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Abstract

Quadratic Forms and Number Fields are completely different fields
in abstract algebra, how can they be connected? In this paper, we will
discuss several characteristics of quadratic forms including primitive, re-
duced, positive definite as well as its connection with algebraic number
theory such as the ring theory, number fields, ideal class groups and class
numbers. We will also introduce the Minkowski’s Theorem and Bound
and prove it. In the end, we will cover the general procedure and include
an example of using the MinKowski Bound to compute the class number
of quadratic number field.

1 Introduction

The theory of quadratic has a long history and its origin could be traced back
during ancient Babylonia between 1900 and 1600 BC, which then taken up
again by Brahmagupta in the Seventh Century, and thousands years later by
the great genius Fermat, followed by a succession of extraordinary mathemati-
cians, including Euler, Lagrange, and Gauss, who brought the subject closer to
its modern form. The work of Minkowski in the late Nineteenth Century, cou-
pled with the extension of his work by Hasse in the early Twentieth Century,
led to a great broadening and deepening of the theory that has served as the
foundation for an enormous amount of research that continues today.

This paper’s goal is to give a heuristic description of the concept of quadratic
forms and class groups to those with limited background in number theory. This
paper is dedicated to show how the idea originally developed and how it implies
the more common definition found in today’s texts.

The organization of the paper is as following:

In 2, we introduce the basic definition and characteristics of quadratic forms.
In 3, we discuss the basic concept of algebraic numbers such as rings, number
fields, ideals
In 4, we discuss the bijection among class groups and quadratic form

1



In 5, we discuss the geometry of numbers and introduce the Minkowski Theo-
reom and Bound
In 6, we provide the general procedure of finding class number of quadratic
number field with an example
In 7, we recognize help and advise from various people.

2 Quadratic Forms

2.1 Basic Definition

An integral binary quadratic form is a polynomial of the type f(x, y) = ax2 +
bxy + cy2, where a, b, and c are integers. A form is primitive if the integers
a, b, and c are relatively prime. Note that any form is an integer multiple of a
primitive form. Throughout, we will assume that all forms are primitive. We
say that a form f represents an integer n if f(x, y) = n has an integer solution;
the representation is proper if the integers x, y are relatively prime. A form is
positive definite if it represents only positive integers.

The discriminant of f = ax2+ bxy+ cy2 is defined as ∆ = b2−4ac. Observe
that 4af(x, y) = (2ax + by)2 −∆y2. Thus, if ∆ < 0, the form represents only
positive integers or only negative integers, depending on the sign of a. In partic-
ular, if ∆ < 0 and a > 0 then f(x, y) is positive definite. Moreover, ∆ = b2−4ac
implies that ∆ ≡ b2(mod4). Thus we have ∆ ≡ 0(mod4) or ∆ ≡ 1(mod4), de-
pending on whether b is even or odd.

2.2 Reduced Quadratic Form

Definition: A positive definite binary quadratic form f(x, y) = ax2 + bxy + cy2

is said to be Reduced if one of the following inequalities hold:
1) −a < b ≤ a < c
2) 0 < b ≤ a = c
Let:

M1 =

[
0 −1
1 0

]
, M2 =

[
1 m
0 1

]
Observe that det (M1) = 1 and det (M2) = 1. If f(x, y) = ax2 + bxy + cy2 then
under M1 we have:

f(0x− 1y, 1x+ 0y) = f(−y, x)
= a(−y)2 + b(−y)(x) + c(x)2

= ay2 − bxy + cx2

= cx2 − bxy + ay2

= a′x2 + b′xy + c′y2

(1)
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where a′ = c, b′ = −b, and c′ = a. So if a > c then a′ = c < a = c′. So if
f(x, y) is such that the coefficient of x2 is greater than the coefficient of y2 then
applying M1 to f(x, y) gives us an equivalent binary quadratic form where the
coefficient of x2 is less than the coefficient of y2.

