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Abstract. In this paper, we introduced, analyzed, and detailed the Chip-Firing Game
and its fundamentals and properties. Although there is not only one way to play the
Chip-Firing Game, we still provided detailed descriptions and solutions to most known and
utilized Chip-Firing Game variants and properties. We also provided visual representations
to illustrate different scenarios with varying chip quantities. Since the topic has only been
around for 40 years, there are a lack of accessible resources on it. Therefore, our aim is to
consolidate available information on the Chip-Firing Game and present it to readers, while
acknowledging existing constraints.
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1. Introduction

Chip-Firing Game has emerged as a captivating and influential mathematical idea in var-
ious fields, bringing together experts from different fields such as mathematics, physics, or
even economy. Although its precise date of invention is still being investigated and debated,
the consensus among reputable resources claim that the Chip-Firing Game’s origins may be
traced again to the pioneering paintings of mathematician David Gale in 1983. Since its
inception, the Chip-Firing Game has garnered huge interest because of its connections with
graph theory and its applications in various regions.

In the game, chips are placed on the vertices of a connected graph, and the researches
use a strategic system of redistributing those chips based totally on the rules and conditions
they set.

The game’s mathematical fundamentals have been utilized to set deep and intricate stan-
dards related to areas such as electrical networks, equilibrium configurations, and even net
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income calculations. Researchers have delved into its complexities, unveiling connections to
topics inclusive of sandpile fashions, spanning trees, and group concept, among others.

Moreover, the Chip-Firing Game has been used as a effective tool for investigating essential
questions in mathematics. It has provided insights into the structure and behavior of graphs,
permitting researchers to address hard problems in a singular and innovative way.

In this paper, we aim to delve into the intricacies of the Chip-Firing Game, exploring its fun-
damentals, analyzing its properties, and uncovering the mathematical principles that govern
its conduct. We also provide sufficient amount of graphical displays of the game to make this
paper more readable and accessible. The accuracy of the information and calculations pro-
vided in this paper were checked through OEIS, research papers and talks from researchers
from various different fields, and graphing calculators.

2. Fundamentals of Chip-Firing Game

2.1. Chip-Firing Game. Chip-Firing Game is a mathematical game that simulates the
redistribution of resources/chips on a graph. That is, on a connected graph with vertices
and edges, the game is played by placing a certain number of chips on the vertices of the
graph and redistributing the chips among the neighboring vertices based on the number of
chips the vertex possesses in relation to its degree. For example,
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Figure 1. Chip-firing game with 6 vertices and 7 edges.

where red-colored chips represent the active vertices, the vertices that are being fired
evenly to neighboring vertices. The game can be played potentially for infinite times until
all the vertices have less chips than how many neighbors they have.

Definition 2.1. A vertex in a Chip-Firing Game refers to a node or a point in a graph, and
it represents the location of chips being placed at or fired from. Most of the time, vertices
on a graph are labeled or colored differently to distinguish them from each other.

Definition 2.2. An edge in a Chip-Firing Game refers to a connection or link between two
vertices. Chips flow from one vertex to another vertex through edges, and those edges can
be represented by lines or arcs.

Definition 2.3. The degree of a vertex represents the number of edges connected to that
vertex.

The Chip-Firing Game involves redistributing chips among the vertices of a graph accord-
ing to specific rules. The number of chips on a vertex represents a certain quantity, such
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as energy or resource in real life; thus, assigning negative values to vertices would not be
possible since they do not represent a tangible quantity. Moreover, non-integer values are
not used to assign values to vertices because the game’s rules and dynamics are designed
around the discrete nature of chip transfers, where whole numbers of chips are moved from
one vertex to another.

Having a history of only 40 years, the Chip-Firing Game is a relatively young topic, falling
under broader topics such as algebraic geometry, graph theory, combinatorial games, and
discrete mathematics [8]. This multidisciplinary nature of the Chip-Firing Game helps the-
oretical physicists with measuring frequency in noise and sandpile shapes and theoretical
computer scientists with sorting and latencies in networks and local balancing [7].

