] is a limit point of all polynomials
P satisfying P (0) = 0 on [a, b].

Proof. By the Weierstrass Approximation theorem, there exists a polynomial PN such that

PN(x)− |x| < ϵ

for all x in [a, b].
□

Definition 6.2. (Algebra) A family A of complex functions defined on a set X is said to be
an algebra if the following properties are satisfied for all f, g ∈ A and all complex constants
c:

(1) f + g ∈ A
(2) fg ∈ A
(3) cf ∈ A
The properties above are called closure under addition, closure under multiplication, and

closure under scalar multiplication respectively.

Definition 6.3. (Uniformly closed algebra) An algebra A is said to be uniformly closed if
it has the property that f ∈ A whenever fn ∈ A and fn → f uniformly on X.

Definition 6.4. (Uniform closure) The set B of all functions which are limits of uniformly
convergent sequences of members of A is called the uniform closure of A.

Remark 6.5. The Weierstrass Approximation theorem restated using this terminology as
follows:

The set of all continuous functions on [a, b] is the uniform closure of the set of all
polynomials on [a, b].

Theorem 6.6. The uniform closure of an algebra of bounded functions is a uniformly closed
algebra.

Proof. Take B to be the uniform closure of an algebra A of bounded functions. By the
definition of uniform closure, we have that for functions g, h ∈ B, there exist sequences gn
and hn in A of functions such that hn → h and gn → g. By the properties of limits, we have
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hn + gn → h+ g

hngn → hg

chn → ch.

Now, since h + g, hg and ch all lie in B, it satisfies the condition for a uniformly closed
algebra.

□

Definition 6.7. (Separation of points) A family A of functions on a set X is said to separate
points on X if there exists a function f for each pair of distinct x, y ∈ X such that f(x) ̸=
f(y).

Definition 6.8. (Vanishing) If there exists a function f ∈ A for each x ∈ X such that
f(x) ̸= 0, A is said to vanish at no point of X.

Theorem 6.9. Let A be an algebra of functions on a set X which separates points on X
and vanishes at no point on X. Let x and y be distinct points of X and let c1 and c2 be
constants. Then A contains a function f such that:

f(x) = c1, f(y) = c2.

Proof. We have assumed that A separates points on X, so we have

g(x) ̸= g(y).

Also, we presume that A vanishes at no point on X, so we have

h(x) ̸= 0, k(y) ̸= 0.

We introduce u and v such that

u = gk − g(x)k, v = gh− g(y)h.

Since A is an algebra, u and v are in A. Further, we have that u(x) = gk(x)− g(x)k = 0
and v(y) = gh(y) − g(y)h = 0. Also, u(y) = gk(y) − g(x)k ̸= 0 since g(x) ̸= g(y). By a
similar argument, we have v(x) ̸= 0. Using these functions and the constants c1 and c2 we
construct a function f defined as

f =
c1v

v(x)
+

c2u

u(y)

which meets our requirements.
□

Theorem 6.10. (Stone Weierstrass theorem on real algebras) Let A be an algebra of real
continuous functions on a compact set K. If A separates points of K and vanishes at no
point of K then its uniform closure consists of all real continuous functions on K [Nic82].

Proof. The proof of this theorem requires a considerable amount of set-up and will use some
of the theorems, lemmas and definitions we have already covered. Let B be the uniform
closure of A. First, we must establish the following:

Lemma 6.11. g ∈ B implies that |g| ∈ B
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Proof. First, we consider g ∈ B. For a fixed ϵ > 0, we can consider the open ball B(| · |, ϵ) ∈
C([a, b],R). We take a and b to be the supremum of −g and g respectively. For this open
ball, we can find a function that is ϵ away from a given function if we select a small enough
ϵ.
Now, we are guaranteed by Lemma 6.1, the existence of a polynomial Pn such that Pn(0) = 0
and Pn ⊂ B(| · |, ϵ). We can express Pn as

∑n
i=1 cig

i for n ∈ N and ci ∈ R. By Theorem 6.6,
B is a closed algebra containing g, so it must also contain gi for all i since an algebra must
be closed under multiplication. Thus, all polynomials of the form

∑n
i=1 cig

i are contained in
B.
Now, since Pn ⊂ B(| · |, ϵ), Pn(g) ⊂ B(|g|, ϵ). We therefore have that |g| is a limit point of
B, which is uniformly closed. By Theorem 2.14, B must contain all its limit points, forcing
|g| ∈ B.