If f(x, y) = ax2 + bxy + cy2 then under M2 we have:

f(1x+my, 0x+ 1y) = f(x+my, y)

= a(x+my)2 + b(x+my)(y) + c(y)2

= a
(
x2 + 2mxy +m2y2

)
+ b

(
xy +my2

)
+ cy2

= ax2 + 2amxy + am2y2 + bxy + bmy2 + cy2

= ax2 + (2am+ b)xy + (am2 + bm+ c)y2

= a′x2 + b′xy + cprimey2

(2)

where a′ = a, b′ = 2am + b, and c′ = am2 + bm + c. If b > a then m can be
chosen such that:

−a′ = −a < 2am+ b = b′ < a = a′

Therefore, if f(x, y) is such that the coefficient of xy is greater than the coeffi-
cient of x2 then applying M2 to f(x, y) gives us an equivalent binary quadratic
form such that the coefficient of xy is less than the coefficient of x2.

Theorem 1: Let f(x, y) = ax2+ bxy+ cy2 be a reduced binary quadratic form
with discriminant d ∈ Z where d is not a perfect square.

a) If f is indefinite then 0 < |a| ≤ 1
2

√
d.

b) If f is positive definite then 0 < a ≤
√

−d
3 .

Proof of a):

Proof. Suppose that f is indefinite and is a reduced binary quadratic form.
Then d > 0 and −a < b ≤ a < c. If a and c have the same signs then ac > 0.
So ac > a2.[MzK04] Hence:

d = b2 − 4ac ≤ a2 − 4ac ≤ a2 − 4a2 = −3a2 < 0

Which is a contradiction. So a and c must have different signs, and hence
−4ac = 4|ac|. Thus:

d = b2 − 4ac = b2 + 4|ac| ≥ 4|ac| ≥ 4a2

Dividing both sides by 4 and taking the squareroot of both sides of the inequality
gives us:

|a| ≤ 1

2

√
d
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If a = 0 then the inequality 0 < b ≤ a = c cannot be satisfied, and so:

0 < |a| ≤ 1

2

√
d

Proof of b)

Proof. Suppose that f is positive definite and is a reduced binary quadratic
form. Then d < 0 and a, c > 0, and −a < b ≤ a < c. So:

d = b2 − 4ac ≤ a2 − 4ac ≤ a2 − 4a2 = −3a2

Dividing both sides by −3 and taking the squareroot of both sides gives us that:

|a| ≤
√

−d
3

The absolute value bars on a are removed since a > 0, and so:

0 < a ≤
√

d

−3

2.3 Representation of Integers by Binary Quadratic Forms

The earliest investigations concerning the representation of integers by binary
quadratic forms were due to Fermat. In correspondence to Pascal and Marsenne,
he claimed to have proved the following:

1) Every prime number of the form 4k + 1 can be represented by x2 + y2

2) Every prime number of the form 3k + 1 can be represented by x2 + 3y2

3) Every prime number of the form 8k + 1 or 8k + 3 can be represented by
x2 + 2y2

In general, an integer n is represented by the binary quadratic form ax2 +
bxy + cy2 if there exist integers r and s such that n = ar2 + brs + cs2. In the
seventeenth century Fermat showed the first such result, that the primes repre-
sented by the binary quadratic form x2+y2 are 2 and those primes ≡ 1(mod 4),
and thence determined all integers that are the sum of two squares. One can
similarly ask for the integers represented by x2 +2y2, or x2 +3y2, or 2x2 +3y2,
or any binary quadratic form ax2 + bxy + cy2.

The integers n that are represented by x2 +2xy+2y2 are the same as those
represented by x2 + y2, for if n = u2 + 2uv+ 2v2 then n = (u+ v)2 + v2, and if
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n = r2 + s2 then n = (r − s)2 + 2(r − s)s+ 2s2. Thus we call these two forms
equivalent. In general, binary quadratic form f is equivalent to F (X,Y ) =
f(αX + βY, γX + δY ) whenever α, β, γ, δ are integers with αδ − βγ = 1, 1 and
so f and F represent the same integers. Therefore to determine what numbers
are represented by a given binary quadratic form, we can study any binary
quadratic form in the same equivalence class. If f(x, y) = ax2 + bxy + cy2 and
F (X,Y ) = AX2 +BXY + CY 2 above, note that A = f(α, γ), C = f(β, δ) and
B2 − 4AC = b2 − 4ac (in fact B − b = 2(aαβ + bβγ + cγδ) ).