Theorem 2.4. In a Chip-Firing Game labeled with G, if there are n number of vertices and
m number of chips to redistribute, then there are

v =
(
m+n−1
n−1

)
ways to redistribute the chips [2, 10].

Proof. We will consider a Chip-Firing Game labeled with G, consisting of n number of ver-
tices and m number of chips to redistribute. The chips will be considered as indistinguishable
objects, meaning that all chips of the same quantity are identical. That is, to distribute the
m number of chips among the n number of vertices, we will view this as placing dividers,
which represent the chips, between the vertices. The number of dividers will be equal to the
number of edges.

The dividers will divide the vertices into distinct regions, with each region representing
the number of chips in that vertex. Thus, the total number of regions will be n− 1 since we
have n − 1 dividers to place among the n number of vertices. Therefore, the problem can
be formulated as determining the combinatorial possibilities associated with selecting the
positions of n− 1 dividers from the set of m+ n− 1 total possible positions, encompassing
both vertices and dividers. This can be represented by the binomial coefficient

v =
(
m+n−1
n−1

)
which counts the number of ways to choose n− 1 positions out of the m+ n− 1 total po-

sitions. In conclusion, this formula accurately represents the number of ways to redistribute
m number of chips among n number of vertices in any Chip-Firing Game labeled with G.

■

Although there are several configurations to redistribute chips among neighboring vertices,
the most common configuration is diffusion. In diffusion, the chips are redistributed evenly
and simultaneously among neighboring vertices. At each step, each vertex sends a chip to
each of its poorer neighbors. In order to maintain consistency, the values of vertices can be
negative, although such a thing is not possible in real life.

Definition 2.5. A configuration is the assignment of integer values to the vertices of a
graph.



4 ADANUR NAS

Proposition 2.6. Two configuration sequences are isomorphic if, within the period, the
corresponding steps only differ by an addition of some constant to each stack size.

Proof. If there are no restrictions or additional rules, there are infinite ways to assign values
to vertices. That is, we can assign any integral value to any vertices and have infinite number
of different configurations for any Chip-Firing Game. To visualize, we will assume that we
have a Chip-Firing Game with 4 vertices and 3 edges. When we fire it, we obtain this
configuration sequence:

2 4 1 1 3 2 2 1

Now, we will add 1 chip to each vertices of our Chip-Firing Game and fire the same vertex.

3 5 2 2 4 3 3 2

Therefore, this visualization shows that adding or subtracting a constant number of chips
to each stack does not affect the relative differences between the chip counts on the vertices
[11]. This is because adding or subtracting a constant value to all vertices simply shifts the
entire configuration uniformly without altering the relative distribution of chips among the
vertices.

■

2.2. Pre-Positions. As much as it can be played by redistributing chips among neighboring
vertices, the Chip-Firing Game can also be played backwards, resulting in obtaining the
previous configuration sequences of that Chip-Firing Game. These previous configuration
sequences are often called as the pre-positions of that Chip-Firing Game.

Example 2.7. To visualize, we will assume that we have a Chip-Firing Game with 6 vertices
and 7 edges.
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Instead of allowing vertices with more chips than their neighbors to send their chips, we
will reverse the process and enable vertices with fewer chips than their neighbors to send their
chips instead. Thus,
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if we apply diffusion and allow vertices to obtain negative values to maintain the consis-
tency.

This example shows that pre-positions represent the state of the chip distribution on
the graph before the game starts, and therefore, every Chip-Firing Game has at least one
pre-position.

2.3. Periods in Chip-Firing Games. A period of a Chip-Firing Game is the property of
the configuration sequence of chips on that graph. That is, the period of a configuration
sequence represents the smallest positive integer such that after repeating the configuration
sequence that many times, the configuration of chips returns to its original state. Thus, the
period refers to the repetition of the configuration sequence, not the firing sequence itself.

Example 2.8. We assume that we have a Chip-Firing Game with 5 vertices and 4 edges.
Its initial configuration is

0 4 2 0 3

Now, we will use diffusion and investigate how many unique configurations we need to
identify before we find the period of our Chip-Firing Game.

