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Abstract. The paper explores three stages of evolution – replication, selection, and mu-
tation – using differential equations and probability models. The relationships between the
population size and time are revealed by solving the differential equations. The probability
models give the probability for one type of population to dominate the whole. The dy-
namics of these biological processes are visualized upon the discussion of simplices and the
simplicial complex. At the end of this paper, two linear regression methods are introduced
to help compute the numerical value of fitness, one of the critical components of the models
discussed throughout the paper.

1. Introduction

We can split the topic ”Evolutionary Dynamics” into two parts – evolution and dynamics.
What is evolution? How are dynamics involved in the processes of evolution? I asked myself
these questions, and I believe those are questions people ask when they first hear the topic.
Evolutionary Dynamics is a broad topic that studies how biological creatures evolve over
time. The evolution could be due to linguistic changes, cultural changes, etc. As far as
biologists are concerned, evolution mainly involves three processes: replication, selection,
and mutation; where replication refers to the process individuals reproduce, selection refers
to the case that one individual is chosen to evolve towards one particular direction, and
mutation means the change of type of individual as a result of the change in things like DNA
sequence. The dynamics come after evolution; it reveals the interaction among different
population types as each evolves. Therefore, it is important for us to discuss evolution first
so that we can dive deeper into the dynamics part. For the sake of simplicity, most of our
discussions are limited to two types of individuals.

Though we can describe the three processes of evolution in words as we did above, math-
ematics enables us to express each of them explicitly. From a deterministic view of the
topic, we can use continuous mathematics, the equations, to show the relationship between
population size and time. In the simplest case, we can use the exponential growth model
to show how one individual could reproduce repeatedly. The rate at which an individual
grows depends on the numerical value of fitness, the reproductive success, of the population
that individual belongs. By solving the differential equation of the growth, we could show
how the size of the population can approach infinity as time goes to infinity. Additionally,
since some individuals would die while some reproduce, we can compare the death rate with
reproductive success, thus exploring the destination of the population as time passes long
enough. However, it is not possible for a type of individual to reproduce endlessly if the
reproductive success is greater than the death rate because one given environment would
have limited nutrients to feed and finite resources for individuals to rely upon. Therefore,
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the maximum carrying capacity – the maximum number of individuals that one environment
could contain – is introduced to our discussion, and we are able to express the relationship
between the size of the population and time using the logistic model. Similarly, we are able
to use differential equations to express the process of selection and mutation by exploring
the factors that affect the rate of change in population size.

More than showing the evolution with mathematical equations, we can also use simplices to
visualize the evolution. We can use a 1-simplex line segment to show the change of population
structure between two types of the population; a 2-simplex filled triangle can do the same
for three types of individuals; and a 3-simplex tetrahedron could be used to represent the
case for four types of individuals. Suppose we are discussing a more complicated case that
involves more than four types of population. In that case, we can use simplical complex to
show the relationship among all different types of population. The discussion of simplices
helps us visualize the evolutionary changes and make the problem more manageable. It
would sometimes be difficult to use equations to express the evolution of many different
types of individuals. The discussion of evolution using simplices enables us to show that
population structure could evolve over time due to factors that affect the evolution of each
type of individual involved, so the dynamics underlying evolution could be represented using
simplices.

Besides the deterministic view of evolution, we can also view the Evolutionary Dynamics
discretely, using probability. Based on the Moran Process that tells the principle of evo-
lutionary selection, we can use two probability models to compute the probability for one
type of individual to dominate the whole population. The first one uses a transition matrix
to represent the probability for one individual to be chosen for reproduction, elimination,
or not. We can interestingly find an arithmetic sequence to represent the probability for
an individual to dominate and conclude the probability for one individual to dominate at
any starting position. In the second model, variables are frequently used to simplify the
expressions. We can use the variables introduced to represent the probability for one type of
individual to dominate. The probability could be expressed by the fitness of that population
if we take one step further to consider fitness in our second model.

Finally, since fitness is often mentioned in the models throughout the paper, I describe two
different computational methods to compute the fitness of one specific population using linear
regression – one is the gradient descent algorithm commonly used in machine learning, and
the other is the Ordinary Least Square (OLS) technique that gives a closed-form solution
of the best-fit line for the given dataset. The advantages and disadvantages of each are
evaluated at the end of the method description. Also, a comparison between the two is
made to clarify the differences.

2. Replication

Among three biological processes – replication, selection, and mutation – replication is the
most important. It is the basis for the latter two. Therefore, introducing the mathemati-
cal representations of replication can lay a foundation for understanding the mathematical
models in later sections of this paper.

2.1. Replication without Constrains. The simplest case of replication is unbounded
replication, meaning the population could grow forever. Suppose there is an environment
for one population to grow, which means there is no disease that would cause death, no
lack of food that would cause the lack of nutrients, and, ideally, every individual is capable
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of reproducing. Assume that time is measured in days; the population would grow at a
rate r in such a perfect environment, which means the population would go through the
reproduction process r times each day. Let x(t) denote the size of population at time t. We
can use the differential equation below to represent the rate of reproduction for the whole
population [Now06, Chapter 2.1]:

(2.1.1)
dx

dt
= rx.

By equation (2.1.1), the following computation could be carried out to find the original
exponential growth equation for the given population.

Firstly, divide both sides of the equation by x and multiply each side by dt.

dx

x
= r dt.

Then, take the integral of both sides and solve for the equation.∫
1

x
dx =

∫
r dt

log(x) = rt+ C.

Exponentiating both sides of the equation, the general solution for the differential equation
is obtained.

