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1. Abstract

This paper will, assuming only basic knowledge of group theory and number theory, present
a proof of the criteria that a prime p must satisfy in order to have a representation in the
form x2 + ny2 for integers x, y. To do so, we will go over quadratic reciprocity, quadratic
forms, biquadratic/cubic reciprocity, the Hilbert class field, and basic class field theory.

2. Introduction

It is well known that for x, y ∈ Z and an odd prime p,

(2.1) p = x2 + y2 ⇐⇒ p ≡ 1 mod 4.

Is there a similar way that we can classify which primes1 can be expressed in the form x2+ny2?

The groundwork to build such a classification was laid by mathematicians such as Fermat,
Euler, Gauss, Lagrange, and Legendre. To begin, Fermat proposed theorems like the one at
the beginning of this section, along with the following theorems for x, y ∈ Z

p = x2 + 2y2 ⇐⇒ p ≡ 1, 3 mod 8

p = x2 + 3y2 ⇐⇒ p = 3 or p ≡ 1 mod 3.

Euler was not only able to prove these theorems, but create some more unexpected theorems
of his own, for example

x2 + 5y2 ⇐⇒ p ≡ 1, 9 mod 20.

Additionally, Euler also discovered quadratic reciprocity, which is a fundamental part of the
main result of this paper. Similary, both Lagrange and Legendre had their fair share of
contributions to this topic, and we will explore all of them as we prove the first main result
of this paper,

p = x2 + ny2 ⇐⇒
(
−n

p

)
= 1

and fn(x) ≡ 0 mod p has an integer solution

for squarefree n ̸≡ 3 mod 4, odd p, and a function fn to be defined later in the text. p must
also be such that it does not divide neither n nor the discriminant of fn.

This is a preliminary result, which can actually be generalized to all values of n using genus
theory and class field theory. This generalization will be the culmination of all the topics
and proofs covered throughout the paper.

Date: June 2023.
1Here we are only considering odd primes p, as they make up the actually interesting parts of this problem
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3. Descent and Reciprocity

3.1. A Classic Theorem of Fermat. We begin our discussion of primes p = x2 + ny2 by
considering a well known theorem of Fermat, shown in equation 2.1. This is the most basic
nontrivial case of the the theorem which we are trying to prove, as it considers the smallest
positive integer value of n = 1.

In order to prove this theorem, first note that the statement

p = x2 + y2 =⇒ p ≡ 1 mod 4

is easily proven by noting that for any integer a, a2 ≡ 0, 1 mod 4. This implies that for inte-
gers x, y, we have x2+ y2 ≡ 0, 1, 2 mod 4. But since p is an odd prime, p ̸≡ 0, 2 mod 4 which
yields the desired result. So, we have successfully proven one direction of 2.1. However, the
real diffculty lies in proving the converse of this theorem.

To do this, Euler used a method employing so-called descent and reciprocity steps. The
goal of the descent step is to show that

If p|x2 + y2, gcd(x, y) = 1, then p can be written as x2 + y2 for some possibly different x, y

while the goal of the reciprocity step is to show that

If p ≡ 1 mod 4, then p|x2 + y2, gcd(x, y) = 1.

We begin the proof of Fermat’s theorem with a lemma that will be aid in proving the descent
step.

Lemma 3.1. Let N = a2 + b2, with gcd(a, b) = 1. Similarly, let q be a prime divisor of N
such that q = x2 + y2 for x, y such that gcd(x, y) = 1. Then, N

q
can also be weritten as the

sum of two relatively prime squares.

Proof. We have

x2N − a2q = x2(a2 + b2)− a2(x2 + y2)

= x2b2 − a2y2 = (xb+ ay)(xb− ay).

Since q|N , we must have that q|x2N − a2q and since q is prime, this implies that

q|xb+ ay or q|xb− ay.

Now, we can assume that q|xb− ay, changing the sign of a if necessary to make this state-
ment true. Thus, we have xb−ay = dq for some integer d. Note that this implies ay = xb−dq.

We can now claim the following

Claim 3.2. x divides a+ dy
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This can easily be proven by noticing

y(a+ dy) = ay + dy2

= xb− dq + dy2

= xb− dx2.

This is clearly divisibly by x, and as x and y are relatively prime, we must have that x|a+dy.
So, we can set a+ dy equal to cx for some integer c, which implies

a = cx− dy.

Plugging this back into the equation above yields that

b = dx+ cy.

Now, we invoke another well known identity:

(x2 + y2)(z2 + w2) = (xz ± yw)2 + (xw ∓ yz)2

Using this identity in reverse yields

N = a2 + b2 = (cx− dy)2 + (dx+ cy)2

= (x2 + y2)(c2 + d2)

= q(c2 + d2).

As this is clearly a multiple of q, we have proven the lemma – we have that N
q
= c2+d2, and

since we have a = cx−dy, b = dx+cy with gcd(a, b) = 1, we must also have gcd(c, d) = 1. ■

Now, we can actually prove the descent and reciprocity steps.

Proof. To prove the descent step, we consider an odd prime p dividing N = a2 + b2, a, b ∈ Z
such that p is the smallest prime dividing N that cannot be expressed as the sum of squares
of 2 integers.

Notice that if multiples of p are added or subtracted from a and b, the fact p|N still re-
mains true. This can be seen simply by expanding N = (a+mp)2 + (b+ np)2 and checking
that all terms are multiples of p.

Since p is odd, we can continue adding/subtracting multiples of p to a, b until we have

|a| < p
2
and |b| < p

2
. This ensures that N = a2 + b2 < p2

2
. We can also divide out any

common factors of a and b to ensure that gcd(a, b) = 1.

Because N is also a multiple of p, we can use this bounding to show that N
p
, the prod-

uct of all prime factors of N other than p, must be less than
p2

2

p
= p

2
, which then implies

that all other prime factors of N must be less than p (in fact, they must be less than p
2
).

