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Abstract. In this paper we will be discussing the existence of algebraic and transcendental

numbers in number theory. We will first discuss some definitions to better explain these

terms. Then, provide examples of each definition. As well as state important theorems

relating to irrationality and transcendence in number theory and provide examples of those

as well.
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2. Introduction

Number theory is the study of numbers and integers and two main types of numbers which

are also referred to as complex numbers are called Algebraic and Transcendental numbers.

These are the types of numbers that are studied in this paper. First we go over the definitions

of these numbers as well as go over the conditions of what a polynomial needs to have in

order to be considered as an algebraic or transcendental number. We also take a look at the

Gauss’ Lemma and Eisenstein’s Lemma to prove irreducibility within polynomials. After

this we solely focus on the closure properties of Algebraic numbers. Then, we introduce

transcendental numbers by stating some history about the people involved in proving that

a number can be transcendental because it was certainly more difficult than proving that
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an algebraic number exists. So, we will also explain how mathematicians like Liouville and

Cantor proved this. Lastly, we will talk about the irrationality of ζ and the prime number

theorem as it is an essential theorem in number theory. Side note: all the information stated

in this paper comes from Chapter 3 in ”Irrationality and transcendence in number theory

textbook by David Angell.”

3. Preliminaries

Definition 3.1. An algebraic number is the root of a polynomial

(3.1) anz
n + an−1z

n−1 + ...+ a1z + a0

with rational coefficients while an algebraic integer is where an ̸= 0. A transcendental

number is any non-algebraic number.

Lemma 3.2. (1) If the given polynomial is not equal to 0 with a coefficient that is also

an integer then only is the complex number algebraic (over Q).

Example. z2 + 1 is irreducible over Q. It has two roots ±i and degree of 2 which is

the algebraic integer

(2) If g(a) = 0, then g is a multiple of fa and if fa(a) = 0 then a is algebraic and has

the smallest degree.

Example. cos 1
7
π, cos 3

7
π and cos 5

7
π are the roots of the cubic 8z3 − 4z2 − 4z + 1.

Polynomial is irreducible. Roots are degree 3 so algebraic.

(3) A polynomial fa that is irreducible over Q means that it can’t be factored to have a

product of two polynomials and also doesn’t have fa’s smallest degree.

Example. Example. ζ = e2πi/5 is a root of z5 − 1. This polynomial is reducible since

z5 − 1 = (z − 1)(z4 + z3 + z2 + z + 1)
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Proof. A polynomial with rational coefficients multiplied by the common denominator of its

coefficients will demonstrate the first claim. The second statement makes it clear that fa

exists; if g(a) = 0, then dividing g by fa produces

(3.2) g(z) = fa(z)q(z) + r(z)

r(a) = 0. However, because r is the zero polynomial since it has a smaller degree than fa, g is

a multiple of fa. So each polynomial is a factor of the other if there are two polynomials with

the minimal-degree property, the uniqueness of fa follows. If fa = gh is properly factored,

then either g or h has a as a root, which contradicts fa minimality. This is how irreducibility

is demonstrated.

□

Definition 3.3. Looking at lemma 1.2, the polynomial fa and the degree of an algebraic

number is equal to a minimal polynomial. Note that algebraic numbers and algebraic integers

are not the same thing though. Algebraic integers are a type of algebraic number in which

minimal polynomial coefficients are rationals.

Lemma 3.4. Gauss’ Lemma. If f factors in Q[x], then it must also factor in Z[x].

Proof. Think about if we had to prove if 10 is a quadratic residue or quadratic non-residue

modulo 23

The first thing to do is examine the given information which in this case are these 11

numbers:

(1) (1) (10), (2) (10), (3) (10), (4) (10), (5) (10), (6) (10), (7) (10), (8) (10),

(9) (10), (10) (10), (11) (10) and when you do the math the result comes out to these

numbers: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110. Using this list modulo 23,

we get the following final numbers: 10, 20, 7, 17, 4, 14, 1, 11, 21, 8, 18.

Therefore we can see that 5 numbers are greater than 11. So, (10/23) = (−1)5 = −1. So

10 is a quadratic non-residue modulo 23 since ten is an even number. It would be quadratic

residue modulo if it was an odd number. □
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4. Proving polynomials irreducible

Lemma 4.1. Eisenstein’s Lemma. f is irreducible over Q if there is a prime p which satisfies

the conditions that p is a factor of a0, a1, . . . , an−1, p is not a factor of an, and p2 is not

a factor of a0.

Proof. Suppose that the polynomial is f(x)=7x6 - 9x4+ 6x2 + 15 and the goal is to prove

that it is irreducible over Q. To do this, the first thing to realize is that prime p is 3 and

p/15, p/6, and p/ − 9 however p ∤ 7 and p2 which is 9 ∤ 15 so f is irreducible over Q by

Eisenstein’s Lemma.