(2.1.2) x(t) = ert+C .

where C is an arbitrary constant.
Before replication taking place, the original population size could be denoted by x0 at

time t = 0. Therefore, the size of population whose rate of reproduction is r is solved for to
be following equation:

(2.1.3) x(t) = x0e
rt.

To better illustrate this model, let us consider how bacterial cells divide [Now06]. For a
bacterial cell that lives perfectly with all nutrients needed for growth, cell division would take
place as few as every 20 minutes [Jet15]. Therefore, in every 20 minute, one bacterial cell
would divide into 2 daughter cells, the next generation of the bacterial cell family. Therefore,
the cell division could take place at 72 daily (24 ∗ 60/20 = 72). The total number of cells
after one day span could be expressed as x0e

216, given that the initial number of parent cells
is x0.

2.2. Bounded Replication. The unbounded reproduction is very idealized and it would
not actually take place in reality. In real life, some individuals reproduce yet some die.
Suppose the natural death rate for a particular population is d, we would have the following
differential equation to represent the rate of change of population size [Now06, Chapter 2.1]:

(2.2.1)
dx

dt
= (r − d)x.

Following a similar computation to the derivation of equation that represent the population
size at given time t, the solution to the differential equation is

(2.2.2) x(t) = x0e
(r−d)t.

In this case, we can use the reproductive ratio, r/d, to show if the size of the population
would expand or contract, in which r means growth rate and d represents death rate. The
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ratio shows how many offspring each individual is expected to have, and the death rate d
reveals that the average lifespan for an individual within the population is 1/d. It is clear
that if r/d < 1, then the growth rate r is less than the death rate d. Therefore, more
proportion of the given population would die than the proportion of the population that
would reproduce. Over time, the whole population would die out, given that nothing has
changed. Conversely, if r is greater than d, more individuals are reproduced than those who
die. As a result, the total population would expand over time.

However, does r > d mean the population would grow indefinitely, as the model explained
in 2.1 that grows exponentially? Ideally, it will, if there are infinitely much food and no
predators and diseases. Yet, in reality, the indefinite growth seems unreasonable. The
population will not grow forever and cannot do that either. In real life, the population
has finite resources to rely upon. If the population size grows large enough, there will
surely be competition for resources occur. Consequently, there exists a maximum number of
population, technically called maximum carrying capacity, that the population size cannot
grow further. Suppose the carrying capacity for one specific population is K, with the
initial population size x0, the number of individuals for that population at time t could be
represented by the logistic equation as following [Now06, Chapter 2.1]:

(2.2.3)
dx

dt
= rx(

1− x

K
)

where r represents the rate of reproduction and population size is denoted by x.
As the population size x increases, the rate of change of population dx/dt decreases and

eventually becomes 0 when x = K, which explains why the population size would not expand
further as the number of individuals hits carrying capacity K. We could use the following
computation to find the relationship between population size x and time t.

dx

dt
= rx(

1− x

K
) = −rx(

x− 1

K
)

Multiply each side of the equation by dt, we have

dx = −(
rx(x− 1)

K
) dt.

Dividing both sides by −x(x−1)
K

, we have

− K dx

x(x− 1)
= r dt.

Taking the integral on both sides, we then have∫
− K dx

x(x− 1)
=

∫
r dt.
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By observation, we can see 1/x(1 − x) = 1/(x − 1) − 1/x, so we can compute the next
steps using integration by partial fractions

−K

∫
(

1

x− 1
− 1

x
) dx =

∫
r dt

K(log(x)− log(x− 1) = rt+ C

K log(
x

x− 1
) = rt+ C.

Exponentiating both sides of the equation above and changing the ordering of the equation,
we can get the general solution of x(t)

(2.2.4) x(t) =
ert+C/K

ert+C/K + 1
.

where C is an arbitrary constant.
In our case, since x(t) = x0 at t = 0 and x(t) = K when t → ∞, it could be concluded

that

(2.2.5) x(t) =
Kx0e

rt

K + x0(ert − 1)
.

3. Selection

Beyond single population reproduction, selection would take place when more than one
type of population exists in one given environment. Due to their different adaptations to the
natural environment, different types of individuals would have varied reproduction and death
rates. Consequently, some would eventually die out, while some would flourish, depending
on their survival abilities.

3.1. Selection with unlimited reproduction. To simplify the case, we can first discuss
the scenario in which natural death does not happen. Suppose we have only two types of
individuals competing for resources, A and B. The reproduction rate now could represent the
fitness, the quantitative representation of individual reproductive success, of each population,
as the natural death rate is 0 under our assumption. Denote the size of population A by
x(t), with fitness a, and the size of population B by y(t), with fitness b. The following two
differential equations would hold:

(3.1.1)

dx

dt
= ax

dy

dt
= bx.

As showed previously, the solution to the first differential equation is x(t) = x0e
at and the

solution to the second one is y(t) = y0e
bt. Let us now consider the two equations together.

Let p(t) = x(t)/y(t), which, similar to the reproductive ratio, reveals the relative popula-
tion size between population A and B at any given time t. Differentiate both sides of the
equation, let we can get

(3.1.2)
dp

dt
=

x′y − xy′

y2
= (a− b)p.
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Using the same computation we carried out in 2.1, given that p0 = x0/y0 at t = 0, we can
obtain the following result:

(3.1.3) p(t) = p0e
(a−b)t.

The solution reveals that if a > b, then p tends to grow to infinity, which means A
would out-compete B if t → ∞. Conversely, if a < b is the case, then population B would
out-compete population A, and therefore p converges to zero as t → ∞.