Then, due to the assumption that p is the smallest prime divisor of N that cannot be
written as the sum of 2 squares, dividing out all prime factors of N that are smaller than p
will simply yield another value that can be written as the sum of 2 squares by lemma 3.1.
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However, since p is also the larges prime divisor of N , this implies that p can be written as
the sum of two squares, a contradiction. This finishes the descent step.

Now, onto the reciprocity step. This step caused Euler a lot more trouble than the descent
step in his original proof, but he eventually succeeded, employing the use of the calculus of
finite differences. The proof presented here, however, is more modern.

By the assumptions in the reciprocity step, we have that p ≡ 1 mod 4, meaning that for
some k ∈ Z, p = 4k + 1. Thus, by Fermat’s Little Theorem, we have

(x2k − 1)(x2k + 1) ≡ x4k − 1 ≡ 0 mod p

for all x ̸≡ 0 mod p. So, since p is prime, we have that p|x2k−1 or p|x2k+1. If p ̸ |x2k−1 for
even one value of x, then we have p|x2k + 1, so p can be expressed as the sum of 2 relatively
prime squares (namely, (xk)2 and 12) and we are done.

Thankfully, it is easy to show that at least one such value of x exists – x2k−1 is a polynomial
over the finite field Fp, so it has at most 2k < p − 1 roots. Thus, there exists at least one
nonzero value of x ∈ Fp such that x2k − 1 ̸≡ 0 mod p, and we are finished.

Combining both the descent and the reciprocity step yields the desired conclusion. ■

Though it is quite amazing in and of itself, this proof is only for the case n = 1. What
about larger values of n? At least for n = 2, 3, Euler used a similar descent-reciprocity
approach as before. For n = 2,

Descent: If p|x2 + 2y2, gcd(x, y) = 1, then p is of the form x2 + 2y2 for

some possibly different x, y

Reciprocity: If p ≡ 1, 3 mod 8, then p|x2 + 2y2, gcd(x, y) = 1

and for n = 3,

Descent: If p|x2 + 3y2, gcd(x, y) = 1, then p is of the form x2 + 3y2 for

some possibly different x, y

Reciprocity: If p ≡ 1 mod 3, then p|x2 + 3y2, gcd(x, y) = 1

In each case, though, the reciprocity step became increasingly difficult for Euler to prove
using the techniques mentioned thus far. To deal with this issue, we need to introduce
quadratic/cubic/biquadratic reciprocity.

3.2. Reciprocity. It makes sense to continue addressing the problem p = x2 + ny2 with
the descent-reciprocity approach given that it seems to be working decently well up till now
(other than the difficulty of proving the reciprocity step, but that will be made easier using
the techniques of this section).
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3.2.1. Quadratic Reciprocity. For integer n > 0, the reciprocity step asks for congruence
conditions in modular arithmetic that guarantee p|x2+ny2. But what kind of conditions do
we need?

Notice that in the 3 examples of the reciprocity step that are already provided, all the
conditions can be written modulo 4n. Thus, for any general n, we will also work modulo 4n,
and look for conditions p ≡ a1, a2, . . . , ak mod 4n which imply p|x2 + ny2, gcd(x, y) = 1.

In modern terms, these conditions are written in terms of the Legendre symbol, commonly

denoted as

(
a

p

)
. This symbol is defined as follows

(
a

p

)
=


0 p|a
1 p ∤ a and a is a quadratic residue modulo p

−1 p ∤ a and a is a quadratic nonresidue modulo p.

As always, a quadratic residue modulo p is a number in Z/pZ that is congruent to a perfect
square.

To see how this definition might be useful in our study of numbers of the form x2 + ny2,
consider the following lemma

Lemma 3.3. For a nonzero integer n and an odd prime p not dividing n, we have

p|x2 + ny2, gcd(x, y) = 1 ⇐⇒
(
−n

p

)
= 1.

Proof. First, notice that p|x2 + ny2 ⇐⇒ x2 + ny2 ≡ 0 mod p.

We begin the proof in the left-to-right direction. Note that we must have y ̸≡ 0 mod p.
If this were not the case, then since gcd(x, y) = 1, x2 + ny2 ≡ x2 ̸≡ 0 mod p, meaning that
the necessary condition does not hold. Since p is prime, this relation also implies that p and
y are relatively prime, meaning that y has a multiplicative inverse modulo p.

Then, we have

x2 + ny2 ≡ 0 mod p

=⇒ x2 + (y−1)2 + n ≡ 0 mod p

=⇒ (xy−1)2 ≡ −n mod p

=⇒
(
−n

p

)
= −1

Proving the opposite (right-to-left) direction is just the same as this argument, except in
reverse. ■

Note that this formulation can also be rephrased in terms of Euler’s criterion.
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Lemma 3.4 (Euler’s criterion). Let p be an odd prime and a a positive integer not divisible
by p. Then, (

a

p

)
≡ a

p−1
2 mod p.

The proof of this lemma is also quite straightforward.

Proof. To begin, recall a well-known fact about the linear residues modulo p – exactly half
of them are quadratic residues. Now, by Fermat’s Little Theorem, we have

ap−1 ≡ 1 mod p

=⇒ a
p−1
2 ≡ ±1 mod p

Now, if a is a quadratic residue mod p, then we have a2 ≡ x mod p for some x, which implies

a
p−1
2 ≡ xp−1 ≡ 1 ≡

(
a

p

)
mod p.

However, if a is not a quadratic residue mod p, then we must show that a
p−1
2 ≡ −1 mod p.