□

Example. Eisenstein’s Lemma simplifies the proof of irreducibility for

(4.1) f(z) = z5 − 1/z − 1 = z4 + z3 + z2 + z + 1

Looking at this factored:

(4.2) f(z + 1) = (z + 1)51/z = z4 + 5z3 + 10z2 + 10z + 5

We can see that the prime p=5 so f(z + 1) is irreducible and so is f .

Lemma 4.2. Polynomials modulo m are factorized by lowering their coefficients to m and

making sure that fm has a degree n factor over Zm.

Proof. Think if f = gh that’s where g has degree n. If m is a factor of g′s leading coefficient

then fm = gmhm, and gm has degree n. □

Example. Let f(z) = z3 − 4z2 + 9z + 16 and pick m = 3. We see that

(4.3) f3(z) = z3 + 2z2 + 1
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If f3 is reducible it should also be factorable. Calculation in Z3 would look like:

(4.4) f3(0) = 1 , f3(1) = 1 and f3(2) = 2

Here, f3 is irreducible because it has no roots in Z3 and therefore it is also not factorable.

Example. The polynomial f(z) = 2z2 + 3z + 1 is reducible over Z but f2(z) = z + 1 so note

that we still have to keep in mind that the leading coefficient f must not have a factor known

as m.

Lemma 4.3. Here we talking about an algabraic number denominator and saying that da is

an algebraic integer when d ̸= 0.

Proof. Assume that: □

(4.5) ana
n + an−1a

n−1 + an−2a
n−2 + ...+ a1a+ a0 = 0

ak is the integer and an ̸= 0 instead d = an. So that on both sides we can multiply by an−1
n

and get

(4.6) (ana)
n + an−1(ana)

n−1 + an−2an(ana)
n−2 + ...+ a1a

n−2
n (ana) + a0a

n−1
n = 0

This proves that (ana) is an algebraic integer.

Definition 4.4. In an algebraic number denominator, da is an algebraic integer when d ̸= 0

as mentioned earlier and so d in da is actually the denominator of a also known as den a.

Example. Going back to lemma 1.2 for example of number 2 where a = cos1/7π and 8z3 −

4z2 − 4z + 1 = 0 and it states that there is an algebraic integer at 8z. Though, now it is

visible to us that 8z is not the smallest integer because

(4.7) (2a)3 − (2a)2 − 2(2a) + 1 = 0.

So, since d = 1 is not attainable as it is not an algebraic integer, den a= 2.
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5. Closure properties of Algebraic Numbers

Lemma 5.1. If complex integers had a set S = ak|k ∈ K, and the group of linear combina-

tions

(5.1)
∑

rkak

with rational coefficients had a limited number of terms over the field Q, this suggests that rk

being a rational coefficient is a vector space over itself since any field over itself has a vector

space.

Similarly, the group of linear combinations

(5.2)
∑

mkak

with integer coefficients and a limited number of terms, suggests that mk is part of the set

that forms a group with the operation as addition and that operation is also commutative.

Lemma 5.2. If you have some number of vectors, it is possible to take the vector space

formed by taking all linear combinations of those vectors.

(1) So, if x and y are vectors then all numbers in the form ax+by for a and b real numbers is

the span of x and y, which is a vector space.

(2) If a group is generated by some set of elements S, it means that there is an element g in G

and s in S such that every element of the group is in the form of gs.

Proof. Every power of a may be expressed as an integral linear combination of 1, a, a2, ..., an−1,

if it is an algebraic number of degree n. As a result, this set builds the group. On the other

hand, think that the group is made up of n components, p1, p2,..., pn. Since each of these is

an integer linear combination of powers of a, as are ap1, ap2,..., and apn, we may construct

equations for each of them that look like this:

(5.3) apk = mk1p1 +mk2p2 + ...+mknpn for k = 1, 2, ..., n
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mkjpj has a non-zero solution thus the determinant

a−m11 −m12 ... −m1n

−m21 a−m22 ... −m2n

−mn1 −mn2 ... a−mnn

is zero. □

Theorem 5.3. If a and B are algebraic, then aB and a±B are also algebraic.