3.2. Selection with limited reproduction. As suggested by the logistic model in 2.2,
each type of individual would hit a maximum carrying capacity that the population size
could not grow beyond. Therefore, the whole environment would have a maximum carrying
capacity as well. We could have the average fitness between two populations denoted by ϕ.
For a better illustration, we can use x(t) now to represent the proportion of population A
in the environment and y(t) to denote the proportion of population B that makes up the
total population in the environment. By our definition to x(t) and y(t), we can conclude
that x+ y = 1 and ϕ = ax+ by because they represent the proportions that range from 0 to
1. In this case, we have the following equations:

(3.2.1)

dx

dt
= x(a− ϕ)

dy

dt
= x(b− ϕ).

By replacing y with 1− x, we have

(3.2.2)
dx

dt
= x(1− x)(a− b).

We would have some critical observations without the need to compute the solution to the
differential equation.

• If a > b, then the rate of change of population A, dx/dt, is always greater or equal
to 0. The reason is that the proportion of population A to the total population of
A+B, denoted by x(t), ranges between 0 and 1. Any positive term of (a− b) would
result in a dx/dt that is greater or equal to 0. As a result, the selection would favor
population A, meaning that the size of population A would grow larger and larger
and eventually dominate the whole ecosystem.

• If a < b, then the opposite situation would happen. Following a similar analysis, we
would conclude that dx/dt is always less than or equal to zero, implying that dy/dt is
always greater or equal to zero. As a result, population B would eventually dominate
the ecosystem, and population A would die out at the end.

• If a = b, then there exists an equilibrium point in between such that the numerical
values of x(t) and y(t) remain the same as time progresses. Both population A and
B are reproducing at the same rate, so their relative proportion would not change
over time.

A BC1 C C2

Figure 1. 1-simplex line segment, σ =< A,B >
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We can use the above 1-simplex, a line segment, to visualize the situation with two types of
population [Now06, Chapter 2.2]. Any point in the line would reveal the relative proportion
of each population to the whole group. Suppose the initial population distribution is at
point C. It is clear to observe that the abundance of population B exceeds the abundance
of population A at time t = 0. If population A reproduces at a faster rate throughout the
time, meaning dx/dt > dy/dt, then at some time, the population distribution would be
represented by C1 and eventually by the endpoint A. Conversely, if dx/dt < dy/dt, then
the population distribution would at some point be represented by point C2, and ultimately
endpoint B. If dx/dt = dy/dt, then the population distribution would remain at point C
on the 1-simplex. It should be clarified that dx/dt and dy/dt can both be greater than zero
if the maximum carrying capacity is not met. Otherwise, one would be positive, the other
would be negative, or both are zero.

4. Population structure with multiple types of individuals

We have shown the methods to represent the reproductive dynamics with at most two
types of different individuals. What if it is the case that there are more than two types of
the population? Suppose xi represents the relative proportion of population i in the given
environment, and fi represents the fitness of that population. Then for all i = 1, 2, ..., n, the
average fitness could be computed by the following equation:

(4.0.1) ϕ =
n∑

i=1

xifi.

Similar to the differential equations in 3.2, the rate of change of population i for all
i = 1, 2, ..., n in thic case would be

(4.0.2)
dxi

dt
= xi(fi − ϕ).

Since there exists a maximum carrying capacity, as discussed before, the total size of the
population would remain the same over time. Therefore,

∑n
1 xi = 1 and

∑n
1 dxi/dt = 0.

If the relative proportion of type i individuals increases, then it means xi > 0, implying
that the fitness of population i is greater than the average fitness of the whole population of
different types.

Graphically, the situation of the reproductive dynamics among three types of population
could be demonstrated by a 2-simplex filled triangle, each vertex represent one type of
population.



8 YOUZE ZHENG

A
B

C

Figure 2. 2-simplex filled triangle, σ =< A,B,C >

The graph has three components: vertices A, B, and C; edges AB, AC, BC, and interior
filled region bounded by the edges. Suppose there are three types of individuals A, B, and
C. We could use a diagram to show three general scenarios.

(1) If the population distribution is represented by the vertex A, then it means as t → ∞,
both population B and C would die out, and only population A remains. Similarly,
vertices B and C represent the situations in that only B exists at the end and only
C survives eventually, respectively. Therefore, if the population distribution is rep-
resented by one vertex, one population dominates the ecosystem.

(2) If the edges represent the population distribution, then it means one type of popu-
lation eventually dies out, and the other two remain in the ecosystem. The relative
proportion of the remaining two types of the population could be represented by the
points on edge, as explained before, which is determined by their fitness relative to
each other. For example, if the edge, or a line segment, AB is used to describe the
population distribution, then type C eventually loses the competition, maybe due
to its relatively lower fitness compared with the other two. Type A and type C
individuals coexists in the ecosystem to share the given resources.

(3) If any point in the interior region is used to represent the population distribution,
then three types of the population would coexist at different proportions, according
to their fitness.

A

B

C

D

Figure 3. 3-simplex tetrahedron, σ =< A,B,C,D >
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Now, let us consider the case when there are four different types of population. Sup-
pose type D is introduced to the environment that type A, B, and C exited before. The
reproductive dynamics could be represented by a tetrahedron, 3-simplex, shown above, com-
bining three 2-simplex triangles. The cases of vertices and edges have been explained in the
2-simplex part. The face of a tetrahedron, or the 2-simplex contained in it, shows some-
thing different than it does in the three-type case. There are two additional representations
involved:

(1) Each triangular face of the tetrahedron represents the coexistence of three types of
individuals, with one other type dying out as t → ∞. For example, in face ABD,
type C individuals do not exist and type A, B, and C individuals each represents a
part of the total population.