To do this, consider the polynomial x
p−1
2 ≡ 1 over Z/pZ. This polynomial clearly has at

most p−1
2

roots, and since there are exactly p−1
2

quadratic residues modulo p, the roots of the
polynomial must be exactly the set of quadratic residues. So, no non-quadratic residue can

satisfy a
p−1
2 ≡ 1 mod p, and since a

p−1
2 ≡ ±1 mod p, we must have the desired result. ■

In terms of 3.3, this means that

p|x2 + ny2, gcd(x, y) = 1 ⇐⇒ (−n)
p−1
2 ≡ 1 mod p.

Now, let us prove one final theorem of quadratic reciprocity. Though it is not directly related
to lemma 3.3, it is interesting in its own right. We have:

Theorem 3.5. For distinct odd primes p, q, we have(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 .

Proof. The proof of this theorem is trivial by Euler’s criterion and the simple fact that
p, q > 1. ■

Note that the right hand side of this theorem is only equal to 1 if both
(

p
q

)
=

(
q
p

)
, and

−1 otherwise. This formulation is equivalent to the following statement:

Corollary 3.6. Let p, q be distinct odd primes. If p ≡ 1 mod 4 or q ≡ 1 mod 4, then(
p

q

)
=

(
q

p

)
.

Otherwise (
p

q

)
= −

(
q

p

)
.

Proof. The proof of this corollary is trivial by simply noting the exponent of −1 on the right
hand side of 3.5. ■
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Using all these ideas, Euler was able to make some new conjectures of his own (though he
did not express them in this exact manner and instead used more primitive notation)(

−3

p

)
⇐⇒ p ≡ 1, 7 mod 12(

−5

p

)
⇐⇒ p ≡ 1, 3, 7, 9 mod 28(

−7

p

)
⇐⇒ p ≡ 1, 9, 11, 15, 23, 25 mod 28

These 3 are of interest to us with regards to the problem at hand – they encompass Euler’s
work on the problems p = x2 + 3y2, p = x2 + 5y2, and p = x2 + 7y2.(

3

p

)
⇐⇒ p ≡ ±1 mod 12(

5

p

)
⇐⇒ p ≡ ±1,±9 mod 28(

7

p

)
⇐⇒ p ≡ ±1,±9,±25 mod 28.

These latter 3 conjectures are also interesting in their own right. Every number that appears
seems to be of the form ±β2 for some odd β. In fact, it turns out that this observation is in
fact equivalent to the statement of quadratic reciprocity in theorem 3.5.

3.2.2. Eisenstein Integers and Cubic Reciprocity. Now that we have shown how quadratic
reciprocity is useful in the reciprocity step, we turn to higher reciprocity to provide more in-
formation in some special cases of n. One such form of higher reciprocity is cubic reciprocity.

In this section, the main theorem that we will aim to prove is

Theorem 3.7. For prime p, p = x2 + 27y2 ⇐⇒

{
p ≡ 1 mod 3,

2 is a cubic residue modulo p.

To do this, we must first extend our notion of the integers to the ring Z[ω], consisting of

all numbers of the form a+ bω, a, b ∈ Z where ω = e
2πi
3 .

1

ω

ω

Figure 1. The cube roots of unity

We define the norm of a number α = a+ bω as follows:

Definition 3.8 (Norm). The norm of α is the nonnegative integer

N(α) = αᾱ = a2 − ab+ b2.
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An important property of the norm over Eisenstein integers is that it is always congruent to
1 mod 3.

The norm function is also multiplicative, so we have

N(αβ) = N(α)N(β).

It also turns out that Z[ω] is a Euclidean ring, so a modified version of the Euclidean
algorithm will work on numbers over this ring. This property implies that Z[ω] is a principal
ideal domain (PID) and a unique factorization domain (UFD).

To explain what this means, we first need a few definitions.

Definition 3.9 (Basic terminology). Let R be an integral domain (a nonzero commutative
ring with the property that the product of any two nonzero elements of R is nonzero). Then,

(1) α ∈ R is a unit if αβ = 1 for some β ∈ R. In other words, α has a multiplicative
inverse in R.

(2) α, β ∈ R are associates if α is a unit times β.
(3) A nonunit α ∈ R is irreducible if α = βγ in R implies that β or γ is a unit.

Then R is a UFD if every nonunit α ̸= 0 can be written as a product of irreducibles, and
given two such factorizations of α, each irreducible in the first factorization can be matched
up in a one-to-one manner with an associate irreducible in the second. In simpler terms,
factorization over R is unique up to order and associates.2

In fact, being a PID turns out to be a stronger property than simply being a UFD, so
along with the previous properties, PIDs have the following one as well.

Lemma 3.10. For α, β, γ in a PID, the following are equivalent

(1) α is irreducible,
(2) α is prime (α|βγ =⇒ α|β or α|γ).

Now that we have gotten some basic properties out of the way, we can identify units and
primes in Z[ω].

The identification of units is aided greatly by the following lemma.

Lemma 3.11 (Norm of a unit). α is a unit if and only if N(α) = 1.

As it turns out, using 3.11 yields that the units in Z[ω] are simply {1,−1, ω,−ω, ω2,−ω2}.

Next, to identify primes, we make use of yet another lemma.

Lemma 3.12 (Norm of a prime). If N(α) is a prime in the integers for some α ∈ Z[ω],
then α is a prime in Z[ω].

Proof. By property 3.10 of PIDs, it suffices to show that α is irreducible. We proceed by
contradiction.

2These two sentences are taken from Cox’s Primes of the Form x2 + ny2
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Assume that α is reducible. In other words, α = βγ for nonunit β, γ ∈ Z[ω]. Then,
due to the multiplicity of norm, we have

N(α) = N(β)N(γ)

which is an equation over the integers. But since N(α) is prime, we must have that one of
N(β) and N(γ) is 1. By 3.11, this implies that one of β, γ is a unit – a contradiction. ■

It turns out that by using this lemma, we have the following corollary.

Corollary 3.13. All primes in Z[ω] can be divided into 3 groups

(1) 1− ω,
(2) Primes π ∈ Z with π ≡ 2 mod 3,
(3) Primes π ∈ Z[ω] such that p = N(π) is a prime equivalent to 1 modulo 3.