3 Algebraic Number Theory

3.1 Groups

A group is a pair G = (G, ⋆) consisting of a set of elements G, and a binary
operation ⋆ on G, such that:

1) G has an identity element, usually denoted 1G or just 1 , with the property
that

1G ⋆ g = g ⋆ 1G = g for all g ∈ G.

2)The operation is associative, meaning (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c) for any
a, b, c ∈ G. Consequently we generally don’t write the parentheses.

3) Each element g ∈ G has an inverse, that is, an element h ∈ G such that

g ⋆ h = h ⋆ g = 1G.

For example, the pair (Z,+) is a group: Z = {. . . ,−2,−1, 0, 1, 2, . . .} is the
set and the associative operation is addition. [Che16] Note that

1) The element 0 ∈ Z is an identity: a+ 0 = 0 + a = a for any a.

2) Every element a ∈ Z has an additive inverse: a + (−a) = (−a) + a = 0.
We call this group Z

3.2 Rings

A ring is a set R together with two operations (+) and (·) satisfying the follow-
ing properties (ring axioms):

(1) R is an abelian group under addition. That is, R is closed under addition,
there is an additive identity (called 0 ), every element a ∈ R has an additive
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inverse −a ∈ R, and addition is associative and commutative.

(2)R is closed under multiplication, and multiplication is associative[MzK04]:

∀a, b ∈ R a · b ∈ R
∀a, b, c ∈ R a · (b · c) = (a · b) · c

(3) Multiplication distributes over addition:

∀a, b, c ∈ R a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a

A ring is usually denoted by (R,+, ·) and often it is written only as R when
the operations are understood.

The ring R is commutative if x is commutative.

Note that:
(a) The sets Z,Q,R and C are all rings with the usual addition and multi-

plication.

(b) The integers modulo n are also a ring with the usual addition and mul-
tiplication. We also denote it by Z/nZ.

(c) The zero ring is the ring R with a single element. We denote the zero
ring by 0 . A ring is nontrivial if it is not the zero ring.[Cox11]

The study of rings has its roots in algebraic number theory, via rings that
are generalizations and extensions of the integers, as well as algebraic geometry,
via rings of polynomials. These kinds of rings can be used to solve a variety of
problems in number theory and algebra; one of the earliest such applications
was the use of the Gaussian integers by Fermat, [Row12] to prove his famous
two-square theorem. There are many examples of rings in other areas of math-
ematics as well, including topology and mathematical analysis.

3.2.1 Examples of a ring

This section lists many of the common rings and classes of rings that arise in
various mathematical contexts.

(1) The ring Z of integers is the canonical example of a ring. It is an easy
exercise to see that Z is an integral domain but not a field.
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(2) There are many other similar rings studied in algebraic number theory, of
the form Z[α], where α is an algebraic integer. For example, Z[

√
2] = {a+b

√
2 :

a, b ∈ Z} is a ring, an integral domain, to be precise. Also we have the ring of
Gaussian integers Z[i] = {a+bi : a, b ∈ Z}, where i is the imaginary unit.[Che16]

(3) If R is a ring, then so is the ring R[x] of polynomials with coefficients
in R. In particular, when R = Z/pZ is the finite field with p elements, R[x]
has many similarities with Z. For example, there is a Euclidean algorithm and
hence unique factorization into irreducibles. See the introduction to algebraic
number theory for details.

More generally, if X is a set and R is a ring, the set of functions from X
to R is a ring, with the natural operations of pointwise addition and multipli-
cation of functions. For many sets X, this ring has many interesting subrings
constructed by restricting to functions with properties that are preserved under
addition and multiplication. If X = R = R, for instance, there are subrings of
continuous functions, differentiable functions, polynomial functions, and so on.

(4) The set of n×n matrices with entries in a commutative ring R is a ring,
which is non-commutative for n ≥ 2. This ring has a unity, the identity ma-

trix. But it may have divisors of zero. E.g.

(
1 0
0 0

)(
0 0
0 1

)
=

(
0 0
0 0

)
.

This shows that

(
1 0
0 0

)
and

(
0 0
0 1

)
are divisors of zero in the ringM2(R).