(2) Any point inside the 3-simplex tetrahedron σ =< A,B,C,D > represents the case
when all 4 types of the population share the same environment over time. Again, the
proportion of each type depends on the relative fitness to each other.

We have explained how 1-simplex line segment, 2-simplex filled triangle, and 3-simplex
tetrahedron could be used to show the reproductive dynamics among different types of
individuals. We have to mention that 0-simplex, a point, is also a basic representation of
the single type population environment, although there will not be as much dynamic as for
the case of multiple types.

After introducing simplices, we can use the simplicial complex, a set of composed points,
line segments, triangles, and their n-dimensional counterparts [Mat03], to represent an en-
vironment that involves the interaction among even more types of individuals. I would not
explain deeply into the concept but rather give a brief taste of what it is about, as it would
be very complicated to explain and understand. Here is the graph of one arbitrary simplicial
complex, yet containing much information to be analyzed.

A

B

C

D
E

F

G

H

I
J

K

L

Figure 4. Simplicial Complex K

As before, each vertex, or node, in Figure 4 represents one type of population. As inter-
preted before, we could have reproductive dynamics within each simplex in the simplicial
complex K.

What is more complicated is that the dynamics within one simplex would affect the dynam-
ics in the other simplices that are connected with it. Two simplices are connected because
there are one, two, or more types of individuals that live both with some types of individuals
in one simplex and some in the other simplex. Therefore, that common population type
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becomes the medium of the dynamic between two or more simplices. Such connections are
important components of how we explain the reproductive dynamics among multiple types
of individuals using the simplicial complex diagram.

For example, the 0-simplex σ0 =< E > has no connection with any other simplices in
Figure 4. Therefore, this type of individual would not live with any types of individuals
from A to L, but on its own. On the other hand, the 3-simplex σ1 =< A,B,C,D > is
connected with 2-simplex σ2 =< D,F,G >. Therefore, the dynamics among population A,
B, C, andD would affect the population structure. If the dynamics within σ1 move towards
triangle ABC; or edge AB, BC, or AC, then the population proportion of typeD individuals
decreases. Equivalently, the fitness of population type D diminishes. If at one point, the
fitness of the type D population reduces low enough, smaller than both type F ’s and type
G’s, then the reproductive dynamics within σ2 would also approach edge FG or vertices F
and G.

For simplices σ2 and σ3 =< F,H,G >, they share two common types of individuals, F
and G. Therefore, the affect in the change of dynamics in σ2 to σ3 is determined by both
type F and type G individuals.

One interesting case is found among three 1-simplices σ4 =< G, J >, σ5 =< G, I >, and
σ6 =< J, I >. Each is connected with the other two, but they do not form a 2-simplex.
One explanation is that only two of them could live in the same environment, and each
type of individual could only adapt to two of the three existing environments. For example,
suppose type J individuals could live in an environment 1 and 2. Type G population could
live with type J in environment 1 but never in environment 2, but type I individuals could
live with type J in environment 2 but not I. Besides the two environments, there exists
an environment 3 that could accommodate both types G and I. Although three types of
individuals could not live in one environment and interact directly, there will be indirect
interaction among the three due to the interaction between two of them.

The case of 0-simplex analysis would follow the same logic for σ2 and σ3. The shared
population type’s change in fitness in one environment would eventually affect the dynamic
in the other dynamic.

5. Mutation

The last most important biological process is the mutation, which involves the unexpected
change in the DNA sequence that results in a change in population type. If the mutation is
considered, the reproductive dynamic will change slightly, as there would be some individuals
within one population changing to other types and some other types changing to that type.

5.1. Mutation with two population types. Lastly, we can discuss the models of muta-
tion. If there are only two types of individuals, A and B, then the case is straightforward:
some type A individuals would change to type B, while some type B individuals would
join type A due to random mutation. To simplify our discussion, population A and B are
assumed to have equal fitness, which means any reproduction among two population types
will not change the population structure in that given environment. Suppose the mutation
rate for type A population is uA, and the mutation rate for population B is uB. Given the



EVOLUTIONARY DYNAMICS AND ITS REAL-WORLD IMPLICATIONS 11

average fitness of two population types is ϕ, we have the following two differential equa-
tions [Now06, Chapter 2.3]:

(5.1.1)

dx

dt
= x(1− uA) + yuB − ϕx

dy

dt
= y(1− uB) + xuA − ϕy.

where x and y both represent the proportion of each population type among the total pop-
ulation.

By the definition of variables x and y, and our assumption that two population types have
the same fitness, we could have x + y = 1 and ϕ = 1. Therefore, dx/dt could be further
evaluated to

(5.1.2)
dx

dt
= uB − x(uA + uB).

We can follow the computation below to solve for the differential equation.

dx

dt
= uB − x(uA + uB)

x(t) = e−
∫
(uA+uB) dt(

∫
uB e

∫
(uA+uB) dt dt+ C)

= e−(uA+uB)t(
uB

uA + uB

e(uA+uB)t + C)

=
uB

uA + uB

+
C

e(uA+uB)t

where C is an arbitrary constant.

Therefore, we have

(5.1.3) lim
t→∞

x(t) = lim
t→∞

(
u2

u1 + u2

+
C

e(u1+u2)t
) =

u2

u1 + u2

.

As time passes long enough, the population size A converges to u2/(u1 + u2), given that A
has the same fitness as B.

