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Abstract

This paper aims to teach readers the mathematical definition of simple closed curve as
well as specific properties of it. All the proofs in this paper are about the ability of a Jordan
curve to circumscribe different figures such as square, rectangle, and rhombus sometimes
under certain conditions like symmetry. This paper assumes basic knowledge in geometry
like symmetry, similarity and congruence of figures, rotations, and some trivial notations in
calculus.

Contents

Abstract 1
1. Introduction 1
2. Preliminaries 2
Examples and non-examples of Jordan curve 2
3. Symmetric Jordan curve circumscribing a square 3
4. Parallelograms and rhombuses in Jordan curve 5
5. Inscribed triangle in Jordan curve in two-dimensional space 6
6. The density of potential vertex of a triangle in J 7
7. Inscribed triangle in J in three dimensional space 8
8. Fundamentals of Topology 9
9. Inscribed rectangle in J 10
10. Recent Progress in Square Peg problem 13
Acknowledgement 15
References 15

1. Introduction

This paper includes descriptions and proofs of simple closed curves; simple closed curve
will be referred often as Jordan curve. Jordan curves are curves that can be drawn without
lifting the pencil up on a paper and begins and ends at the same point by non-rigorous
definition as more rigorous definition will be provided in later sections. My interests in
this specific curve came from seeing various attempts to prove that a Jordan curve always
inscribes a square on the internet. In this paper, I intend to introduce and explain proofs
that provide various characteristics of Jordan curve such as this: a Jordan curve inscribes
many triangles similar to an arbitrary triangle. I hope you learn a lot more about Jordan
curves and be more interested in this topic through this paper! Also, all the sections before
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fundamentals of topology require shallow understandings in geometry. But, the chapters
including fundamentals of topology and later are more advanced topics that require more
mathematical intuition. Although, I hope that later sections can be understood with careful
reading and thinking. Note: we will generally focus on the plane R2 in this paper, and the
paper will specifically mention that another plane being referred to if that is the case; all
the Jordan curves that are mentioned in this paper in the proofs are “nice enough” Jordan
curves as theorem 2.3 states in preliminaries.

Here are some of the most important theorems that I will prove in the paper.

Theorem 1.1. ∀Jordan curve J, symmetric about a point inside, ∃ four points P1, P2, P3, P4

on J such that quadrilateral P1P2P3P4 is a square

Theorem 1.2. ∀ Jordan curve J in R3 with point p ∈ J such that J ′(p) = k where k∈ R, ∃
points P1, P2, P3 ∈ J such that △P1P2P3 ∼ T where T is an arbitrary triangle.

Theorem 1.3. For Jordan curve J, ∃ four points P1, P2, P3, P4 ∈ J such that quadrilateral
P1P2P3P4 is a rectangle

2. Preliminaries

Definition 2.1. Simple closed curve is the image of f([0,1]) where f:[0,1] → Rn one-to-one,
but f(0) = f(1)

Definition 2.2. A Jordan curve J is“nice enough” if ∀ ordered pairs p ∈ J, ∃ a coordinate
system such that one possible set X ∈ J with p ∈ X has all elements γ ∈ domain of X → δ
∈ co-domain of X.

Theorem 2.3. Stromquist’s theorem states that only if Jordan curve J is “nice enough”, a
general polygon P1P2P3 . . . Pn is on J, meaning P1, P2, P3, . . . , Pn ∈ J .

The theorem above is very important because this shows that all the Jordan curves that
have potential of circumscribing a figure is “nice enough”.

Examples and non-examples of Jordan curve

Figure 1. An example of simple closed curve

As you can see above, the curve is an example of simple closed curve that is ”nice enough”.
You can imagine coordinate axes x and y, y being orthogonal to x in the plane R2 such that
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Figure 2. An example of a point in J being a part of function

every point on this curve is a part of continuous function. Below is an example of how you
can draw coordinate axes to make a part of figure 1 be a continuous function.

It is basically safe to assume that every curve that you draw on a piece of paper that
begins and ends at the same point is “nice enough”. However, there are some extremely rare
cases of a Jordan curve being not “nice enough”. Often times, not “nice enough” curves are
curves that are VERY fractal like. Below is an example of how a not “nice enough” Jordan
curve might look like.