3.2.2 Properties of a ring

If ab = 0 in R and a and b are nonzero, then a and b are called zero-divisors.
A ring with no zero-divisors is called a domain, and a commutative domain is
called an integral domain.[Jar14]

If n = ab is composite (where 1 < a, b < n ), then ab ≡ 0 mod n but a and
b are nonzero mod n because they are strictly smaller than n. So Z/(n) is not
an integral domain when n is composite.

On the other hand, if n is prime and ab ≡ 0 mod n, then n | ab, so n | a
or n | b because n is prime. So then either a or b is 0 mod n. So Z/(n) is an
integral domain when n is prime.[Ser12]

The integral domain condition is weaker than the field condition:

Every field is an integral domain, but not every integral domain is a field.

Here is the proof:
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Proof. First there is a Lemma: For all elements a of a ring R, a · 0 = 0 · a = 0.

Proof of lemma: Since 0 is the additive identity, 0+0 = 0. Then a ·0+a ·0 =
a ·0 by the distributive law. But we can add the additive inverse of a ·0 to both
sides, to get a · 0 = 0. The proof of 0 · a is similar.[Ser12]

Now for the proof of the result. If every nonzero element has a multiplicative
inverse, suppose ab = 0 but a and b are nonzero. Then multiply both sides by
a−1 to get a−1ab = a−10 = 0, so b = 0, contradiction. So there are no zero-
divisors.[Jar14]

To see that not every integral domain is a field, simply note that Z is an
example of an integral domain that is not a field (since e.g. 2 does not have a
multiplicative inverse in Z)

3.3 Quotient

Given a ring R and an ideal I, there is an object called the quotient ring R/I.
The example to keep in mind is R = Z and I = the ideal generated by an
integer n. Then R/I = Z/(n) is the familiar ring of integers modn.

The ring R/I is the set of elements ā, where a ∈ R. Two expressions ā and
b̄ are equal in R/I if and only if a− b ∈ I. Elements are added and multiplied
just as they are in R : ā+ b̄ = a+ b and ā · b̄ = ab.[Coh94]

The subtle part of this definition is that it is well-defined: that is, the arith-
metic in R/I gives the same results no matter which representative a of an
element ā is picked. (Again, the example to keep in mind is Z/(n).)[Coh94]

3.4 Ideals

An ideal I in a commutative ring R is a nonempty set that

(1) is closed under addition.

(2) ”swallows up” under multiplication: if r ∈ R and a ∈ I, then ra ∈
I.[Che16]

If a1, a2, . . . , an ∈ R, the set

(a1, a2, . . . , an) = {r1a1 + r2a2 + · · ·+ rnan : ri ∈ R}

is an ideal, and is called the ideal generated by the ai.

The ideal generated by one element, (a), the set of multiples of a, is called
a principal ideal. A ring in which every ideal is principal is called a principal
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ideal ring.

3.4.1 Properties of ideal

An ideal I of a ring R is prime if I ̸= R and ab ∈ I ⇒ a ∈ I or b ∈ I.

An ideal I of a ring R is maximal if I ̸= R but any ideal that strictly contains
I is the entire ring R. (That is, for an ideal J, I ⊆ J ⊆ R implies I = J or
J = R.)[MzK04]

For example, The ideal (3) of Z is prime, because if ab ∈ (3), then 3 | ab, so
3 | a or 3 | b (because 3 is a prime number), so a ∈ (3) or b ∈ (3).

It is also maximal, because if J is an ideal strictly containing I, then there
is an element j ∈ J that is not a multiple of 3 . Now, since gcd (3, j) = 1, there
are x, y ∈ Z such that 3x+ jy = 1 by Bezout’s identity, but 3x and jy are both
in J , so their sum is, so 1 ∈ J .

But then for any r ∈ R, r = 1 · r is in J , so J = R.[Cox11]

On the other hand, (4) is neither prime nor maximal, because 2 · 2 ∈ (4)
but 2 /∈ (4); and the ideal (2) is strictly larger than (4) but is not the entire ring.

Theorem 1. Let R be a commutative ring, and let I be an ideal not equal to
R. Then:

(1) R/I is an integral domain if and only if I is prime.