□

Lemma 6.12. g, h ∈ B implies max(g, h), min(g, h) ∈ B

Proof. First, we have max(g, h) = 1
2
(g + h + |g − h|) and min(g, h) = 1

2
(g + h − |g − h|),

which can be obtained by some simple algebraic manipulation. By Lemma 6.11 we know
that these expressions must be contained in B.

Remark 6.13. This result can be extended by iteration to any finite set of functions
f1, · · · , fn ∈ B.

□

Now, we choose a function f ∈ (C,K) and fix ϵ > 0. We can consider the open ball
B(f, ϵ), for which f is a limit point. Thus, B(f, ϵ) ⊂ (C,K). By Theorem 6.9, we have that
for each x ∈ K, there exists a function gx ∈ B such that gx(x) = f(x).
Now, we introduce a function hx = max(gx, f(x)). We know that hx is continuous since

it can be expressed as the sum of continuous functions. By the topological definition of
continuity (check definition 5.2), there exists an open set Ux ∈ K such that x ∈ Ux and
Ux ⊂ h−1

x (B(f(x)), ϵ).
Since this is true for all x ∈ K, the collection of all open sets Ux is an open cover of K.

Since K is compact, a finite number of these Ux, Uj where j < x must cover K. For these
Uj, we have that Uj ⊂ B(f(xi), ϵ).
Now, we take the minimum of all hj. By the definition of hx, we have, for all x,

hj(x) > f(x)− ϵ.

Thus, we have min(hi(x)) ∈ (f(x)− ϵ, f(x) + ϵ) which gives us that min(hi) ∈ B(f, ϵ). By

Lemma 6.12 we know that min(hi(x)) ∈ B. Therefore, we have that f is a limit point of B.
Since B is closed, f ∈ B, proving that B contains all real continuous functions on K. □

Unfortunately, the same argument cannot be extended to complex algebras. Thus, we
introduce an additional condition on the complex algebra which will enable us to prove the
Stone-Weierstrass theorem on complex algebras.

Definition 6.14. (Self-adjoint algebra) A self-adjoint algebra has all the properties of an
algebra (closure under addition, multiplication, and scalar multiplication) with an additional
property that whenever a function f ∈ A, its complex conjugate f̄ ∈ A.
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Theorem 6.15. (Stone Weierstrass theorem on complex algebras) Let A be a self-adjoint
algebra of complex continuous functions defined on a compact set K. If A separates points on
K and vanishes at no point of K then its uniform closure consists of all complex continuous
functions on K.

Proof. Let AR be the set of all real functions onK belonging to A. Take a function f = u+iv
(i =

√
−1) in A with u, v ∈ R. Now, we have

2u = f + f̄ .

Since A is self adjoint, u ∈ AR. By a similar argument, we have v ∈ AR.

Now, for x1, x2 ∈ K we have the existence of a function f ∈ A such that f(x1) = 1, f(x2) =
0 by Theorem 6.9. Hence, u(x2) = 0 ̸= u(x1) = 1, establishing that AR separates points on
K.

Since A vanishes at no point of K, for each x ∈ K there exists g ∈ A such that g(x) ̸= 0.
Considering both the real and imaginary components of f , we must have a function in AR

such that both these components are nonzero. Thus, we have that AR vanishes at no point
of K.

Now our algebra AR fulfills all the conditions of 6.10. It follows that every real continuous
function on K lies in the uniform closure of AR, completing the proof.

□
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