Figure 3. An example of fractal-like curve

As you can see in examples of extreme fractal-like curve, it is hard to find a coordinate
system can be set up so that the part of function containing that point is defined as a
function. Thus, an extreme version of figure 3 is an example of not “nice enough” Jordan
curve.

3. Symmetric Jordan curve circumscribing a square

Theorem 3.1. ∀Jordan curve J, symmetric about a point inside, ∃ four points P1, P2, P3, P4

on J such that quadrilateral P1P2P3P4 is a square

We first need to build intuition for this proof and we will do that by using a simple example
of Jordan curve that is symmetric about a point inside of it, a square.
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y

You can easily see that this square is symmetric about origin. Since a function is defined
at every point on this square, we can claim that this square is a Jordan curve that is “nice
enough”, thus we can use this to prove theorem 2.3. And, let’s call this square J. To prove
that another square is inscribed in this square, let’s first rotate the square pi/2 radians in
counter clockwise direction. Let that function be defined as f:R2 → R2 that rotates every p
∈ domain R2 is rotated pi/2 radians in counter clockwise direction. J and f(J) on the same
coordinate axes are drawn below.

x

y

You see that the J and f(J) exactly overlap one another. As an example, (1,2) is on both J
and f(J), and we know that (2,-1) is on J because (1,2) is mere right angle counter clockwise
rotation of (2,-1). Then, we know (-2,1) and (-1,-2) are also on J using odd function property.
We now can prove that J contains a square because the four points form four lines that are
perpendicular to each other if they are adjacent and are same length. An interesting thing
to note is that since f(J) and J are identical, we can see that the step of proving a Jordan
curve contains an inscribed square can be done for every point on J, so a square has infinitely
many inscribed squares. The only extension of general proof of any Jordan curve having an
inscribed square is that we need to prove that J and f(J) meet at least one point rather than
assuming they meet at every point like we did with the square example. After that same
process as done in the square example can be done to the generalized Jordan curve to prove
there exists an inscribed square in J.
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Figure 4. Possibilities of an intersection of J and f(J)

Proof. Let f be one to one function: R2 → R2 such that the inputted point is rotated pi/2
in counter-clockwise direction about origin. Let Pnear be a point on J such that distance
between origin and Pnear is minimum. Let Pfar be a point on J such that distance between
origin and Pfar is maximum. If f(Pnear) or f(Pfar) is on J, then the proof is done. Otherwise,
we know that f(J) must cross J at some point because f(Pnear) and f(Pfar) must be connected
by f(J), and there are points on J that are closer to f((Pnear) than f(Pfar) by how we defined.
Since J is continuous throughout, J and f(J) must intersect at at least one point P. Let P be an
ordered pair (x1, y1). As seen in the square example, points (y1,−x1),P,(−y1, x1),(−x1,−y1)
form a square. ■

4. Parallelograms and rhombuses in Jordan curve

Theorem 4.1. For a Jordan curve J, let l be any line, then ∃ rhombus P1P2P3P4 with
P1, P2, P3, P4 ∈ J such that P1P2 or P2P3 ∥ to l.

Theorem 4.1 also implies that every simple closed curve has many parallelograms and
rhombuses. Even though it might be straight forward to prove that a Jordan curve contains
many parallelograms. But, it is necessary to go over the proof because the technique in
proving this basic condition helps us understand the proof of theorem 4.1 better. In figure
5, an example of Jordan curve is shown. Let l be the red line that intersects twice with the
curve. Then, we know that we can move a copy of red line in the direction parallel to the
red line and obtain another line that has the same length of intersection length to that of
red line. The copy of red line is blue-colored line in Figure 5. Furthermore, you can envision