(2) R/I is a field if and only if I is maximal.

Here is the proof:

Proof. (1) comes directly from the definitions: if R/I is an integral domain and
ab ∈ I, then āb̄ = 0 in R/I, so ā = 0 or b̄ = 0, so a ∈ I or b ∈ I, so I is prime.
The converse is similar.

For (2), suppose I is maximal; then take a nonzero element ā ∈ R/I. Then

(a, I) = {ax+ i : x ∈ R, i ∈ I}

is an ideal, and it’s strictly bigger than I since it contains a /∈ I. So it must equal
the whole ring R, and in particular it contains 1. So there exist x0 ∈ R, i0 ∈ I
such that ax0 + i0 = 1, and in R/I this becomes

ax0 = 1

so a has a multiplicative inverse in R/I. This shows that R/I is a field. The
converse is similar.
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3.4.2 Principal Ideals and Principal Ideal Domains

Recall from the Ideals of Rings that if (R,+, ∗) is a ring then an ideal if a subring
(I,+, ∗) such that for all r ∈ R and for all i ∈ I we have that r∗i ∈ I and i∗r ∈ I.

We now define a special type of ideal called a principal ideal.

Definition: Let (R,+, ∗) be a commutative ring. An ideal of the form
aR = {a ∗ r : r ∈ R} is called a Principal Ideal generated by a.

It is easy to verify that if R is a commutative ring then for every a ∈ R, aR
is indeed an ideal of R. To show this, let q ∈ R and let ar ∈ aR. Then
qar = a(qr) ∈ aR. Similarly, (ar)q = a(qr) ∈ aR.

For example, consider the ring of integers Z. Then 2Z = {0,±2,±4, . . .} is
a principal ideal and is generated by 2 .

In fact, the principal ideal generated by k ∈ Z is:

kZ = {0,±k,±2k, . . .}

Definition: Let (R,+, ∗) be an integral domain. Then R is said to be a
Principal Ideal Domain (PID) if every ideal in ( R,+, ∗) is a principal ideal.

For example, consider the set of integers Z. We will prove that Z is a prin-
cipal ideal domain. Let I be an ideal of R.

First suppose that I = {0}. Then I = 0R, so I is a principal ideal.

Now instead suppose that I ̸= {0}. Then there exists a smallest positive
integer a ∈ I such that a > 0. Now let b ∈ I and suppose that b > a. By the
division algorithm there exists q, r ∈ R such that b = aq+ r with 0 ≤ r < a. So
r = b − aq. Since a ∈ I and q ∈ R we have that aq ∈ I. So b − aq ∈ I. This
shows that r ∈ I. Since a is the smallest positive integer in I, we must have
that r = 0. So b = aq. So every element in I is of the form b = aq, so I = aR.
Hence I is a principal ideal.

So every ideal of Z is a principal ideal, so Z is a principal ideal domain.

3.4.3 Fractional Ideals

Definition: Let R be a commutative domain and K its field of fractions. A
fractional ideal of R is an R module I contained in K, such that for a certain
non zero a ∈ R̄ we have aI ⊂ R.
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For example, the set

5

2
Z =

{
5

2
n | n ∈ Z

}
=

1

2
(5)

is a fractional ideal of Z.

In other word, a fractional ideal is a generalization of an ideal in a ring
R. Instead, a fractional ideal is contained in the number field F , but has the
property that there is an element b ∈ R such that

a = bf = {bx such that x ∈ f}

is an ideal in R. In particular, every element in f can be written as a fraction,
with a fixed denominator.

f = {a/b such that a ∈ a}

Note that the multiplication of two fractional ideals is another fractional
ideal. For example, in the field Q(

√
−5), the set

f =

{
2a1 + a2 − 5a4 + (a2 + 2a3 + a4)

√
−5

3 +
√
−5

such that ai ∈ Z} is a fractional ideal because

(3 +
√
−5)f = ⟨2, 1 +

√
−5⟩.

3.5 Number Fields and Its properties

Definition: A number field K is a field containing Q as a subfield which is a
finite-dimensional Q-vector space. The degree of K is its dimension.