5.2. Mutation with more than two population types. It is often the case that multiple
types of individuals are living in the same environment. Therefore, the direction of mutation
could go anywhere within the given environment. We can use the notation qij to represent
the rate of mutation for which one type i individual would mutate to type j. Therefore, we
can write the mutation dynamics as follows:

(5.2.1)
dx

dt
=

n∑
j=1

xj qji − ϕxi

for all i = 1, 2, ..., n.
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6. Stochastic view of evolution

In the deterministic process of evolution, each variable changes according to the differ-
ential equations we have explained. However, in the stochastic view, evolution takes place
due to random fluctuation, which means there are probabilities for reproduction, death, and
mutation. So we would only have discrete integer numbers of individuals rather than contin-
uous numbers that deterministic models could calculate. For the purpose of the paper, I will
only discuss the stochastic process for reproduction and death and leave mutation, as the
probability of mutation would be complicated to discuss clearly and require much knowledge
in Biology.

6.1. Moran Process. To discuss the stochastic view, we have to introduce Moran Process
first and foremost, which is a simple stochastic model. Named after the Australian geneticist
Patrick Moran, the Moran Process tells that at each time step, a random individual is chosen
for reproduction, and a random individual is chosen for elimination [Now06, Chapter 6.1].
The reproduced individual replaces the eliminated individual, so the total population remains
unchanged. Since the population size is unchanged, the process would end with one type of
individual dominating the whole population.

Suppose there are only two types of individuals, type A and type B, with a total population
size of N . If there are i individuals for type A population, then there are N − i type B
individuals for all i = 1, 2, ..., N . Therefore, the probability that a type A individual is
randomly chosen is i/N . The probability of one type B individual being randomly chosen is
(N−i)/N . As such, we have four different probabilities of randomly choosing two individuals
within the population.

(1) One type A individual is chosen for reproduction, and another type A individual is
chosen for elimination. In this case, the number of type A individuals will not change
because i− 1 + 1 = i and the probability for this is 1/N ∗ 1/N = 1/N2.

(2) One type B individual is chosen for reproduction, and another type B individual
is chosen for elimination. Same as in the previous case, the number of type B
individuals will not change, and the probability for this case is (N−i)/N∗(N−i)/N =
(N − i)2/N2.

(3) One type A individual is chosen for reproduction, and one type B individual is chosen
for elimination. The number of type A individuals becomes i + 1 and the number
of type B individuals becomes (N − i− 1)/N . The probability for this to happen is
i/N ∗ (N − i)/N = i(N − i)/N2.

(4) One type B individual is chosen for reproduction, and one type A individual is chosen
for elimination. Unlike the previous case, the number of type A individuals becomes
i − 1. The probability for this case is the same as before, i(N − i)/N2, as the
probabilities of choosing one individual to reproduce and die are the same.

6.2. Birth-Death Process Model I. The probabilities of change of population structure
could be represented by a N by N transition matrix. Suppose we have a transition matrix
P = [pij], which represent the probability for an individual to move from position i to j, we
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would have the following expressions to represent every entries:

(6.2.1)

pi,i−1 =
i(N − i)

N2

pi,i+1 =
i(N − i)

N2

pi,i = 1− pi,i−1 − pi,i+1 =
(N − i)2

N2

p0,0 = pN,N = 1

p0,i = pN,i = 0

For such a matrix, the sum of each row is one. The reason why p0,0 = pN,N = 1 is because
once i, the number of type A population becomes 0, the number of type A population
cannot increase. Similarly, when i = N , the environment is dominated by the type A
population. Therefore, the type B population could never come back again. So once i = 1
or i = N is reached, the population structure will no longer change and stay forever. This
also explains why p0,i = pN,i = 0, as once one type of population dies out, they cannot
dominate the whole population, not even coming back. The states of i = 0 and i = N are
called ”absorbing states,” meaning that one type of population absorbs the other. The states
when i = 1, 2, ..., (N−1) are called transient states. The population structure will remain at
transient stages for a limited time and eventually reach one of the absorbing states, either
all type A individuals or all type B individuals.

Now that we know the probability of every move in one time step, how can we show
the probability that the population size A starts from i and ends with N? That is a more
specific question we want to ask because we can tell the exact probability for population A
to dominate the whole population, starting from point i.

Here is the way we compute it. Let xi denotes the probability for the number of population
A to change from i to N . Then the probability for population B to dominate is 1− xi.
We would have the following general equations

(6.2.2)

x0 = 0

xN = 1

xi = pi,i−1xi−1 + pi,ixi + pi,i+1xi+1

for all i = 1, 2, ..., (N − 1).
Again, it is impossible for type A individuals to flourish and dominate the whole population

if the starting point i is zero. The starting point of i = N is a guaranteed nomination for
type A individual, given that there is no mutation taking place. For any integer values for
i = 1, 2, ..., (N − 1), the probability of type A population eventually dominate the whole
population would be the sum of 1)the probability of moving from i to i−1 multiplied by the
probability for type A to dominate starting at i− 1, xi−1; 2) the probability of remaining at
the same position i multiplied by xi; 3) the probability of moving from i to i+ 1 multiplied
by xi+1.
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Since pi,i−1 = pi,i+1, as explained before, pi,i = 1 − pi,i−1 − pi,i+1 = 1 − 2pi,i+1. We can
further reduce the expression of xi as below:

xi = pi,i−1xi−1 + pi,ixx + pi,i+1xi+1

xi = pi,i−1xi−1 + (1− 2pi,i+1) + pi,i+1xi+1

2pi,i+1xi = pi,i−1xi−1 + pi,i+1xi+1

for all i = 0, 1, ..., N .