Additionally, in the third case, we have that there is a natural isomorphism Z/pZ ≃ Z/πZ.

The Eisenstein primes can be plotted on the complex plane, yielding the graph below.

Figure 2. A plot of the Eisenstein primes on the complex plane

Finally, we have one more property of Z[ω] that is of importance to us. So far, we have
very frequently used the notion of taking numbers “modulo p” for p ∈ Z. It makes sense,
therefore, to extend this definition to the Eisenstein integers as well. Note that this extension
is only possible because of the fact that Z[ω] is a Euclidean ring.

To do so, we will need to introduce the idea of an ideal of a ring, as well as the defini-
tion of a quotient ring.

Definition 3.14 (Ideal). An ideal i is a subset of a ring R that is an additive group with
the property that for any x ∈ R and y ∈ i, both xy and yx are in i.

As an example consider the ring Z and the ideal 6Z. Now, we define a quotient ring.

Definition 3.15 (Quotient ring). A quotient ring is a ring that is the quotient of a ring
R and its ideal i, and is denoted as A/i. In general, a quotient ring is a set of equivalence
classes, where x is equivalent to y if and only if x− y ∈ i.
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We can now define the residues modulo a prime π ∈ Z[ω] as a quotient ring

Z[ω]/πZ[ω]
with N(π) elements. It turns out that this quotient ring is also a field. One corollary of this
definition is:

Corollary 3.16. If π is prime in Z[ω] and does not divide α ∈ Z[ω], then

αN(π)−1 ≡ 1 mod π.

Proof. The proof of this corollary is identical to the proof of Fermat’s Little Theorem over
the integers. We have that (Z[ω]/πZ[ω])∗ is a finite group with N(π)− 1 elements, and the
desired conclusion follows. ■

Given these properties of the Eisenstein integers, we can finally begin to define cubic
reciprocity. We do so using the generalized reciprocity symbol(α

π

)
3
.

Let π be a prime in Z[ω] that does not divide 3. Since we have 3 = −ω2(1− ω2) with −ω2

being a unit, this can be rephrased as not allowing π to be an associate of 1 − ω. Here,
we ignore associates of (1− ω)2 since it is not prime. Using the definition of the Eisenstein
primes provided in 3.13, it is easy to verify that 3|N(π)− 1.

Now, let α ∈ Z[ω] be some value not divisible by π. From 3.16, we have that α
N(π)−1

3 is
a root of the polynomial x3 ≡ 1 mod π. But, we also have

x3 ≡ 1 mod π

=⇒ x3 − 1 ≡ 0 mod π

=⇒ (x− 1)(x− ω)(x− ω2) ≡ 0 mod π

=⇒ α
N(π)−1

3 ≡ 1, ω, ω2 mod π

Note that none of 1, ω, ω2 can be congruent modulo π. If this were the case, then it would
imply 1 ≡ ω mod π, meaning that 1−ω and π are associates, contrary to assumption. Then,
we define the cubic Legendre symbol as the unique cube root of unity such that

Definition 3.17 (Cubic Legendre symbol).

α
N(π)−1

3 ≡
(α
π

)
3
mod π.

From this definition, some easily derived properties of the cubic Legendre symbol are(
αβ

π

)
3

=

(
α

π

)
3

(
β

π

)
3

and

α ≡ β mod π =⇒
(α
π

)
3
=

(
β

π

)
3

.

Now, in order to establish the link between cubic residues and cubic reciprocity, we use
another fact of group theory – the multiplicative group of any finite field is cyclic. In
particular, this means that (Z[ω]/πZ[ω])∗ is cyclic, which then implies
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Lemma 3.18 (Cubic residues in Eisenstein integers).(α
π

)
3
= 1 ⇐⇒ α

N(π)−1
3 ≡ 1 mod π(3.1)

⇐⇒ x3 ≡ α mod π has a solution in Z[ω].(3.2)

Let us next try to relate cubic reciprocity to the more natural idea of cubic residues mod
p in Z.

We break up this relation into 3 parts:

(1) p ≡ 0 mod 3 =⇒ p = 3
(2) p ≡ 1 mod 3
(3) p ≡ 2 mod 3.

In the first case, we have that Fermat’s Little Theorem clearly implies a3 ≡ a mod 3, so all
residues modulo 3 are in fact cubic residues.

In the second case, let p = ππ̄ = N(π). By the third case of 3.13, we have that there
is an isomorphism Z/pZ ≃ Z/πZ. Thus, for p ∤ a, lemma 3.18 guarantees

Lemma 3.19 (Cubic residues in the integers).

x3 ≡ a mod p is solvable in Z ⇐⇒
(a
π

)
3
= 1.

Additionally, recall that exactly half of the values in (Z/pZ)∗ are quadratic residues. Sim-
ilarly, it turns out that exactly one-third of the values in (Z/pZ)∗ are cubic residues (of
course, this is only feasible since p ≡ 1 mod 3).

Finally, before we prove theorem 3.7, we need the following theorem.

Theorem 3.20. If π and θ are primary primes in Z[ω] of unequal norm, then(
θ

π

)
3

=

(
π

θ

)
3

.

Here, a primary prime is a prime π such that π ≡ ±1 mod 3. Note how simple this theo-
rem is, even after all the complex numbers and other notation involved with cubic reciprocity!

Now we can begin the proof of the main result of this section.

p = x2 + 27y2 ⇐⇒

{
p ≡ 1 mod 3,

2 is a cubic residue modulo p.

Proof. We begin with the left-to-right direction of the proof.

Clearly, 27y2 is a multiple of 3, so we hav x2 + 27y2 ≡ x2 mod 3. If x ≡ 0 mod 3, then
3|x2 + 27y2, and since the right hand side of this divisibility is clearly greater than 3, there
is no prime p that is equal to it. Thus, we have that x is not a multiple of 3, which implies
that p ≡ 1 mod 3.