If r is an algebraic number of degree n, then the totality of all expressions
that can be constructed from r by repeated additions, subtractions, multipli-
cations, and divisions is called a number field (or an algebraic number field)
generated by r, and is denoted F [r]. Formally, a number field is a finite exten-
sion Q(α) of the field Q of rational numbers.

The elements of a number field which are roots of a polynomial

zn + an−1z
n−1 + . . .+ a0 = 0

with integer coefficients and leading coefficient 1 are called the algebraic integers
of that field.
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The coefficients of an algebraic equations such as the quintic equation can
be characterized by the groups of their associated number fields. A database
of the groups of number field polynomials is maintained by Klüners and Malle.
For example, the polynomial x5 − x4 + 2x3 − 4x2 + x− 1 is associated with the
group F (5) of order 20.

An order of an algebraic number field K is a subring O ⊆ OK which is also
a Z-module of rank n = [K : Q].

Let’s say I have K = Q(
√
2). As we’ve seen before, this means OK = Z[

√
2],

meaning
OK = {a+ b

√
2 | a, b ∈ Z}

We can then think of this as a lattice, which connects to the geometrically
of algebraic number. Thus, we want to think about this the same way we think
about Z2. We could embed this into Q2 by sending a + b

√
2 to (a, b), but a

better way is to think about the fact that there are two embeddings σ1 : K → C
and σ2 : K → C, namely the identity, and conjugation:

σ1(a+ b
√
2) = a+ b

√
2

σ2(a+ b
√
2) = a− b

√
2

We can see that these embeddings both have real image. This leads us to
consider the set of points

(σ1(α), σ2(α)) ∈ R2 as α ∈ K.

This lets us visualize what OK looks like in R2. The points of K are dense
in R2, but the points of OK cut out a lattice.[Che16]
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To see how big the lattice is, we look at how {1,
√
2}, the generators of OK ,

behave.

The point corresponding to a+ b
√
2 in the lattice is

a · (1, 1) + b · (
√
2,−

√
2)

The mesh of the lattice 1 is defined as the hypervolume of the ”fundamental
parallelepiped” which is colored blue above. For this particular case, it ought
to be equal to the area of that parallelogram, which is

det

[
1 −

√
2

1
√
2

]
= 2

√
2

Suppose α1, . . . , αn is a Z-basis of OK . The discriminant of the number field
K is defined by

∆K := det

 σ1 (α1) · · · σn (α1)
...

. . .
...

σ1 (αn) · · · σn (αn)


2

Note that this does not depend on the choice of the {αi}.

4 Bijection Among Class Groups and Quadratic
Form

Let F = ax2+bxy+cy2 be a binary quadratic form over Z. We say D = b2−4ac
is the discriminant of F . If D is not a square integer and gcd(a, b, c) = 1, we
say ax2 + bxy + cy2 is primitive. If D < 0 and a > 0, we say ax2 + bxy + cy2 is
positive definite.

Let K be a quadratic number field. Let R be an order of K. Let D be
its discriminant. Let I be a fractional ideal of R. If there exists a fractional
ideal J of R such that IJ = R, I is called an invertible fractional ideal of R.
The set of invertible fractional ideals of R forms a group J(R) with the mul-
tiplications. We call J(R) the group of invertible fractional ideals of R. We
denote by P (R) the group of principal fractional ideals of R.P (R) is a sub-
group of J(R). We denote J(R)/P (R) by Cl(R).Cl(R) is called the ideal class
group of R. Let P+(R) =

{
αR;α ∈ K,NK/Q(α) > 0

}
. P+(R) is a subgroup of

P (R). We denote F (R)/P+(R) by Cl+(R). If K is a imaginary quadratic field,
Cl(R) = Cl+(R). We would like to establish a bijection between Cl+(R) and
the set of classes of primitive binary quadratic forms of discriminant D.

Let α, β ∈ K. We denote αβ′ − α′β by ∆(α, β), where α′ (resp. β′) is the
conjugate of α (resp. β ). ∆(α, β) ̸= 0 if and only if α, β are linearly indepen-
dent over Q.
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If D < 0, we define
√
D as i

√
|D|

Let I ̸= 0 be a fractional ideal of R. Let {α, β} be Z-basis of I. If
∆(−α, β)/

√
D > 0, we say the basis {α, β} is positively oriented. If ∆(−α, β)/

√
D <

0, we say the basis {α, β} is negatively oriented. Suppose {α, β} and {γ, δ} are
two positively oriented bases of I. There exist integers p, q, r, s such that

α = pγ + qδ

β = rδ + sδ

It is easy to see that ps− qr = 1.