1 2 2 2 2

2 1 2 2 2

1 3 1 2 2

2 1 3 1 2

1 3 1 3 1

2 1 3 1 2
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1 3 1 3 1

2 1 3 1 2

Therefore, our Chip-Firing Game has a period of 2, which starts with the configuration
2-1-3-1-2, and 3 unique configurations to reach that period.

As this example depicts, how many unique configurations, or positions, we need to iden-
tify before we reach the period depends on the initial configuration of our Chip-Firing Game.

Moreover, we do not need to always go forward and only use positions to find the period.
We can also use pre-positions to find the period because using diffusion while investigating
the pre-positions of the Chip-Firing Game allows us to assign negative integer values to
vertices. This flexibility in assigning values evidences that there are infinitely many unique
pre-positions to any Chip-Firing Game. This finding is particularly essential for investigating
periods in Chip-Firing Game since we will need to understand the properties of the initial
configuration of the particular Chip-Firing Game we are investigating [4].

3. Properties of Chip-Firing Game

Over the course of 40 years of its history, Chip-Firing Game has been investigated and
expanded by various mathematicians. Not only mathematicians, but also many physicists
and economists frequently utilize the Chip-Firing Game since the concept of placing chips on
vertices can be modified to investigate energy distributions, revenue calculations, and many
more [1, 2, 5]. That is, experts can use chips to represent what they are analyzing, such as
each chip equaling to $100 profit made by selling 10 hats. This is also where we can extend
the rule of not assigning any negative integral values to vertices since a negative value would
indicate debt in this context. However, this is a case-by-case situation and should not be
used to generalize other Chip-Firing Games.

Thanks to this nature of the Chip-Firing Game and efforts of various experts, there are
many essential properties of the Chip-Firing Game that had been discovered and studied
on. In this section, we will analyze some of the properties that are highly essential.

3.1. Stability of Chip-Firing Game. The stability of the Chip-Firing Game is a crucial
topic to study since it provides insights into the dynamics and long-term behavior of various
network structures and systems.

Moreover, understanding the stability of the Chip-Firing Game is essential in various fields
such as graph theory, network science, and distributed computing [12]. This topic can help
researchers analyze the stability and resilience of complex networks, such as social networks,
communication networks, and transportation networks [9]. Studying the stability properties
of the Chip-Firing Game enables researchers to obtain valuable insights into the propagation
and spread of information, resources, or influence within a network by analyzing how the
distribution of chips, or resources, evolves over time and whether it reaches a stable config-
uration or continues to fluctuate indefinitely.
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A stable configuration, or stable state, in the Chip-Firing Game occurs when no vertex
in the network has a chip count that exceeds its outgoing degree. That is, each vertex pos-
sesses enough chips to redistribute to its neighboring vertices, maintaining a balance in the
system.

Definition 3.1. Stable state is the state in which no further firing is possible. This state is
also often referred to as a firing-squad or firing-free configuration.

Example 3.2. We will assume that we have a Chip-Firing Game with 6 vertices and 7
edges. The initial configuration for our Chip-Firing Game will be
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0

0

Unlike some of the previous examples, we will not use diffusion in this example. Instead,
we will fire red-colored vertices to blue-colored vertices. Thus,
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Since no other rules are stated nor implemented, such as vertices not being restricted to fire
to all of their neighboring vertices, the firing has stopped, and the configuration has reached
to a stable state. The reason for this is because no vertices has equal amount of or more
chips than their degrees.

3.1.1. Instability of Chip-Firing Game. Even though many researchers focus on the concept
of stability and stable states, the concept of instability is also a crucial topic to further analyze
in Chip-Firing Game. Contrary to a stable state, an unstable state refers to a configuration,
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or state, in which further firing is possible and the chip distribution does not reach a balanced
or stable state [6]. In an unstable state, certain vertices may accumulate an excessive number
of chips, exceeding their degrees. Unstable states indicate a lack of equilibrium, and they
can exhibit unpredictable chip dynamics, making it challenging to determine the long-term
behavior of the system. Unstable states also have crucial properties to investigate.