Dividing both sides by pi,i+1, we would get

(6.2.3) 2xi = xi+1 + xi−1

By observation, we can conclude that xi follows an arithmetic sequence, with common
difference d = (xN − x0)/N − 0 = 1/N . Therefore, we can easily conclude that

(6.2.4) xi =
i

N
for all i = 0, 1, ..., N .

6.3. Birth-Death Process Model II. Besides using i/N to represent the possibilities that
type A population would dominate the whole population starting at size i, we have another
method to do the computation – using variables.

We have the exact same three moves as the previous representation for type A population:
from i to i− 1, remain at i, and from i to i+ 1. Denote αi the probability that the number
of type A population would increase by 1, from i to i+1, βi the probability that the number
of type A individuals changes from i to i− 1. So the probability that the number of type A
individuals remains the same is 1− αi − βi. Similar to (6.2.2), we would have the following
three equations:

(6.3.1)

x0 = 0

xN = 1

xi = βixi−1 + (1− αi − βi)xi + αixi+1

for all i = 1, 2, ..., (N − 1).
Let yi = xi−xi−1 for all i = 1, 2, ..., N , which is the difference in probability for population

A to dominate the whole, between two adjacent integer starting numbers. We would have
xi = yi for all i = 0, 1, ..., N . It is interesting that

∑N
i=1 yi = x1−x0+x2−x1+...+xN−xN−1 =

xN − x0 = 1 − 0 = 1. Furthermore, let us denote γi = βi/αi for the purpose of our model
[Now06, Chapter 6.2]. Combining these expressions and (6.3.1), we could get yi+1 = γiyi.
The computation is as following:

xi = βixi−1 + (1− αi − βi)xi + αixi+1

(αi + βi)xi = βixi−1 + αixi+1

βi(xi − xi−1) = αi(xi+1 − xi)

βiyi = αiyi+1.

Dividing two sides of the equation by αi, we would get

(6.3.2) yi+1 =
βi

αi

yi = γiyi =
i∏

k=1

γkx1
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for all i = 1, 2, ..., (N − 1).
In case i = 1, we have y2 = γ1y1 = γ1x1. From this equation, we can also get y1 = x1

by dividing each side of γ1y1 = γ1x1 by γ1. For i = 2, we can get y3 = γ2y2 = γ2γ1x1. The
next terms of yi for i = 3, 4, ..., N could be computed as well. By inspection, every term of
yi includes x1. By summing all terms of yi, we could compute x1 as following:

y1 + y2 + y3 + ...+ yN =
N∑
i=1

yi

x1 + x1γ1 + x1γ1γ2 + ...+ γN−1...γ2γ1 = 1

x1(1 +
N−1∑
j=1

j∏
k=1

γk) = 1.

Therefore, by dividing both sides by 1 +
∑N−1

j=1

∏j
k=1 γk, we get

(6.3.3) x1 =
1

1 +
∑N−1

j=1

∏j
k=1 γk

.

Since yi = xi − xi−1, as defined it is, we can follow the following recursion to express xi in
terms of what we have already had.

yi = xi − xi−1

xi = yi + xi−1

= x1γi−1...γ2γ1 + yi−1 + xi−2.

By computing the recursion over and over, we would eventually be able to express xi by
the following expression, we could show the representation of xi using variables.

(6.3.4) xi = x1(1 +
i−1∑
j=1

j∏
k=1

γk).

Together with (6.3.3), we obtain

(6.3.5) xi =
1 +

∑i−1
j=1

∏j
k=1 γk

1 +
∑N−1

j=1

∏j
k=1 γk

.

So far, we have shown another computation method to find the probability for one type
of individual to dominate the whole population, denoted by xi.

6.4. Take fitness into account. [Now06, Chapter 6.3] Now, let us take one step further to
include fitness in our discussion for the model. Still, we only have two types of individuals.
Our discussion is based on the model described in 6.3. For the simplicity of comparison and
calculation, let us assume that population A has fitness r and population B has fitness 1.
Following the explanation in 3.1, population A would out-compete population B if r > 1.
Conversely, if r < 1, then population would die out as t → ∞.
Suppose the number of type A individuals is still represented by i and the number of type

B individuals is therefore represented by N − i, given that the total number of population
is N . After considering the fitness of each population type, the probability for a type A
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individual to be chosen for reproduction is expressed as ri/(ri+N − i). The probability for
a type B individual to be chosen to reproduce is (N − i)/(ri +N − i). The probability for
any type A individual to be eliminated is 1/N , and for any type B individual to be chosen
for elimination is (N − i)/N . Therefore, similar to (6.2.1), we can express each entry of the
transition matrix P = [pij] as follows:

(6.4.1)

pi,i−1 =
N − i

ri+N − i

i

N

pi,i+1 =
ri

ri+N − i

N − i

N
pi,i = 1− pi,i−1 − pi,i+1

for all i = 1, 2, ..., (N − 1).
To have population type A move from i to i− 1, one type A individual has to be chosen

for elimination. At the same time, there needs to have one type B individual reproduced.
Therefore, the result of pi,i−1 is the product of the probability for one type A individual to
be eliminated and the probability for one type B individual to be reproduced.
Similarly, entries pi,i+1 should be the product of the probability of one type A individual

being chosen for reproduction and one type B individual being chosen for elimination.
Since there are only three possible moves for the size of the type A population – reduce by

1, increase by 1, and size remain the same – the probability that the total number of type
A individuals stays unchanged would be 1− pi,i−1 − pi,i+1.
Let us denote γi = pi,i−1/pi,i+1, similar to γi = βi/αi used in 6.3. Following our represen-

tations for pi,i−1 and pi,i+1, we can easily get

(6.4.2) γi =
1

r

for all i = 1, 2, ..., (N − 1).