I can be written as I = J/λ, where J is an ideal of R and λ ∈ R. We define
the norm of I as N(I) = N(J)/N(λR). It is easy to see that this is well defined.

Let x, y be indeterminates. Let {α, β} be a positively oriented basis of
I. We write f(α, β;x, y) = NK/Q(xα − yβ)/N(I). Namely f(α, β;x, y) =
(xα − yβ) (xα′ − yβ′) /N(I). It is easy to see that f(α, β;x, y) is a binary
quadratic form of discriminant D. It is also easy to see that f(α, β;x, y) is
positive definite if D < 0.

Suppose {α, β} and {γ, δ} are two positively oriented bases of I. It is a rou-
tine to check that f(α, β;x, y) and f(γ, δ;x, y) are equivalent under the action
of SL2(Z). By the corollary of proposition 2 of this question, if I is invertible,
f(α, β;x, y) is primitive.

Let {α, β} be a positively oriented basis of I. Let δ be an element of K such
that NK/Q(δ) > 0. Then {δα, δβ} is a positively oriented basis of the farctional
ideal δI.

f(δα, δβ;x, y) = NK/Q(xδα−yδβ)/N(δI) =
(
NK/Q(δ)/

∣∣NK/Q(δ)
∣∣) f(α, β;x, y)

Hence f(δα, δβ;x, y) = f(α, β;x, y)

Hence we get a map ψ : Cl+(R) → F+
0 (D)/SL2(Z) if D < 0 and ψ :

Cl+(R) → F0(D)/SL2(Z) if D > 0, where F0(D) is the set of primitive binary
quadratic forms of discriminant D and F+

0 (D) is the set of positive definate
primitive binary quadratic forms of discriminant D.
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5 Geometry of Algebraic Number

5.1 Class Fields

LetK be a number field, and let JK denote the multiplicative group of fractional
ideals of OK . Let PK denote the multiplicative group of principal fractional ide-
als: those of the form (x) = xOK for some x ∈ K.

As JK is abelian, we can now define the class group to be the quotient

ClK := JK/PK

The elements of ClK are called classes. Equivalently, The class group ClK is
the set of nonzero fractional ideals modulo scaling by a constant in K.

In particular, ClK is trivial if all ideals are principal, since the nonzero prin-
cipal ideals are the same up to scaling.

The size of the class group is called the class number.

5.2 Minkowski’s Theorem

Theorem 1. Let K ⊂ Rn be a bounded, convex, centrally symmetric set (mean-
ing that x ∈ S ⇐⇒ −x ∈ S). If in addition the volume of K satisfies vol
K > 2n, then K contains at least one non-trivial lattice point of Zn.

Theorem 2. Let K ⊂ Rn be a bounded, convex, centrally symmetric set,
which in addition is also compact (thus contains its boundary). If the volume
of K satisfies vol K ≥ 2n, then K contains at least one non-trivial lattice point
of Zn.

Note that Theorem 2 is a simple consequence of Theorem 1 and an elemen-
tary compactness argument. Let’s suppose that the volume of K satisfies vol
K = 2n. For each ϵ > 0, let Kϵ be the dilate K(1 + ϵ). Notice that the sets
Kϵ satisfy the assumption that vol Kϵ > 2n, thus by Theorem 1,Kϵ contains
a nonzero lattice point of Zn. But K1 is bounded, so there are only finitely
many possibilities for this nonzero lattice point for each ϵ ≤ 1. Thus, we can
find a sequence of ϵ ’s tending to 0 for which this lattice point is the same. The
convexity of the sets Kϵ, in combination with the fact that the sets contain 0,
implies that the sets are nested, and therefore this lattice point lies in Kϵ for
all ϵ > 0. Since K is compact, we have that

K =
⋂
ϵ>0

Kϵ,

and therefore this lattice point lies in K.