Example 3.3. In this example, we will again assume that we have a Chip-Firing game with
6 vertices and 7 edges. The initial configuration for our Chip-Firing Game will be
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We will once again do not use diffusion, and red-colored vertices will fire to blue-colored
vertices. Thus,
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With the last firing, we reached an unstable state for this Chip-Firing Game. That is,
after this state, this Chip-Firing Game will never reach a stable state with further firings
because one vertex has a chip count of 0 with a degree of 2, and its two neighboring vertices
at left have chip counts more than their respective degrees. This situation violates the stability
condition, which asserts that no vertex can have more chips than its degree. Therefore, the
chip configuration will continue to fluctuate indefinitely.

However, not all firing sequences for every Chip-Firing Game follow a random pattern
since some of them, while still maintaining an unstable state, can have a cyclic configuration.

Definition 3.4. A cyclic configuration occurs when each vertex has at least the number of
chips as their degrees, resulting in an infinite loop of firings and not allowing the game to
reach a stable state [4].

Example 3.5. We will assume that we have a Chip-Firing Game with 4 vertices and 4
edges. The initial configuration will be

2

2 2

2

In this Chip-Firing Game, each vertex has 2 degrees and the same number of chips. Once
again, red-colored vertices will fire to blue-colored vertices. Thus,
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3 2
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Although rather a simple example, this firing sequences demonstrate how after 4 firings,
the initial configuration repeats itself. Therefore, this Chip-Firing Game has a cyclic config-
uration and will never reach a stable state.

3.1.2. Super-stability of Configurations. The term super-stability refers to the condition where
configurations of a Chip-Firing Game is more stable than other stable configurations [13].
Under the section Fundamentals of Chip-Firing Game, we discussed that addition or
subtraction of the same number of chips to each vertices do not change the relative dif-
ferences between the chip counts on the vertices. However, if we add or subtract different
number of chips from vertices, then we would disrupt its stability state, making it destabi-
lized. Therefore, in comparing two stable states of the same Chip-Firing Game, if one of
them requires more chips to be added or subtracted from it to become destabilized, then we
would call that state the more stable state, or the super-stable state [13].

3.2. Infinite-Finite Structure of Chip-Firing Game. The concept of stability is crucial
to understanding and analyzing the Infinite-Finite Structure of Chip-Firing Game. In the
previous subsection, we have already investigated this structure by making calculations to
find out whether a Chip-Firing Game has a stable state. That is, we investigated whether a
Chip-Firing Game terminates at some point or has additional firing sequences. Therefore,
if it terminates at some point, we find out that the Chip-Firing Game has a finite structure.
However, if it still has possible further firings, then we determine that the Chip-Firing Game
has an infinite structure. To summarize,

(1) If each vertex possesses fewer chips than its degree, then the game has a stable state,
and finite behavior is observed.

(2) If each vertex possesses equal number of or more chips than its degree, then the game
has an unstable state, and infinite behavior is observed.

However, in the previous subsection, to determine the stability of the Chip-Firing Game,
we focused on the relative number of chips possessed by vertices compared to their degrees.
Instead, in this section, we will focus on the relative number of chips compared to the number
of edges [3]. Therefore,

Theorem 3.6. Insufficient chips relative to the number of edges guarantee finiteness, en-
suring the game reaches a stable state.

Proof. We will assume that we have a Chip-Firing Game played on a connected graph labeled
with G with c number of chips, n number of vertices, and m number of edges. For our game,
we will suppose the total number of chips in the game is less than the number of edges, that
is,

c < m

Now, we need to consider the initial configuration of graph G. Since the number of chips
is less than the number of edges, there will always be at least one vertex with fewer chips
than its degree [3].