Figure 5. an example of inscribed parallelogram in J

that infinitely distinct lines can be drawn so that they all have different slope and different
intersection, which proves that there are infinitely many inscribed parallelograms in a Jordan
curve. Now, let’s prove that there exists infinitely many rhombuses given any line l.
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Proof. If we move the points A and B towards the direction of C and D and move C and
D towards the direction of A and B such that AB ∥ CD, AB = CD, and AC = BD.
AB and CD eventually converges to a parallelogram such that AB >> CD. Since we can
start out from a parallelogram with AB << CD, we know that at some point, there was
a parallelogram with AB = CD, which is a rhombus. Since ∃ infinitely many possibilities
of lines with length and slope to form rhombuses, there are infinitely many rhombuses in a
Jordan curve. ■

An example of how you carry out this process is shown in figure 6. As you can see,

Figure 6. an example of the process of proving the existence of rhombus

A ’B ’C ’D ’ is a long parallelogram parallel to l and A ”B ”C ”D ” is a wide parallelogram.

5. Inscribed triangle in Jordan curve in two-dimensional space

Theorem 5.1. For an arbitrary triangle T, ∀ Jordan curve J in R2, ∃ three points P1, P2, P3

∈ J such that △P1P2P3 ∼ T.

Just like a circle circumscribes a triangle similar to an arbitrary triangle, a Jordan curve
similarly circumscribes a triangle similar to an arbitrary triangle. This proof uses the idea
of dilation, which is stretching and shrinking of a figure about a point.

Proof. Given a random simple closed curve J that is “nice enough”, generate a circle C that
is entirely containable within J. Also, let an arbitrary triangle be called T. Move the circle
in any straight line until a point on a circle is internally tangent to J and without loss of
generality name that point X. Let other two points be Y and Z on the circle such that △
XYZ is named in clockwise or counter-clockwise orientation depending on J, which will be
defined later, and similar to T. Also, without loss of generality, assume Y Z is the longest
length of △XY Z. Then, scale the triangle XYZ to be larger in all three lengths and let the
first point that touches J be Y. Select points P and Q on J such that PQ is maximized.
Keep Y and Z fixed, but move X towards P and dilate Z about Y such that △ XYZ T. If
Z happens to be on J, then the proof is complete. However, if Z is not on J, then move Y
toward Q while moving Z such that similarity to P is preserved. When XY = PQ, then Z
is either outside of J or on J because PQ is the longest inscribed line segment on J. If Z is
outside of J, then we know at some point during the process of moving Y towards Q, Z was
on J. ■

The visual image of the steps of this proof is shown in figures 7,8,9,and 10.
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Figure 7. step 1 of proof 2.4

Figure 8. step 2 of proof 2.4

Figure 9. step 3 of proof 2.4

Figure 10. steps 4 and 5 of proof 2.4

6. The density of potential vertex of a triangle in J

Theorem 6.1. For an arbitrary triangle T, ∀ points P ∈ Jordan curve J, points P,Q,R with
Q,R ∈ J form △PQR ∼ T .

This proof is not rigorous in the aspect that it does not include the topological explanation
for why every point in J suffices being point fixed point P to create a triangle inscribed in J
∼ T .



8 WOONG CHOI

Proof. Let there be an arbitrary triangle T named in the orientation ABC in clockwise
orientation. Let there be function f: R2 → R2 such that f(P) = P, and f(Q) is a point in R2

such that △ PQf(Q) is similar to T with P corresponding to A, B corresponding to Q, and
C corresponding to f(Q). Given an arbitrary Jordan curve J and arbitrarily chosen P, if f(J)
intersects with J with at least one point which we will call R, then △PRf(R) is similar to
T. If f(J) and J intersect at at least one point with any point t ∈ J, then the set V which
includes all points in t ∈J when t acts as P, f(J) and J intersect at least one point, V is very
dense in J. There is a topological argument that V is very dense in J, but I hope it makes
intuitive sense from the image that J and f(J) are likely to intersect. ■

The visual steps for this proof is represented in figure 11.

Figure 11. steps for proof 2.5

7. Inscribed triangle in J in three dimensional space

Theorem 7.1. ∀ Jordan curve J in R3 with point p ∈ J such that J ′(p) = k where k∈ R, ∃
points P1, P2, P3 ∈ J such that △P1P2P3 ∼ T where T is an arbitrary triangle.

