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Root: a physics question

In June of 1696, John (also known as Johann or Jean) Bernoulli
challenged the greatest mathematicians of the world to solve the following
new problem (Bernoulli, 1696; Goldstine, 1980):
Given points A and B in a vertical plane to find the path AMB
down which a movable point M must, by virtue of its weight,
proceed from A to B in the shortest possible time[Kot14, Chapter

1]
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First steps of solving

In the question, we have:
(1) %mv2 —mgy=20
o dt=4

© di = /(dx)2 + (dy)2 = /1 + ()2 dx
So, we could get v=+/2gy.
Combine all above equations together, we have: dt = —”i/J;—g)Z dx

_ 1 e V)
T—fdt— @f027 dX
Here, we aim to get the minimum value of T.
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This lead to our first definition:

Definition

A functional is an operator that maps functions to real numbers[Kot14,
Chapter 2].

As T is a functional, to solve the problem, calculus of variations is
introduced.

Calculus of Variations July 5, 2022 5/22



References

Introduction Proof of Calculus of Variations 3, ound Information of Optics Applications in Optics

[ Je]

In this section, I'm going to explore the standard forms of calculus of
variations and solve the simplified problem of the curve of fastest descent.

Remember, we have T = \/—fxz R 1+(y dx. To simplify the problem

further (so that we can focus on the maths idea), we can ignore the
constant coefficient ﬁg, and we can define another functional as:

| = X2 vy 1+()/
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Introduce General Function

Also, to make the writing simpler, here we can write \J;E}/ as fly,y; x)
since it is a functional with variations y and y/ and is also indirectly

relevant to x.

Now, let's start with a more general form of functional. Suppose we have:

I= [2 fly,y;x) dx

Suppose we are calculating the minimum.
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Lead into a Parameter

Suppose the function y for minimum /is y(0, x), where e = 0 and x is the
independent variable. To vary y by varying ¢, we can define y as

y(e,x) = ¥(0, x) + en(x), where n(x) is an arbitrary continuous function
about independent variable x.

For any none-zero ¢,  would be larger.
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00 000

We have to satisfy the boundary conditions, y(e, x1) = ¥(0, x;) and

y(€, x2) = ¥(0, x2), as the distortion of function y should not affect the
initial position A and final position B in this context (recall the description
at the beginning of the essay!), and similar boundary conditions should be

recognized in other problems of calculus of variations. So, we have
boundary conditions:

n(x1) =0 and n(x2) = 0.

¥y
(¥, ¥2)
y(x) : ;

*x1,1) y(x) +en(x)
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Here we can see [ is now only dependent with a single parameter e.
To make the minimum /, as in normal case of functions, we should have
extreme when € = 0. Thus, the equation should hold:

% |6=0: 0.

Simplify the equation. As in a classic mechanic system, the partial
differentials must be continuous, which makes the order of differential and
integral matter little, we have:

e = be Lo fe:x), ¥ (e.x)i ) dx = [72 FAye. %), ¥/ (€,%); x) dx
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Differentiate /

Then, we can apply chain rule in the partial differential, and we get:

8l _ (x2(0fdy | Of 0y
5 = Lo (55t + 57 3) dx.

We have:

& =n(x
W =D (y(0,x) +en(x) = n/(x)
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To cancel out 7/(x), we can expand f Al '(x) dx using integral by parts.

Thus, let u= aayf and dv=1/(x) dx, and we can deduce:
f;? 88}57)’( x) dx = f;(z udv=[uv]2 - fx2 vdu=
[ayn(x) X )f :/i ay)n( x) dx
Recall the boundary conditions. We have:

(55012 = n(xa) 55 [ —n02) S 1=

Then, we have:

al __ [x2 Of X2 d 6f
m - lez Wn(x) dX— fxlz d_X a_yl f ay dx a}/ )]n(x) dX
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Since 7(x) is an arbitrary function, when % =0, we have:

And it is the so-called Euler-Lagrange equation. Note that it is only a
necessary condition for / to be an extreme value. Thus, the solution of the
Euler-Lagrange equation may not yield the minimizing curve. Ordinarily
we must verify whether or not this solution yields the curve that actually
minimizes the integral, but frequently physical or geometrical
considerations enable us to tell whether the curve so obtained makes the
integral a minimum or a maximum[CHOO03, Chapter 8|.
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The Solution to the Curve of Fastest Descent

Recall that:
x2 /1+H(Y)?
I: 02 T dX
1 2
%) = X2

When the Euler-Lagrange equation holds, we have d%(aa—yf) = g—;.

9 VIHY)? 1y

R RN

g0y - AP0 ) ey
y2 (L+(y))?

3
F=—3V1+ ()2 y 2,
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The Solution to the Curve of Fastest Descent

LHS = [ 202 = [ by d(1+ (V)?) = (1 + (¥)?);
RHS=—f}%}/=—|ny+Ink.

So,
(V)P=t-1.

y:%:q/ﬁ
\/kzydy=:|:dx

Thus, we can get:
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The Solution to the Curve of Fastest Descent

Let y = £(1 — cosu), so dy = &sinu du. We have:

Vi A= 5(1 — cosu) du

X(1 — cosu) du = %dx
[ 5(1 —cosu) du=+ [ dx
x= :I:g(u — sin u) + const.

Thus,

Recall the boundary condition that when y=0i.e, u=0, x=0, so
const = 0.
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The Solution to the Curve of Fastest Descent

The Parameter Equations of the Curve of Fastest Descent

{x = a(f —sinf)

y=a(l — cosf)
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In the geometric optics, we have the well known theorem of Format
Principle.

The optical length of the path followed by light between two fixed different
points is the global minima. The optical length is the physical length
multiplied by the refractive index of the medium.

In this way, the minimum of time is converted to the minimum of
%ffn ds, which can be defined as optical path length.

Definition

The optical path length S of a ray from A to B is defined following integral
S= % i) f n ds, related to the travel time T by S = cT [RGGA20, Chapter
2.5].
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Law of Reflection:
sinfy = sinfy, i.e., 01 = 0>
Law of Refraction:
nysinf1 = nysin 6y
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Let the movement of the light ray g = g(7) in the (7, q) — plane. Let n(q)
be the index of refraction at the point q[EZ04].

If we introduce L(q,q¢,7) = ch)\/l + (¢')?, we can apply the conclusion
of calculus of variations to get the condition needed to satisfy Fermat's
principle:
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Thus we have the Euler-Lagrange equation in the optical case as:
d_nd  _ 2 9n
o ey~ VIO 5

To simplify notations we choose the units of measurement so that ¢ = 1.
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We can also intrduce the Hamiltonian canonical equations into optics.
Also, thus methods can be applied to solve problems like the optical fibers.
All these are discussed in my paper! And | hope you can enjoy it.
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