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Complex Number

An algebraic number is the root of a polynomial

anz
n + an−1z

n−1 + ...+ a1z + a0 (1)

with rational coefficients while an algebraic integer is where
an ̸= 0. A transcendental number is any non-algebraic number.



Complex Number

If the given polynomial is not equal to 0 with a coefficient that is
also an integer then only is the complex number algebraic (over
Q). Ex. z2 + 1 is irreducible over Q. It has two roots ±i and
degree of 2 which is the algebraic integer

If g(a) = 0, then g is a multiple of fa and if fa(a) = 0 then a is
algebraic and has the smallest degree. Ex. cos 1

7π, cos
3
7π and

cos 5
7π are the roots of the cubic 8z3 − 4z2 − 4z + 1. Polynomial is

irreducible. Roots are degree 3 so algebraic.

A polynomial fa that is irreducible over Q means that it can’t be
factored to have a product of two polynomials and also doesn’t
have fa’s smallest degree. Example. ζ = e2πi/5 is a root of z5 − 1.
This polynomial is reducible since
z5 − 1 = (z − 1)(z4 + z3 + z2 + z + 1)



Complex Number

A polynomial with rational coefficients multiplied by the common
denominator of its coefficients will demonstrate the first claim.
The second statement makes it clear that fa exists; if g(a) = 0,
then dividing g by fa produces

g(z) = fa(z)q(z) + r(z) (2)

r(a) = 0. However, because r is the zero polynomial since it has a
smaller degree than fa, g is a multiple of fa. So each polynomial is
a factor of the other if there are two polynomials with the
minimal-degree property, the uniqueness of fa follows. If fa = gh is
properly factored, then either g or h has a as a root, which
contradicts fa minimality. This is how irreducibility is
demonstrated.



Complex Number

Looking back to the second complex number slide, the polynomial
fa and the degree of an algebraic number is equal to a minimal
polynomial. Note that algebraic numbers and algebraic integers are
not the same thing though. Algebraic integers are a type of
algebraic number in which minimal polynomial coefficients are
rationals.



Gauss’ Lemma
If f factors in Q[x], then it must also factor in Z[x].

Proof.
Think about if we had to prove if 10 is a quadratic residue or
quadratic non-residue modulo 23
The first thing to do is examine the given information which in this
case are these 11 numbers:

1.
(1) (10), (2) (10), (3) (10), (4) (10), (5) (10), (6) (10), (7) (10),
(8) (10), (9) (10), (10) (10), (11) (10) and when you do the
math the result comes out to these numbers:
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110. Using this list
modulo 23, we get the following final numbers:
10, 20, 7, 17, 4, 14, 1, 11, 21, 8, 18.

Therefore we can see that 5 numbers are greater than 11. So,
(10/23) = (−1)5 = −1. So 10 is a quadratic non-residue modulo
23 since ten is an even number. It would be quadratic residue
modulo if it was an odd number.



Proving polynomials irreducible

Lemma
Eisenstein’s Lemma. f is irreducible over Q if there is a prime p
which satisfies the conditions that p is a factor of a0, a1, . . . ,
an−1, p is not a factor of an, and p2 is not a factor of a0.

Proof.
Suppose that the polynomial is f(x)=7x6 - 9x4+ 6x2 + 15 and the
goal is to prove that it is irreducible over Q. To do this, the first
thing to realize is that prime p is 3 and p/15, p/6, and p/− 9
however p ∤ 7 and p2 which is 9 ∤ 15 so f is irreducible over Q by
Eisenstein’s Lemma.



Eisenstein’s Lemma

Eisenstein’s Lemma simplifies the proof of irreducibility for

f(z) = z5 − 1/z − 1 = z4 + z3 + z2 + z + 1 (3)

Looking at this factored:

f(z + 1) = (z + 1)51/z = z4 + 5z3 + 10z2 + 10z + 5 (4)

We can see that the prime p=5 so f (z + 1) is irreducible and so is
f .



Proving Polynomials Irreducible
Polynomials modulo m are factorized by lowering their coefficients
to m and making sure that fm has a degree n factor over Zm.

Proof.
Think if f = gh that’s where g has degree n. If m is a factor of g ′s
leading coefficient then fm = gmhm, and gm has degree n.

Let f (z) = z3 − 4z2 + 9z + 16 and pick m = 3. We see that

f3(z) = z3 + 2z2 + 1 (5)

If f3 is reducible it should also be factorable. Calculation in Z3

would look like:

f3(0) = 1 , f3(1) = 1 and f3(2) = 2 (6)

Here, f3 is irreducible because it has no roots in Z3 and therefore it
is also not factorable. The polynomial f (z) = 2z2 + 3z + 1 is
reducible over Z but f2(z) = z + 1 so note that we still have to
keep in mind that the leading coefficient f must not have a factor
known as m.



Proving Polynomials Irreducible

Here we talking about an algabraic number denominator and
saying that da is an algebraic integer when d ̸= 0.

Proof.
Assume that:

ana
n + an−1a

n−1 + an−2a
n−2 + ...+ a1a+ a0 = 0 (7)

ak is the integer and an ̸= 0 instead d = an. So that on both sides
we can multiply by an−1

n and get

(ana)
n + an−1(ana)

n−1 + an−2an(ana)
n−2 + ...+ a1a

n−2
n (ana) + a0a

n−1
n

= 0
(8)

This proves that (ana) is an algebraic integer.