This proof is the first proof in this paper that requires a visualization of 3-dimensional
space. This proof will be easier to understand if you have interacted with Calculus materials
before, but if you have not then you only need to know the definition of a function being
”smooth”. So there is no issue with that! Below is the definition of a function being smooth
at one point if you need to know what is means.

Definition 7.2. Function g:Rn−1 → Rn in space Rn is smooth at point p ∈ g if ∃ the slope
of pk and k ∈ Rn being selected from one side of p such that pk << 1 is equal to slope of
pm where m ∈ g with g being chosen from other side of k. If you know Calculus, then g is
smooth at point P if and only if g′(P ) = k k ∈ R.
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Proof. Let T be an arbitrary triangle. Let N be a point on J such that the graph J is
differentiable at N. Let P and Q be points on J. When P and Q become arbitrarily close to
N, then J is relatively flat near P and Q. ∃ set X in R3 such that △PQX is similar to T.
Let PQ be corresponding to the shortest side in T without loss of generality. X becomes a
circle linked to J. When P and Q selected so that the distance between two points on J is
maximized, then X becomes a circle unlinked from J. When PQ moves from being << 1 to
maximized in J, we know that at some point in between, X intersects with J. Thus, we can
conclude that J in R3 has an inscribed triangle similar to T. ■

Again, the visualization for this proof is demonstrated in Figure 12. The explanation for
”relatively flat” in proof 2.6 is similar to how a differentiable function in R2 has a straight
line tangent to a point, which we can then describe as the function being flat at the point
since there exists a tangent line. Similarly, for the Euclidean space R3, if a function is
differentiable at a point, the function has a flat space tangent to that specific point, which
we then describe as the function being relatively flat.

Figure 12. Linked and unliked X

8. Fundamentals of Topology

Informal definition of Surface is the mathematical object that looks like a plane when it
is looked at very closely. Formal definition is given below.

Definition 8.1. Surface S is a topological space such that for every point p ∈ S, there is an
open set U ⊂ S containing P, and a map f: U → V onto an open subset V ⊂ R2 so that f is
continuous bijection with a continuous inverse.

Torus is informally a surface that is formed by rotating a circle about an axis coplanar to
the plane of circle. Formal definition is given below.

Definition 8.2. Torus is the Cartesian product of two unit circles, denoted as S1 × S1.

Torus can also be represented by gluing the opposite sides of a unit square as the formal
definition is given below.

Definition 8.3. A torus is also defined by the following steps: square S defined by [0,1] ×
[0,1] when all the points with y value of 1 and all the points with y value of 0 are treated
same by gluing those two horizontal sides together to form a horizontal and empty cylinder,
then the circles in the leftmost part and rightmost part of the cylinder are glued to treat the
points on vertical sides with x=0 and x=1 on S the same.
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Figure 13. Example of a torus

9. Inscribed rectangle in J

Theorem 9.1. For Jordan curve J, ∃ four points P1, P2, P3, P4 ∈ J such that quadrilateral
P1P2P3P4 is a rectangle

To build intuition for this proof, let’s visualize how we can glue opposite sides of a square
so that a torus is created. Do you see how each ordered pair on the unit square is mapped
onto the surface of torus? This means that each point on the surface of Torus maps to an
ordered pair on J in R2. The reason why we glue the opposite sides of square to represent a
direct relation to a point on the Jordan curve is because we defined mapping Jordan curve as
f:[0,1] → Rn with f(0)=f(1). Similar step is done for square to make the function from [0,1]
× [0,1] → R2 a one-to-one relation with continuous inverse. Before we get into the proof of
theorem 2.7, we need to understand what an ordered pair and unordered pair is.

Definition 9.2. An ordered pair of points in space Rn is an element of Rn ×Rn and distin-
guishing the difference of order.

Definition 9.3. An unordered pair in space Rn is an element of Rn × Rn and not distin-
guishing the difference of order: an unordered pair with same components with different
orders are considered the same.

Also, the concept of Cartesian product of sets is used in this proof, so below is the formal
definition.