Proof. Every power of a+B looks like this:

(5.4) (a+B)k =
k∑

j=0

(
k
j

)
ajBk−j

And another way of writing every power of a+B is like this:

(5.5) (a+B)k =
m−1∑
i=0

n−1∑
j=0

rija
iBj

□

Proof. The goal is to show if b is algebraic than 1/b is also algebraic and that the reciprocal

of 1/b is algebraic as well. This is shown by looking at B as a root of

(5.6) bnz
n + bn−1z

n−1 + ...+ b1z + b0

as well as exhibiting a polynomial which has 1/b as a root of

(5.7) b0z
n + b1z

n−1 + ...+ bn−1z + bn

□

Theorem 5.4. A Complex number B is equivalent to the root of a polynomial

(5.8) anz
n + an−1z

n−1 + ...+ ab1z + a0
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with algebraic coefficients and B is an algebraic number when an ̸= 0. B is an algebraic

integer when there is a root B of a non-zero polynomial

(5.9) zn + an−1z
n−1 + ...+ ab1z + a0

who has algebraic integer coefficients.

Proof. The goal here is to see how the complex number B can be written as linear expressions

with rational coefficients

(5.10) am0
0 am1

1 ...amn−1
n−1 Bm

The conditions that the exponents of linear expressions with rational coefficients satisfy are

for all k this:

(5.11) 0 ≤ mk < dk

And this:

(5.12) 0 ≤ m < n

So the conclusion of the vector space of B is just looking at expressions such as

(5.13) d0d1...dn−1n

it can be told that B is algebraic and it is also a basis for finitely many expressions like the

one above. □

6. Transcendental Numbers

Joseph Liouville was the first person to try to show that e is not an algebraic number, its

actually a transcendental number. He wasn’t exactly to prove this exact statement however,

he was able to provide examples of transcendental numbers to show that they do indeed exist.

Though, a few decades later a man named Georg Cantor was able to prove the existence
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of transcendental numbers by showing examples of them being more complicated and big

numbers then algebraic numbers.

Theorem 6.1. Transcendental numbers exist

Proof. If Z is countable then S is also going to be countable. Looking at a Z(z) to S function

of an ̸= 0

(6.1) anz
n + an−1z

n−1 + ...+ a1z + a0 → (an, an−1, ..., a1, a0)

it can be seen that Z(z) is countable.

Example. (algebraic numbers) = ⋃
f∈Z[z]

Sf

Going back to Liouville’s methods, the goal is to approximate real numbers by rational

numbers by choosing p and q:

(6.2) |a− p/q|

A real number a approximates to order s if c and the inequality

(6.3) |a− p/q| < c/qs

satisfies the rational numbers p and q.

Note that s is probably going to be an integer, its not guaranteed though it is likely to be

that way.

Also a is usually well approximable when s is big instead of small.

Let’s look at this number:

(6.4) a =
∞∑
k=0

10−2k
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This has been proved to be irrational. If we use rationals p and q and the variable we use

to measure everything is

(6.5) q=102
m

we can also see that in particular terms of p and q as well as a being the approximable

variable

(6.6) |a− p/q| = 1
102m+1 +

1
102m+2 + ... < 2

102m+1 = 2
q2

Therefore it is visible that a is approximable to order 2. □

Lemma 6.2. Have the variables s and q as real numbers alongside a being a real number as

well as c being the number that stays the same.

(6.7) |a− p/q| < c
qs

and

(6.8) 0 < q < Q

We can see that p and q paired integers are used as possible values that satisfy the inequalities.

Proof. P and q paired integers can satisfy the inequalities as it is shown here:

(6.9) qa− c
qs−1 < p < qa+ c

qs−1

□

Theorem 6.3. If a and s are both real numbers just s is positive then that means that a is

approximable to s and again p and q paired integers can satisfy the inequalities as it is shown

here:

(6.10) 0 < |a− p/q| < c
qs
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but also there is a constant c to help p and q.

Theorem 6.4. Have the variables s and t as real numbers alongside a being a real number

as well as c being the number that stays the same.

(6.11) |a− p/q| < c
qt

This shows that a is not approximable to a number > t.

Proof. There is also another constant c that satisfies the inequalities

(6.12) c
qt
< |a− p/q| < c′

qs

in terms of p and q. □

Theorem 6.5. There can be any value that is approximable to the number 1.

Proof. See when c is approximable to 1 in order of q, you get

(6.13) |a− p/q| = |qa−p|
q

≤ 1
2q

< c
q

so that works hence c and almost any rational number can be approximable by 1. □

Lemma 6.6. There is a constant c where a is not approximable to p/q like show here:

(6.14) |a− p/q| ≥ c
q

Proof. Another example of this is:

(6.15) |a− p/q| = |aq−pb|
bq

≥ 1
bq

□

Theorem 6.7. Any rational number is not approximable to any constant number ≥ 1.
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Example. A is approximable to any rational number including 2 like here:

(6.16) a =
∞∑
k=0

10−2k

Theorem 6.8. Just like any rational number can be approximable to 1, any irrational number

can be approximable to 2.