Since the value of γ remains constant, we could conclude that
∏j

k=1 γk follows a geometric
sequence. Therefore, we have

xi =
1 +

∑i−1
j=1

∏j
k=1 γk

1 +
∑N−1

j=1

∏j
k=1 γk

=
1 + γ1 + γ1γ2 + ...+ γ1γ2...γi−1

1 + γ1 + γ1γ2 + ...+ γ1γ2...γN−1

=
1 + 1

r
+ ...+ 1

ri−1

1 + 1
r
+ ...+ 1

rN−1

=
1 + 1

r
(
1− 1

ri−1

1− 1
r

)

1 + 1
r
(
1− 1

rN−1

1− 1
r

)

=
r − 1

ri−1

r − 1
rN−1

.
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Dividing both the nominator and denominator by r, we can get the simplified form of xi

(6.4.3) xi =
1− 1

ri

1− 1
rN

for all i = 1, 2, ..., N .

7. Real-World Implications with the models

In previous sections, we have discussed three main biological processes – reproduction,
selection, and mutation – and their related models to explain Evolution Dynamics. Fitness
is often the keyword we discuss throughout the discussion and is one of our models’ key com-
ponents, especially when discussing more complicated cases. From evolutionary biologists’
perspectives, fitness is equivalent to reproductive success, revealing how a population adapts
to the surrounding environment it lives in. How can we compute the fitness, often denoted by
r, in real life, so we can put in the numerical numbers and compute the results of the models
instead of giving the general solutions? In the following subsections, we will introduce two
methods to compute fitness using linear regression, each having unique advantages over the
other.

7.1. Gradient descent algorithm [Ng12]. The first method is gradient descent, an op-
timization algorithm commonly used to train machine learning models. By continuously
adjusting the parameters and computing the cost function, the algorithm could eventually
identify a best-fit model that helps explain our training dataset and suggest new output, or
target, variables that are not contained in the training dataset. With the trained function
model, we can use the input variables to estimate the output. Mathematically, we want
to find the following training function that best explains current data and predicts implicit
outputs that are not contained by the given dataset.

(7.1.1) fw,b = wx(i) + b

where w is the weight of x(i), x(i) is the i th training input, and b is a constant of the function
when x = 0, all of which are parameters to be trained.

We need to have ˆy(i) = fw,b such that ˆy(i) is close to y(i) for all training dataset (x(i), y(i)).

To compute such a ˆy(i), let us first compute the cost function for the given training dataset,
which tells the numerical error between the predicted outputs and the acutual outputs. The
cost function is defined as

(7.1.2) J(w,b) =
1

2m

m∑
i=1

( ˆy(i) − y(i))2

where w and b are parameters and m is the total number of the traning data (x(i), y(i)).

The purpose of dividing
∑m

i=1(
ˆy(i) − y(i))2 by 2m instead of m is to make data calculation

neater. After calculating the partial derivative of the cost function in the next steps, 1/2
will get canceled out by the power 2, which we will show in the latter part of the paper.

We can use a 3D plot to visualize the relationship among J(w,b) = ˆy(i), w, and b. The
actual plot may vary, but here is an example from Andrew Ng’s newest machine learning
course on Coursera.
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Figure 5. 3D plot for J(w,b), w, and b [Ng22]

No matter at which point we start, depending on the values of w and b, and the corre-
sponding J(w,b), our goal is to find the values of w and b such that the numerical value of
J(w,b) is a local minimum. To do that, we will use the following two equations, which are
main parts of the gradient descent algorithm:

(7.1.3)
w = w − α

∂

∂ w
J(w,b)

b = b− α
∂

∂ b
J(w,b)

where α is called the learning rate, which we will explain later, and w, b are parameters for
the training model and the cost function.

The partial derivative of the cost function J(w,b), with respect to w can be computed as
following:

∂

∂ w
J(w,b) =

∂

∂ w

1

2m

m∑
i=1

( ˆy(i) − y(i))2

=
∂

∂ w

1

2m

m∑
i=1

(wx(i) + b− y(i))2

=
1

2m

m∑
i=1

(wx(i) + b− y(i))2x(i)

=
1

m

m∑
i=1

(wx(i) + b− y(i))x(i)

=
1

m

m∑
i=1

(fw,b(x
(i))− y(i))x(i).
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Similarly, we can compute the result of partial derivative of the cost function J(w,b), with
respect to b

∂

∂ b
J(w,b) =

∂

∂ b

1

2m

m∑
i=1

( ˆy(i) − y(i))2

=
1

m

m∑
i=1

(wx(i) + b− y(i))

=
1

m

m∑
i=1

(fw,b(x
(i))− y(i)).

Each of the above results explains why 7.1.2 is expressed how it is to clean the computation.
By repeating the algorithm until w and b both converge, we can identify the values of w

and b such that the corresponding J(w,b) is a local minimum.
Let us go back and explain the learning rate α. Well, the learning rate regulates the step

length of adjusting parameters. It is important to choose a sound α. If α is too big, the
parameters will never converge. If α is too small, our parameter will update very slowly, and
it may take long for parameters to converge. Though the learning rate varies for different
models, a sound starting learning rate could be 0.1. We can adjust the learning rate according
to the time taken for parameters to converge.