Definition 9.4. Given sets S1, S2, S3, . . . Sn, S1×S2×S3×. . . Sn = (s1, s2, s3, . . . sn) : si ∈ Si,
and Sn is defined as n-tuples of each element of S

Lemma 9.5. When two pairs of points are equal in length and share a common midpoint,
the four points form a rectangle.

For the sake of making the proof of theorem 9.1 easier to understand and ensuring why
lemma 9.5 is true, I will prove lemma 9.5 before beginning the proof of theorem 9.1.

Proof. Let four points be named P1, P2, P3, P4 such that P1P3 = P2P4. Also, the midpoint M
of P1, P3andP2, P4 be common. Without loss of generality, we can locate points P1, P2, P3, P4

in R2 plane such that P1, P2, P3, P4 are in 1st,2nd,3rd, and 4th quadrant with M being the
origin. Below is an example of desired figure.
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P1P2

P3 P4

M
x

y

It is always possible to draw the coordinate system such that the x-axis bisects ∠P2MP3 and
∠P1MP4, and the y-axis bisects ∠P2MP1 and ∠P3MP4 since the opposite angles formed by
two intersecting lines are same by vertical angle theorem. Let P1 have the coordinate (x1, y1)
with x1, y1 > 0 by the assumption we made at the beginning of the proof. Then, P3 must
have the coordinate (−x1,−y1) because of the midpoint formula so that M is the origin. Let
P2 have the coordinate (x2, y2) and x2 < 0 and y2 > 0 by the assumption also. Then P4

must have the coordinate (−x2,−y2) because of the midpoint formula again. Since we set
the condition to make P1P3 = P2P4, by the distance formula,

(9.1) x2
1 + y21 = x2

2 + y22

From equation 9.1, we see that P1M = P4M because P1M = x2
1 + y21 and P4M = x2

2 + y22.
When we connect P1 and P4, we see that△P1MP4 is an isosceles triangle.Let the intersection
of P1P4 with x-axis be P5. Because of one of the isosceles triangles properties, ∠MP4P1 =
∠MP1P4. By ASA similarity, △P1MP5

∼= △P4MP5. This proves that P1P4 is perpendicular
to x-axis at the point of intersection. By symmetry about origin M, we see that P2P3 = P1P4.
Same process can be applied to points P1 and P2 as well as the opposite points P3 and
P4 because of the same component of the ordered pairs with differing signs to prove that
P1P2 = P3P4. Since opposite sides are equal in a quadrilateral, we prove that quadrilateral
P1P2P3P4 is a rectangle.
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P1P2

P3 P4

M
P5 x

y

■

Now that we have proven lemma 9.5, we will begin proving theorem 9.1. The visuals to
follow while reading the proof are in figures 14, 15, and 16 below.

Proof. Without loss of generality and for simplicity purposes, let square S be defined as [0,1]
× [0,1]. Let g be a one-to-one function that takes in two points (x1,y1),(x2,y2) ∈ Jordan

curve J and map to a point (x3,y3,z3) in R3 such that (x3,y3,z3) is
√

(x1 − x2)2 + (y1 − y2)2

above ((x1 + x2)/2,(y1 + y2)/2) in orthogonal direction to R2. Let u and v be points ∈ J.
Since g(u,v)=g(v,u), it is only necessary to consider the unordered pair of points on square.
Let unordered pairs on square be represented by set D=(t,s) ∈ [0,1] × [0,1]: t <= s. Let
function γ be: [0,1] ∈ S → J. Since γ (0)=γ(1), γ(D)×γ(D) is topologically a Möbius strip,
where the edge of the strip is f(γ(δ),γ(δ): δ ∈ [0,1])=(γx(s), γy(s), 0) since dist (J(s),J(s))=0.
We will omit proof for why the Möbius strip intersect itself in R3 but hopefully it makes
intuitive sense, especially visualizing the g ◦ J in the image below. And since there is an
intersection point in R3 of the Möbius strip, we know that two unordered pairs of J have
same value when plugged into g. This means that there are two pairs of points that are
equidistant and share a mid point on J, so a rectangle is inscribed in J by lemma 9.5. ■