Proof. Take a to be an irrational number and let the rational number be p1 over q1

(6.17) |a− p1
q1
| < 1

Q1q1
< 1

q21

Now let rational number be p2 over q2 and see what we get:

(6.18) 0 < |a− p2
q2
| < 1

q22

And(6.19)

(6.20) |a− p2
q2
| < 1

Q2
< |a− p1

q1
|

So, by this we can see that indeed any rational number can be approximable by 2 as p2
q2
̸=

p1
q1
. □

Theorem 6.9. Roth’s Theorem says that any algebraic number cannot be approximable to

any number > than 2.

Theorem 6.10. If a is algebraic number then a cannot be approximable to any number >

than n.

Proof. So, if let say a is an irrational algebraic number with a degree greater than or equal

to 2 we can see using the Mean Value Theorem which is primarily introduced in Calculus

that:

(6.21) f ′(y) = f(x)−f(a)
x−a
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Now use p and q as the rational numbers and we can see this:

(6.22) f p
q
= −f ′(y)(a− p

q
)

□

Theorem 6.11. If you want to see Liouville’s transcendental number, then this is what it

looks like:

(6.23) λ =
∞∑
k=1

10−k!

Proof. Think that λ has n as a degree.

(6.24) q = 10m!

And(6.25)

(6.26) p = q
m∑
k=1

10−k!

Also because p and q only have one common factor and that is 1 we can see this:

(6.27) |λ− p/q| = 1
10m+1! +

1
10m+2!

+ ... < 2
10m+1!

= 2
qm+1 < 2

qn+1

□

Theorem 6.12. Use p and q as rational integers as well as a be an algebraic number of nth

degree and c being the number that remains the same. This is what it looks like:

(6.28) |qa− p| ≥ c
qn−1

Theorem 6.13. Use g of degree m and c being the number that remains the same as well a

being an algebraic number of nth degree. This is what it looks like:

(6.29) |g(a)| ≥ cm

H(g)n−1
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Proof. The maximum of the conjugates absolute value also known as a in the sequence:

a1, a2, ..., an shows this:

(6.30) a = max|ak|

Above in theorem 1.25 we use H(g) so according to that meaning here we do

(6.31)

|g(ak) < |gm||ak|m + |gm−1||ak|m−1 + ...+ |g1||ak|+ |g0| ≤ H(g)(am + am−1 + ...+ a+ 1)

≤ H(g)(a+ 1)m

for k.

Then seeing d as a denominator for the same sequence looks like this:

(6.32) dmgm(dak)
m + dgm−1(dak)

m−1 + ...dm−1g1dak + dmg0

and we can also see that this is an algebraic integer which is not the number 0. So looking

at this you will also get

N =
n∏

k=1

dmgak

since this also shows an algebraic integer which is not the number 0. □

Theorem 6.14. Use ε of degree m and c being the number that remains the same as well a

being an algebraic number of nth degree. This is what it looks like:

(6.33) |a− ε| ≥ cm

Hεn

7. Irrationality of ζ

Apéry was a French mathematician who explained the irrationality of ζ. He showed that

ζ cannot be a rational integer since it is approximable to any number greater than 1.

Definition 7.1. The ζ means this:

ζ =
∞∑
n=1

1

n3
= 1 +

1

23
+

1

33
+

1

43
+ ...
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Example. Apéry proved that ζ =

lim
n→∞

an
bn

A more easy way to prove this is

ζ − an
bn

=
∞∑

k=n+1

6

k3bkbk−1

and continuing it we see

(7.1) 0 < ζ − an
bn

< c1
b2n

a constant c but it still doesn’t show ζ as being approximable to 2 so to find that, we do

(7.2) pn = 2L3
nan

And(7.3)

(7.4) qn = 2L3
nan

And to define pn and qn we do

(7.5) 0 < |ζ − pn
qn
| < c1

b2n

We have to find a constant s that is approximable to a number greater than 1 so it would

like this:

(7.6) 1
b2n

< 1
qsn

However we don’t know anything about the size of bn so to find that we do it as an example

like this one:

(7.7) λ = 17 + 12
√
2
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and then continuing the same example we get

(7.8) bn
λn/n3/2

seeing that a has a degree n which is infinity and so there are also going be constant c’s that

look like this:

(7.9) c2λn

n3/2 < bn < c3λn

n3/2

Theorem 7.2. The Prime Number Theorem is

(7.10) π(x) ∼ x
logx

as x → ∞

This theorem is used to find the lcm or least common multiple of the first n terms in a

sequence so it would like this:

Ln = lcm(1, 2, ..., n) =
∏
p≥n

pa ≥
∏
p≥n

n = nπ(n)

If c is a constant greater than e then the theorem would look like this;

(7.11) π(n)
n

logn
< log c

And then this:

(7.12) Ln ≤ nπ(n) = eπ(n) logn < cn
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