Now, it suffices to show that 2 is a cubic residue modulo p. Let π = x + 3
√
−3y so that
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p = ππ̄. Since p ≡ 1 mod 3, we have that π is a prime. Also, since x ̸≡ 0 mod 3, we can say
that π is a primary prime. However, 2 is also a primary prime, so we have(

2

π

)
3

=

(
π

2

)
3

by lemma 3.20. Thus, it is enough to show that

(
π
2

)
3

= 1. To do this, note that by

definition 3.17 and the fact N(2)−1
3

= 1, we have(π
2

)
3
≡ π mod 2.

So now we only need to show that π ≡ 1 mod 2.

Since
√
−3 = 1 + 2ω, we have that π = x + 3

√
−3y = x + 3y + 6ωy, which is clearly

equivalent to x+ y modulo 2. But, x and y must have opposite parity since p = x2 + 27y2,
and this yields the desired result.

Now, we prove the converse direction. We have that p ≡ 1 mod 3, so let p = ππ̄ with
π being a primary prime in the Eisenstein integers. Then, we must have π = a + 3bω for
some integers a, b with 3 ∤ a. This yields

4p = 4ππ̄ = 4(a2 − 3ab+ 9b2) = (2a− 3b)2 + 27b2.

Once we show that b is even, the desired result will obviously follow. To do this, we use
the assumption that 2 is a cubic residue modulo p. Lemma 3.19 gives

(
2
π

)
3
= 1 and then

theorem 3.20 yields that
(
π
2

)
3
= 1. But, similar to before, this implies that π ≡ 1 mod 2.

This can be written as a+ 3bω ≡ 1 mod 2, which implies a odd and b even, as required. ■

3.2.3. Gaussian Integers and Biquadratic Reciprocity. Now we can begin to address another
major form of higher reciprocity, biquadratic reciprocity. Many of the concepts used will be
the same as those used in cubic reciprocity, so this section will be relatively short. Still, this
section aims to prove the following theorem:

Theorem 3.21. For prime p, p = x2 + 64y2 ⇐⇒

{
p ≡ 1 mod 4

2 is a biquadratic residue mod p.

To prove this theorem, we will once again need to extend our notion of the integers. How-
ever, instead of the Eisenstein integers, we will be considering the Gaussian integers, or Z[i].
This ring consists of all numbers of the form a+ bi, a, b ∈ Z, with i =

√
−1 = e

πi
2 as usual.

1

i

−1

−i

Figure 3. The fourth roots of unity
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As with the Eisenstein integers, we can define the norm of α = a+bi as N(α) = αᾱ = a2+b2.
The norm function is still multiplicative.

Additionally, the Gaussian integers are a Euclidean ring, so the definitions in 3.9 still hold
for Z[i], and lemmas 3.10 and 3.11 hold as well. In fact, lemma 3.12 holds as well but it turns
out that primes not satisfying this condition also exist in Z[i]. We can classify all primes in
the following manner.

Corollary 3.22. All primes in Z[i] can be divided into 3 groups

(1) 1 + i,
(2) If p ≡ 1 mod 4, p ∈ Z, then there is a prime π ∈ Z[i] such that p = N(π) = ππ̄, and

the primes π and π̄ are nonassociate in the Gaussian integers,
(3) If p ≡ 3 mod 4, p ∈ Z, then p is also a Gaussian prime.

It turns out that in the second case, when p ≡ 1 mod 4 and p = ππ̄, there exists an
isomorphism (Z/pZ)∗ ≃ (Z[i]/πZ[i])∗.

We can also plot the Gaussian primes on the complex plane, yielding the beautiful im-
age below.

Figure 4. A plot of the Gaussian primes on the complex plane

Additionally, we have the following lemma which is a version of Fermat’s Little Theorem
over Z[i].

Lemma 3.23. If π is prime in Z[i] and does not divide α ∈ Z[i], then

αN(π)−1 ≡ 1 mod π.

We can now define the biquadratic Legendre symbol. Given a prime π ∈ Z[i] not associate
to 2 (since 2 = i3(1 + i)2, this is equivalent to π and 1 + i being nonassociates), it can be
proven that 1,−1, i,−i are all distinct modulo π and that 4|N(π) − 1. Then, for α not
divisible by π, the biquadratic Legendre symbol is defined to be the unique fourth root of
unity such that
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Definition 3.24 (Biquadratic Legendre symbol).

α
N(π)−1

4 ≡
(α
π

)
4
mod π.

Once again, this implies that the biquadratic reciprocity symbol is mutliplicative. Just as
with the case of cubic reciprocity, we can also see that

α
N(π)−1

4 = 1 ⇐⇒ x4 ≡ α mod π is solvable in Z[i].
Now, recall the second case of 3.22. We have the isomorphism (Z/pZ)∗ ≃ (Z[i]/πZ[i])∗., so
we can consider Z/pZ using the relation regarding biquadratic residues in Gaussian integers
provided above. It turns out that Z/pZ can be split into exactly 4 parts of equal size; one
part consisting of biquadratic residues (where the symbol equals 1), one part of quadratic
residues that are not biquadratic residues (symbol equals −1), and two parts of quadratic
nonresidues (symbol equals ±i).

We can also state a biquadratic reciprocity relation similar to theorem 3.20.

Note that in the Gaussian integers, we define a primary prime π ∈ Z[i] as one that sat-
isfies π ≡ 1 mod 2 + 2i. It turns out that any prime not associate to 1 + i has a unique
associate that is primary. Now, we have

Theorem 3.25. (
θ

π

)
4

=

(
π

θ

)
4

(−1)
(N(θ)−1)(N(π)−1)

16

where θ and π are both primary primes in Z[i].