To compute the fitness of one specific population, we would have y(i) as fitness and x(i) as
an input feature that affects the fitness. However, many factors could together determine the
fitness of one population type — for example, intelligence, size, strength, etc. Also, we need
the actual training data that we can rely upon to train our model. As a result, the model
discussed above does not allow us to compute fitness in real life. The data could be collected
by scientific methods such as natural observation and laboratory experiments. Though it
may take much time to get the dataset, the advancement in technology allows for a faster
way of data collection. For the model problem, we can use vectorization to put all different
input features x together and compute the weight w for each of them, which is represented
by the equation below:

(7.1.4) fw⃗,b(x⃗) = w⃗ ∗ x⃗+ b

where w⃗ =
[
w1 w2 w3 ... wn

]
, x⃗ =

[
x1 x2 x3 ... xn

]
, b is the parameter defined as

before, and n be the number of factors. The gradient descent algorithm becomes as following

(7.1.5)

w1 = w1 − α
1

m

m∑
i=1

(fw⃗,b(x⃗
(i))− y(i))x

(i)
1

w2 = w1 − α
1

m

m∑
i=1

(fw⃗,b(x⃗
(i))− y(i))x

(i)
2

...

wn = w1 − α
1

m

m∑
i=1

(fw⃗,b(x⃗
(i))− y(i))x(i)

n

b = b− α
1

m

m∑
i=1

(fw,b(x
(i))− y(i))
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Again, we need to choose a suitable learning rate α to ensure that the parameters eventu-
ally converge while the time taken is reasonable. Upon the convergence of each parameter,
we can get our training model that best explains the relationship between factors that af-
fect the fitness of a population and the resulting fitness and predicts the fitness that is not
contained in our dataset.

7.2. Ordinary Least Squares technique [LRW78]. Indeed, the gradient descent algo-
rithm is a powerful method that we can use to find the training model that best fits the given
dataset. We can use the algorithm to find the approximate outcomes of the model with dif-
ferent inputs. The choice of learning rate is a key to the accuracy of the training model, as it
will determine whether the parameters will converge and the time for convergence. However,
it is hard for us to find a reasonable learning rate quickly – the computation process may
take a very long time to finish if the learning rate is too low, or the parameters may diverge if
the learning rate is too large. Although the gradient descent algorithm can be used broadly
for any optimization problems, the Ordinary Least Squares (OLS) method is more specific.
It will directly produce a closed-form solution, which is, in most cases, more accurate than
the gradient descent algorithm. Suppose the linear combination of input could express the
output variable features XXX plus a residual e; the following equation is our target model:

(7.2.1) yyy =XXXβββ + eee

whereXXX is a n×r matrix representing n input features, yyy is a n×1 column matrix representing

n estimated outcomes, and β̂̂β̂β is a r× 1 column matrix representing the weight of each input
feature.

The OSL technique can help us compute the vector β̂̂β̂β that represents the weight of each
input feature XXX by the following equation:

(7.2.2) β̂̂β̂β = (XXXTXXX)−1XXXTyyy

which implied the dimensions of each matrix mentioned above by the definition of matrix
multiplication and transposition.

Proof. Let us construct a linear equation representing the relationship between yyy and XXX:

(7.2.3) yyy =XXXβ̂̂β̂β + ϵϵϵ.

Therefore, we have

ϵϵϵ = yyy −XXXβ̂̂β̂β

where ϵϵϵ is the prediction error that tells the difference between the predicted output value
and the actual output value.

Since the sum of squared errors is equal to the product of ϵϵϵ and its transpose [Sta20], we
then have the sum of error expressed as following computation

ϵTϵTϵTϵϵϵ = (yyy −XXXβ̂̂β̂β)T (yyy −XXXβ̂̂β̂β)

= (yyyT − (XXXβ̂̂β̂β)T )(yyy −XXXβ̂̂β̂β)

= yyyTyyy − yyyT (XXXβ̂̂β̂β)− (XXXβ̂̂β̂β)Tyyy + (XXXβ̂̂β̂β)TXXXβ̂̂β̂β

= yyyTyyy − yyyT (XXXβ̂̂β̂β)− (XXXβ̂̂β̂β)Tyyy + β̂̂β̂βTXXXTXXXβ̂̂β̂β.
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Because (yyyT (XXXβ̂̂β̂β))T = (XXXβ̂̂β̂β)Tyyy, we can conclude that yyyT (XXXβ̂̂β̂β) = (XXXβ̂̂β̂β)Tyyy. Therefore, we
can simplify the equation:

(7.2.4) ϵTϵTϵTϵϵϵ = yyyTyyy − 2(XXXβ̂̂β̂β)Tyyy + β̂̂β̂βTXXXT β̂̂β̂βXXX.

To find the minimum sum of errors, we can take the partial derivative of ϵTϵTϵTϵϵϵ with respect

of β̂̂β̂β, and set it to zero

(7.2.5)
∂ϵTϵTϵTϵϵϵ

∂β̂̂β̂β
= −2XXXTyyy + 2XXXTXXXβ̂̂β̂β = 0.

We can further simplify the equation to

(7.2.6) XXXTXXXβ̂̂β̂β =XXXTyyy.

By left multiplying (XXXTXXX−1) to both sides, we can get

(7.2.7) β̂̂β̂β = (XXXTXXX)−1XXXTyyy

which is the expression we wanted. ■

Although the OSL technique helps us identify the closed-form solution of linear regression,
it is very sensitive to outliers. The presence of outliers will significantly affect our model.
Therefore, doing an outlier check before all the math work is very important to ensure
the model’s accuracy. For the time-efficiency of calculation, it is better to filter important
features and avoid redundant ones. And most importantly, only linear relationships could
be suggested by the OLS technique, whereas we can find more complicated models with the
gradient descent algorithm.
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