Proving Polynomials Irreducible

In an algebraic number denominator, da is an algebraic integer
when d ̸= 0 as mentioned earlier and so d in da is actually the
denominator of a also known as den a.

Going back to lemma 1.2 for example of number 2 where a =
cos1/7π and 8z3 − 4z2 − 4z + 1 = 0 and it states that there is an
algebraic integer at 8z . Though, now it is visible to us that 8z is
not the smallest integer because

(2a)3 − (2a)2 − 2(2a) + 1 = 0. (9)

So, since d = 1 is not attainable as it is not an algebraic integer,
den a= 2.



Proving Polynomials Irreducible

If complex integers had a set S = ak|k ∈ K , and the group of
linear combinations ∑

rkak (10)

with rational coefficients had a limited number of terms over the
field Q, this suggests that rk being a rational coefficient is a vector
space over itself since any field over itself has a vector space.
Similarly, the group of linear combinations∑

mkak (11)

with integer coefficients and a limited number of terms, suggests
that mk is part of the set that forms a group with the operation as
addition and that operation is also commutative.



Proving Polynomials Irreducible
If you have some number of vectors, it is possible to take the vector
space formed by taking all linear combinations of those vectors.

1. So, if x and y are vectors then all numbers in the form ax+by
for a and b real numbers is the span of x and y, which is a
vector space.

2. If a group is generated by some set of elements S, it means
that there is an element g in G and s in S such that every
element of the group is in the form of gs.

Proof.
Every power of a may be expressed as an integral linear
combination of 1, a, a2, ..., an−1, if it is an algebraic number of
degree n. As a result, this set builds the group. On the other hand,
think that the group is made up of n components, p1, p2,..., pn.
Since each of these is an integer linear combination of powers of a,
as are ap1, ap2,..., and apn, we may construct equations for each
of them that look like this:

apk = mk1p1 +mk2p2 + ...+mknpn for k = 1, 2, ..., n (12)



Proving Polynomials Irreducible

If a and B are algebraic, then aB and a±B are also algebraic.

Proof.
Every power of a+B looks like this:

(a+B)k =
k∑

j=0

(k
j

)
ajBk−j (13)

And another way of writing every power of a+B is like this:

(a+B)k =
m−1∑
i=0

n−1∑
j=0

rija
iB j (14)



Proving Polynomials Irreducible

The goal is to show if b is algebraic than 1/b is also algebraic and
that the reciprocal of 1/b is algebraic as well. This is shown by
looking at B as a root of

bnz
n + bn−1z

n−1 + ...+ b1z + b0 (15)

as well as exhibiting a polynomial which has 1/b as a root of

b0z
n + b1z

n−1 + ...+ bn−1z + bn (16)



Proving Polynomials Irreducible

A Complex number B is equivalent to the root of a polynomial

anz
n + an−1z

n−1 + ...+ ab1z + a0 (17)

with algebraic coefficients and B is an algebraic number when
an ̸= 0. B is an algebraic integer when there is a root B of a
non-zero polynomial

zn + an−1z
n−1 + ...+ ab1z + a0 (18)

who has algebraic integer coefficients.



Proving Polynomials Irreducible

The goal here is to see how the complex number B can be written
as linear expressions with rational coefficients

am0
0 am1

1 ...amn−1
n−1 Bm (19)

The conditions that the exponents of linear expressions with
rational coefficients satisfy are for all k this:

0 ≤ mk < dk (20)

And this:
0 ≤ m < n (21)

So the conclusion of the vector space of B is just looking at
expressions such as

d0d1...dn−1n (22)

it can be told that B is algebraic and it is also a basis for finitely
many expressions like the one above.



Transcendental Numbers

Joseph Liouville was the first person to try to show that e is not an
algebraic number, its actually a transcendental number. He wasn’t
exactly to prove this exact statement however, he was able to
provide examples of transcendental numbers to show that they do
indeed exist. Though, a few decades later a man named Georg
Cantor was able to prove the existence of transcendental numbers
by showing examples of them being more complicated and big
numbers then algebraic numbers.



Transcendental Numbers

Transcendental numbers exist.

Proof.
If Z is countable then S is also going to be countable. Looking at a
Z(z) to S function of an ̸= 0

anz
n + an−1z

n−1 + ...+ a1z + a0 → (an, an−1, ..., a1, a0) (23)

it can be seen that Z(z) is countable.



Example

(algebraic numbers) = ⋃
f ∈Z [z]

Sf

Going back to Liouville’s methods, the goal is to approximate real
numbers by rational numbers by choosing p and q:

|a− p/q| (24)

A real number a approximates to order s if c and the inequality

|a− p/q| < c/qs (25)

satisfies the rational numbers p and q.



Transcendental Numbers

Note that s is probably going to be an integer, its not guaranteed
though it is likely to be that way. Also a is usually well
approximable when s is big instead of small. Let’s look at this
number:

a =
∞∑
k=0

10−2k (26)

This has been proved to be irrational.



Transcendental Numbers

If we use rationals p and q and the variable we use to measure
everything is

q=102
m

(27)

we can also see that in particular terms of p and q as well as a
being the approximable variable

|a− p/q| = 1
102m+1 +

1
102m+2 + ... < 2

102m+1 = 2
q2 (28)

Therefore it is visible that a is approximable to order 2.