We also have 2 supplemental laws, stating(
i

π

)
4

= i
1−a
2(

i+ 1

π

)
4

= i
a−b−b2−1

4

for primary prime π = a+ bi. Using these facts, it is now possible to prove 3.21.

For prime p, p = x2 + 64y2 ⇐⇒

{
p ≡ 1 mod 4

2 is a biquadratic residue mod p.

We begin by first proving a lemma

Lemma 3.26. If π ∈ Z[i] is a primary prime, then(
2

π

)
4

= i
ab
2 .

Proof. This lemma follows from the supplemental laws stated above and the fact that
2 = i3(1 + i)2. Additionally, Dirichlet was able to find an elementary proof of this fact
in 1857 using only quadratic reciprocity.

First, consider prime p ∈ Z with p ≡ 1 mod 4. Then, using theorem 2.1, we can write
p = a2 + b2 with a being odd and b being even. ■
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Now, we prove the main theorem.

Proof. First let p ∈ Z be a prime such that p ≡ 1 mod 4. Then we can write p = ππ̄, where
π = a + bi is a primary prime in the Gaussian integers. Note that this implies a odd and b
even by the definition of primary primes in Z[i].

Now, we have Z/pZ ≃ Z[i]/πZ[i] since p ≡ 1 mod 4. Then by 3.26, we have that 2 is a
biquadratic residue modulo p if and only if b is a multiple of 8. Letting b = 8c, we see that
p = ππ̄ = a2 + b2 = a2 + 64c2, and we are done. ■

3.3. Quadratic Forms. Now that we have addressed methods of improving the reciprocity
step of Euler’s proofs, we can try to improve the descent step as well. As with the descent
step in the case n = 1, the descent step for general n begins with the identity

(x2 + ny2)(z2 + nw2) = (xz ± nyw)2 + n(xw ∓ yz)2.

Proceeding with the descent step as in the case of theorem 2.1, we can conjecture that
p|x2 + ny2 =⇒ p = x2 + ny2 for some (possibly different) x, y. However, this turns out to
fail even for small values of n. For example,

21 = 12 + 5 · 22, 3|21 ≠⇒ 3 = x2 + 5y2.

So if prime divisors of x2+ny2 cannot themselves be represented in the form x2+ny2 (again,
for possibly different x, y), then how can they be represented? It turns out that Lagrange’s
theory of quadratic forms provides the tools necessary to address this question, and these
are the tools that we will be addressing in this section.

3.3.1. Basic Theory. This section serves to cover some of the basic theory behind quadratic
forms before we apply this theory to the problem p = x2 + ny2.

Definition 3.27 (Basic terminology). We begin with a bit of basic terminology.

• A quadratic form is defined as f(x, y) = ax2 + bxy + cy2.
– Such a form is called primitive if a, b, c are relatively prime.

• The determinant of a quadratic form ax2 + bxy + cy2 is defined as D = b2 − 4ac.
• An integer m is said to be represented by f(x, y) if

m = f(x, y)

has a solution for integer x, y.
– If x, y are relatively prime, then m is said to be properly represented.

• We say that 2 forms f(x, y) and g(x, y) are equivalent if there exist integers p, q, r,
and s such that

f(x, y) = g(px+ qy, rx+ sy)

and ps− qr = ±1.
– This equivalence is called proper if ps− qr = 1, and improper otherwise.
– Let f(x, y) have discriminant D, and g(x, y) have discriminant D′. Then, using
f(x, y) = g(px+ qy, rx+sy) and doing some computation yields that D = (ps−
qr)2D′, which implies that any two equivalent forms have the same discriminant.

Note that for the quadratic forms f and g to be equivalent, we must have ps− qr = ±1,
which is equivalent to det ( p q

r s ) = ±1. Thus, ( p q
r s ) is in the group of 2× 2 invertible integer

matrices, also written as GL(2,Z). However, for proper equivalences, this matrix is in the
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group SL(2,Z) which consists of 2× 2 integer matrices with determinant 1.

It turns out that there is a very nice relation between properly represented values proper
equivalences.

Lemma 3.28. A form f(x, y) properly represents an integer m if and only if f(x, y) is
properly equivalent to the form mx2 +Bxy + Cy2 for some B,C ∈ Z.

Proof. We begin by supposing that f(p, q) = m, for relatively prime integers p and q. Then,
Bezout’s lemma guarantees that there exist integers r and s with pr − qs = 1.

If f(x, y) = ax2 + bxy + cy2, then

f(px+ ry, qx+ sy) = f(p, q)x2 + (2apr + bps+ brq + 2cqs)xy + f(r, s)y2

= mx2 +Bxy + Cy2

which is of the desired form.

To prove the converse, simply consider (x, y) = (1, 0) over the form mx2 +Bxy + Cy2. ■

We now list a few more properties of the discriminant. Through simple computation, it
is easy to see that the identity

4af(x, y) = (2ax+ by)2 −Dy2

is true. This means that for D > 0, f can take on both positive and negative values. Such
a form is called indefinite. On the other hand, if D < 0, then f represents only positive or
only negative values depending on the sign of a. Accordingly, such forms are called positive
definite or negative definite. However, if D = 0, then f can take only nonnegative or only
nonpositive values. Such forms are called positive semidefinite and negative semidefinite,
respectively.

The discriminant D affects quadratic forms one other way; since D = b2 − 4ac, it follows
that b is even (resp. odd) if and only if D ≡ 0 (resp. 1) mod 4. We also have the following
lemma regarding the discriminant.

Lemma 3.29. Let D ≡ 0, 1 mod 4 be an integer and m be an odd integer relatively prime
to D. Then m is properly represented by a primitive form of discriminant D if and only if
D is a quadratic residue modulo m.

Proof. Since m is properly represented by some primitive form f , we can assume that
f(x, y) = mx2 + bxy + cy2 by lemma 3.28.