Figure 14. Folding across the diagonal

Figure 15. Making Mobius strip by gluing and twisting the square
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Figure 16. How Mobius strip can map onto 3-dimensional space

10. Recent Progress in Square Peg problem

Now that we have learned about various characteristics of Jordan curve. We will now dis-
cover some more recent progress toward the square peg problem. Well, it is not really about
Jordan curves circumscribing a square, but rather it is about continuous or differentiable
Jordan curve’s ability to describes different more various sets of shapes like cyclic quadri-
lateral, isosceles trapezoids, and more. The sections to come after this come from works of
Matschke,Tao, Karasev, Toeplitz, and many more mathematicians. Let’s define some useful
definitions that will be useful in reading upcoming sections.

Definition 10.1. Let δ be the set of points ∈ R2 and located internally of J and including
the points on J. If the set of points γ in the closed loop formed by the expression below

∞⋃
i=1

(y = f ′(xi)(x− xi) + yi)

Where (xi, yi) ∈ J and (x, y) ∈ R2 and γ ∩ δ = δ, then J is a convex Jordan curve.

Definition 10.2. Cn is the class of differentiable graphs whose nth derivative is continuous.

To give an intuition for definition 10.2, circle is an example of a graph that belongs in the
class C∞. Let the circle C be defined by the equation below:

(10.1) x2 + y2 = k2

where k ∈ Z. When C is differentiated with respective to x, y=C ′ has the equation:

(10.2) y = −x/(k2 − x2)1/2

And a part of equation 10.2 is graphed below.

x

y
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When C ′ is differentiated with respective to x again, y=C ′′ has the equation below:

(10.3) y = −k2/(k2 − x2)3/2.

And again, a part of equation 10.3 is graphed below.

x

y

As you can see, all the graphs of the equations 10.2 and 10.3 are seemingly smooth and
differentiable at all points. So, C∞ means that no matter how many times the equation
of circle is differentiated, the differentiated equation will always be continuous and smooth.
Moving onto more important parts of the work by Matschke, it is important to note that
the cyclic quadrilaterals are the most general case of sets of quadrilaterals out of squares,
rectangles, and isosceles trapezoids. Let ζS represent the set of squares, ζR represent the set
of rectangles, ζI represent the set of isosceles trapezoids, and ζC represent the set of cyclic
quadrilaterals. The relationship above can be mathematically represented as

ζS ⊆ ζR ⊆ ζI ⊆ ζC

Definition 10.3. Jk
conv denotes k-times differentiable convex Jordan curve where k ∈ Z.

Matschke states both theorems below and aims to give insights to those proofs using
Karasev and Tao’s signed area argument.

Theorem 10.4. J0
conv inscribes the set ζI , and ζI is the largest possible set that J0

conv can
inscribe.

Theorem 10.5. The class J1
conv inscribes the set ζC,and ζC is the largest set that J1

conv can
inscribe.

Theorem 10.6. generalization: if the angle that the Jordan curve J makes at a singular
point is larger than the min(α, β), then J circumscribes the cyclic quadrilateral Q

α and β are the angles formed by extending the opposite sides of Q until the point
of intersection. In the case of J1

conv, the angle condition from the generalization is never
satisfied since no angle is made at a point, so theorem 2.9 is trivially satisfied. When Q is
an isosceles trapezoid as the figure below shows, the min(α, β)=0, as ∠β is never formed in
the figure. So, J0

conv always circumscribes an isosceles trapezoid.
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P1

P2 P3

P4

α

For theorem 10.5, let Q=P1P2P3P4 be a cyclic quadrilateral. A triangle similar to △P1P2P3

is chosen on J. Then, the signed area argument with proof by contradiction is used to prove
that the fourth point P4 must be on J. For theorem 10.4, the possible complex structure of
Jordan curve J due to restriction of only having to be continuous rather than differentiable
allows an easier approach to determining even lower and upper bounds of ζI . Since the
extension of what Matschke does to provide meaningful insights in proving theorem 10.5
and theorem 10.4 is not shown in this paper, please read [2] to learn more about those
theorems.
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