Thus, we will focus on the proof for Theorem 1.
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Proof. The idea is to look again at the cube Q = [−1, 1]n (this time its closed
version). Note that this cube is centered at the origin and that all its translates
by even coordinate vectors partition Rn. More formally, we can thus say that

Rn =
⋃

u∈2Zn

(Q+ u).

For conveniece, let us denote Q + u by Qu. Note that K is bounded, thus K
intersects only a finite set of these Qu ’s, call it Q. Now, let us look at the
sets Qu from Q and their translations back to Q. These translations will create
an agglomeration of parts of K inside Q. However, we know that volK > 2n,
whereas volQ = 2n. Therefore, there will be at least an overlap of two translated
Qu ’s; pick some point x lying in this overlap. This point x can be thus written
as x = v + y = w + z for some distinct points y, z in K and some distinct
vectors v, w in 2Zn. In particular, we get that the point y−z

2 = w−v
2 is in Zn.

But y ∈ K and −z ∈ K (as z is in K and K is centrally symmetric); thus the
convexity of K yields that y−z

2 is also K, which means that y−z
2 is a non-zero

lattice point that lies in K. This proves Minkowski’s theorem.

5.3 The Minkowski Bound

Let a ⊆ OK be any nonzero ideal. Then there exists 0 ̸= α ∈ a such that

NK/Q(α) ≤
(
4

π

)r2 n!

nn

√
|∆K | ·N(a).

6 Finding Class Number of Quadratic Number
Field

In the general case, one has a quadratic number field F , which is always of the
form Q(

√
d) for some square-free integer d.

Minkowski Bound Theorem states that every equivalence class in the ideal
class group CF of an algebraic number field F of degree n over Q, with r2
complex embeddings, contains a non-zero ideal I with norm

N(I) ≤
(
4

π

)r2 n!

nn

√
|dF |

where dF is the discriminant of F .

So in order to find the elements of the class group, we need to find ideals of
small norm in OF .
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There is a very important fact about ideals in rings of integers: N(I) ∈ I, so
I | (N(I)). Now N(I) is a natural number and can be factorised in the product
of rational primes. So if we can factorise into primes all ideals ( p ) with p ≤ c,
we will be able to find all ideals of small norm as their factors.

For example, let K = Q(
√
−14). We will show the class group is cyclic of

order 4 .

Here n = 2, r2 = 1, and disc(K) = −56. The Minkowski bound is ≈ 4.764,
so the class group is generated by primes dividing (2) and (3). The following
table shows how (2) and (3) factor in OK based on how T 2+14 factors modulo
2 and modulo 3 .

p T 2 + 14 mod p (p)
2 T 2 p22
3 (T − 1)(T + 1) p3p

′
3

Since p22 ∼ 1, p2 ∼ p−1
2 . Since p3p

′
3 ∼ 1, p′3 ∼ p−1

3 . Therefore the class group
of K is generated by [p2] and [p3].

Both p2 and p3 are nonprincipal, since they have norm 2 and 3 but the
equations a2+ 14b2 = 2 and a2 + 14b2 = 3 have no integral solutions.

To find relations between p2 and p3, we use NK/Q(2 +
√
−14) = 18 = 2 · 32.

The ideal (2 +
√
−14) is divisible by only one of p3 and p′3, since 2 +

√
−14 is

not a multiple of 3 . Without loss of generality, we may let p3 be the prime of
norm 3 dividing (2 +

√
−14). Then p2p

2
3 ∼ 1, so

p23 ∼ p−1
2 ∼ p2,

so the class group of K is generated by [ p3]. Since p2 is nonprincipal and
p22 ∼ 1, [ p3] has order 4 . Thus, the class group of K is cyclic of order 4 .

For Q(
√

(− 17)), the same procedure Cl(K) is trivial. The discriminates for
which trivial class group happens are very important and are called Heegner
numbers. And here is the definition:

Definition: A positive integer n is a Heegner number if the ring of in-
tegers of Q(

√
−n) has unique prime factorization. In fact, n = 163 is the

largest number for which Q(
√
−n) has trivial class group. The complete list is

1, 2, 3, 7, 11, 19, 43, 67, 163.
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