According to the stability conditions introduced earlier in this subsection, the structure
of the game is infinite if vertices have chips equal to or more than their degree. However,
in this game, we will not extend chip-firing rules. That is, each vertex will fire only it has
chips at least the number of its degree. In this game, there exists a vertex with fewer chips
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than its degree; thus, this vertex cannot fire any chips. Consequently, the chip distribution
remains unchanged, and the game reaches a stable state, resulting in a finite game.

■

Theorem 3.7. If the number of chips is equal to or exceeds the number of edges, an ap-
propriately chosen initial configuration can result in an infiniteness of the game. It never
reaches a stable state under such circumstances.

Proof. We will analyze two conditions:

Condition 1: We will assume that the number of chips is equal to the number of edges.
Thus, the initial configuration will have the same number of chips as the number of edges,
and we can distribute exactly one chip to each vertex in the graph.

Now, we will fire chips from vertices with at least as many chips as their edges. Since
we assumed that each vertex initially has one chip, the firing process can continue indefi-
nitely as long as each vertex has at least one chip to fire [3].

Moreover, if we analyze the contrary situation, the game terminates and reaches a state
where no further chips can be fired. That is, every vertex will have fewer chips than its
edges. However, this situation also contradicts the previous assumption that each vertex ini-
tially had one chip, and we distributed one chip to each vertex. Therefore, the firing process
can continue indefinitely, leading to an infinite structure.

Condition 2: We will assume that the number of chips is greater than the number of
edges. Thus, the initial configuration will have more chips than the number of edges in the
graph. In this case, we cannot distribute exactly one chip to each vertex.

As we already discussed and demonstrated, in the Chip-Firing Game, firing chips from
a vertex decreases the number of chips at that vertex and increases the number of chips at
its neighboring vertices. By using a strategy to fire chips, we can move chips around the
graph and eventually reach a state where the number of chips at each vertex is less than or
equal to the number of its edges.

Once we reach this state, we will apply the argument from Condition 1. Since the to-
tal number of chips did not change and is still greater than the number of edges, we can
distribute exactly one chip to each vertex and continue the firing process indefinitely, leading
to an infinite structure [3].

In conclusion, in both conditions, if the number of chips is equal to or more than the
number of edges, depending on the initial configuration, the Chip-Firing Game can have an
infinite structure.

■

Theorem 3.8. The game is always infinite when the number of chips exceeds twice the
number of edges minus the number of vertices.

Proof. We will assume that our Chip-Firing Game is played on a connected graph, and, at
the beginning of the game, an arbitrary number of chips is placed on the vertices of the
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graph. Furthermore, we will set a couple of rules to distribute the chips among the vertices.
The rules are

(1) If a vertex has at least as many chips as its degree, then that vertex is active [8].
(2) In each firing, an active vertex will fire one chip to its neighboring vertices on a

connected graph.
(3) If a vertex has fewer chips than its degree, then that vertex is inactive [8].

After setting the rules, we will assume that our Chip-Firing Game have a configuration
that satisfies the condition of our theorem. That is, the number of chips will exceed twice
the number of edges minus the number of vertices. Now, we will analyze two conditions:

Condition 1: When there is an active vertex with more chips than its degree: In this
condition, we will start by firing from the active vertex to its neighboring vertices. Since the
number of chips exceeds twice the number of edges minus the number of vertices, at least
one vertex will need to receive more chips than its degree. Therefore, this vertex will become
active.

Condition 2: When all active vertices have exactly as many chips as their degrees : If
all active vertices have the same number of chips as their degrees, firing a chip from any of
these vertices will not change the game’s configuration. Therefore, in this situation, we can
fire chips from inactive vertices or choose any arbitrary vertex to fire chips.

After analyzing those two conditions and repeatedly firing chips according to the rules we
already set, we will see that the number of active vertices will either increase or remain the
same. At each firing, if we have an active vertex with more chips than its degree, the game
will continue indefinitely without terminating.

In conclusion, we proved that when we play the game on a connected graph, there will
always be at least one active vertex as long as the number of chips exceeds twice the number
of edges minus the number of vertices. Therefore, the Chip-Firing Game will never terminate
in this situation, resulting in an infinite sequence of moves.

■
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