Thus, we have D = b2 − 4mc, which gives D ≡ b2 mod m, which is exactly what we want to
prove.

Conversely, if D ≡ b2 mod m, then since m is odd, we can assume that D and b are the same
parity, replacing b by b+m if necessary. Then, D ≡ 0, 1 mod 4 implies that D ≡ b2 mod 4m.
So, D = b2 − 4mc for some integer c. So, mx2 + bxy + cy2 represents m properly and has
discriminant D and the coefficients are all relatively prime to D since gcd(m,D) = 1. ■
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For the purposes of p = x2 + ny2, the most useful implementation of lemma 3.29 is the
following corollary:

Corollary 3.30. Let n be an integer and let p be an odd prime not dividing n. Then(
−n
p

)
= 1 if and only if p is represented by a primitive form of discriminant −4n.

Proof. The proof follows from lemma 3.29 because −4n is a quadratic residue modulo p if
and only if (

−4n

p

)
=

(
−n

p

)
= 1.

■

To see how this corollary is related to the descent step, recall lemma 3.3. Due to this
lemma, we see that prime divisors p of x2 + ny2 can be represented by quadratic forms of
discriminant −4n. The only issue with this is that there are too many quadratic forms that
satisfy this condition.

For example, applying this corollary to
(−3
13

)
= 1 yields that 13 is represented by the form

13x2+12xy+3y2 with discriminant −12. But this does not provide us with that much infor-
mation. In order for this corollary to be truly useful, we need to show that every quadratic
form of a certain discriminant is equivalent to another, especially simple, form. Lagrange’s
theory of reduced forms does this beautifully.

Though we have been dealing with arbitrary quadratic forms for now, for the purposes
of this text, we will now limit our scope to only positive definite forms. This not only covers
the forms of interest to us (namely, x2 + ny2), but also simplifies our consideration of the
theory of reduced forms.

Definition 3.31. A primitive positive definite form is considered to be reduced if

|b| ≤ a ≤ c, and b ≥ 0 if either |b| = a or a = c.

Of course, a and c are positive since the form is positive definite.

The theorem of interest to is is as follows:

Theorem 3.32. Every primitive positive definite form is properly equivalent to a unique
reduced form.

Finally, in order to complete our treatment of reduced forms, we need to make one more
observation. Suppose that ax2+ bxy+ cy2 is a reduced form of negative discriminant. Then,
by the definition of a reduced form, we have that b2 ≤ a2, a ≤ c, which leads to

−D = 4ac− b2 ≥ 4a2 − a2 = 3a2.

Thus, we have

a ≤
√

−D

3
.

For a fixed D, this means that there are only finitely many choices for a, and since |b| ≤ a,
there are only finitely many choices for b as well. Since D = b2 − 4ac, the same is true for c,
so there are only finitely many reduced forms of discriminant D.
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Then, theorem 3.32 yields that there are only a finite number of proper equivalence classes
as well. We say that two forms are of the same class if they are properly equivalent, and
let h(D) denote the number of such classes of primitive positive definite forms of discrimi-
nant D. Of course, this is just the same as the number of reduced forms. So, the following
theorem is true:

Theorem 3.33. Let D < 0 be fixed. Then the number h(D) of classes of primitive positive
definite forms of discriminant D is finite, and furthermore h(D) is equal to the number of
reduced forms of discriminant D.

3.3.2. Applications to p = x2+ny2. Using the theory from the previous section, we can now
apply quadratic forms to the problem at hand. To begin, we have the following theorem:

Theorem 3.34. Let n be a positive integer and p be an odd prime not dividing n. Then(
−n
p

)
= 1 if and only if p is represented by one of the h(−4n) reduced forms of discriminant

−4n.

Proof. This follows directly from corollary 3.30 and theorem 3.32. ■

Along with the fact that a number, say some prime p, can only be represented by a form

of discriminant D if
(

D
p

)
= 1, we arrive at a result that allows for an analysis of primes p

that can be represented by quadratic forms.

In the case of n = 1, 2, 3, 4, 7, it turns out that the only reduced form of discriminant
−4n is of the form x2 + ny2. This is exactly what we want – paired with theorem 3.34, we
see that p = x2 + ny2 if and only if (

−D

p

)
= 1.

Though it is quite computational, this theorem allows us to reprove the theorems of Euler
and Fermat discussed at the end of section 3.1.

Other than for these specific values of n, the theory of quadratic forms pops up again and
again throughout many other areas of math related to p = x2 + ny2.

4. A Solution for All n

In this section, we will explore the solution to p = x2 + ny2 for all n, in contrast to the
work done in the last section.

A stepping stone to the promised theorem for all n is as follows:

Theorem 4.1. Let n > 0 be a squarefree integer not congruent to 3 modulo 4. Then there
is a monic irreducible polynomial fn(x) ∈ Z[x] of degree h(−4n) such that if an odd prime p
divides neither n nor the discriminant of fn(x), then

p = x2 + ny2 ⇐⇒
{(

−n
p

)
= 1 and fn(x) ≡ 0 mod p has an integer solution.

Furthermore, fn(x) may be taken to be the minimal polynomial of a real algebraic integer α
for which L = K(α) is the Hilbert class field of K = Q(

√
−n).
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While we will not prove this theorem, the concepts behind it will be explained in an effort
to understand what it actually means.

We begin by defining a number field K to be a subfield of the complex numbers C which
has a finite degree over Q. The degree of K over Q is denoted [K : Q]. For such a field K,
we define the algebraic integers of K, OK , as the set of all α ∈ K which are the roots of a
monic integer polynomial. The set Ok is often called the ring of integers of K.

Now, recall definition 3.14. A prime ideal is defined as follows:

Definition 4.2 (Prime ideal). p such that for all a, b, if ab ∈ p, a ∈ p or b ∈ p.

It turns out that for a number field K, any nonzero ideal a ∈ OK can be represented as a
product of prime ideals, with the decomposition being unique up to order. The prime ideals
in the decomposition are exactly the prime ideals of OK that contain a.

Next, we will introduce the idea of ramification and inertial degree. Consider a number
field K and let L be a finite extension of K.

Definition 4.3 (Field extension). A field extension is a pair of fields K ⊆ L, such that the
operations of K are those of L restricted to K. In this case, L is an extension field of K and
K is a subfield of L. The degree of the field extension is denoted by [L : K], and extensions
with finite degree are called finite extensions.

Note that [L : K] is the number of left cosets of K in L.

Definition 4.4 (Left coset). Let G be a group and H be a subgroup of G. Then the subset
aH = ah|h ∈ H ⊆ G is the left coset of H containing a.

Now, onto ramification. If p is a prime ideal of OK , then pOL is an ideal of OL, and thus
has a prime factorization which can be represented as

pOL = Be1
1 Be2

2 . . .Beg
g .

Here, the Bi’s are the distinct primes of L containing p. Then, we have the following
definitions:

Definition 4.5 (Ramification index). The ramification index of p in Bi is the integer ei.

Definition 4.6 (Inertial degree). Each primeBi gives a field extensionOL/Bi, whose degree
is called the inertial degree fi of p in Bi.

It turns out that the sum of eifi from i = 1 to i = g is simply the degree of the field
extension L/K.

Of particular interest to us are Galois extensions L/K. The definition of a Galois extension
is quite difficult to understand and most of the extensions that are used in the proofs of the
following theorems are Galois extensions anyway, so we will just state a useful property of
them here. For a Galois extension, all primes Bi containing p have the same ramification
index e and the same inertial degree f . Thus, we have

efg = [L : K].
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Given a Galois extension K ⊂ L, an ideal p of K ramifies if e > 1, and is unramified if e = 1.
If p satisfies the stronger condition e = f = 1, then we say that p splits completely in L.

Now, we define the Hilbert class field of a field K.

Definition 4.7 (Hilbert class field). Given a number fieldK, there is a finite Galois extension
L of K such that L is an unramified Abelian extension of K, and any unramified Abelian
extension of K lies in L.

Here, an Abelian extension is one that is Galois and Gal(L/K) is abelian (i.e. commuta-
tive). Note that Gal(L/K) is the Galois group of the extension at hand, which consists of
all automorphisms (self maps) of the extension.

Using the theory of the Hilbert class field along with the other class field theory shown
so far, it is possible to show theorem 4.1 is true. This is done by showing that both the
left and right hand sides of the “if and only if” in theorem 4.1 are equivalent to p splitting
completely in the Hilbert class field of Q(

√
−n). Here, Q(

√
−n) is the set of all a + b

√
−n

for rational a, b. However, the proof is omitted here for the sake of brevity.

It turns out that by using ring class fields, a stronger variation of theorem 4.1 may be
proven, which is the crown theorem of this paper.

Theorem 4.8. Let n > 0 be an integer. Then there is a monic irreducible polynomial fn(x) ∈
Z[x] of degree h(−4n) such that if an odd prime p divides neither n nor the discriminant of
fn(x), then

p = x2 + ny2 ⇐⇒
{(

−n
p

)
= 1 and fn(x) ≡ 0 mod p has an integer solution.

Furthermore, fn(x) may be taken to be the minimal polynomial of a real algebraic integer α
for which L = K(α) is the ring class field of order Z[

√
−n] in the imaginary quadratic field

K = Q(
√
−n).

Finally, if fn(x) is any monic integer polynomial of degree h(−4n) for which the above equiv-
alence holds, then fn(x) is irreducible over Z and is the minimal polynomial of a primitive
element of the ring class field L described above.

At this point, every piece of notation used in this theorem has already been described
except for the definition of a ring class field. We will define what such a field is, but will
omit the proof of theorem 4.8, again for the sake of brevity.

Definition 4.9 (Ring class field). Let O be an order of conductor f in an imaginary qua-
dratic field K (one of the form Q(

√
−n) for n > 0). Then, the ring class field of the order

O is the unique Abelian extension L of K.

The conductor f is equivalent to the set AnnK(L/K). Note that

AnnA(B) = a ∈ A|b ∈ B implies ab = 0.

For such a ring class field, we have that all primes of K ramified in L must divide fOK .

With this, we finish our treatment of primes of the form p = x2 + ny2.



ON PRIMES OF THE FORM x2 + ny2 21

References

[1] John; Barile, Margherita; Renze and Eric W. Weisstein. Principal ideal domain.
[2] David A. Cox. Primes of the Form x2 + ny2. AMS Chelsea Publishing, 3 edition, 2022.
[3] David S. Dummit and Richard M. Foote. Abstract Algebra. John Wiley and Sons, 3 edition, 2004.
[4] Rahmi Jackson and Eric W. Weisstein. Kernel.
[5] Todd; Moslehian, Mohammad Sal; Rowland and Eric W. Weisstein. Ideal.
[6] Todd Rowland. Prime ideal.
[7] Todd Rowland and Eric W. Weisstein. Galois extension.
[8] Harold M. Stark. An Introduction to Number Theory. MIT Press, 1 edition, 1970.
[9] Eric W. Weisstein. Algebraic number.
[10] Eric W. Weisstein. Eisenstein prime.
[11] Eric W. Weisstein. Gaussian prime.
[12] Eric W. Weisstein. Principal ideal.

[3] [2] [8] [4] [11] [10] [6] [12] [5] [1] [9] [7]


	1. Abstract
	2. Introduction
	Acknowledgements
	3. Descent and Reciprocity
	3.1. A Classic Theorem of Fermat
	3.2. Reciprocity
	3.3. Quadratic Forms

	4. A Solution for All n
	References

