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Abstract. Transcendental numbers are an intriguing, yet mysterious,
subject in number theory. In this paper, we discuss some fundamental
theorems in the study of transcendental numbers from a historical per-
spective. In proving these theorems we illustrate the techniques used to
discover transcendence, such as auxiliary polynomials, rational approxi-
mations, and a general strategy to build upon. We attempt to build an
intuitive foundation for the reader without requiring many prerequisites.

1 Introduction

“Our knowledge of transcendental numbers is extraordinarily limited, and thus
these commonplace numbers remain safely shrouded in a veil of mystery.”

This quote fromMaking Transcendence Transparent by Burger and Tubbs (see [BT04]) char-
acterizes the transcendental numbers and their seemingly obscure nature. In this exposition,
we will attempt to reach a higher level of understanding of transcendence.

The main results we prove are the existence of transcendental numbers, Liouville’s the-
orem on Diophantine approximation, the transcendence of e and π, and the Lindemann
Weierstrass theorem.

We begin by defining the various types of numbers and then discover the existence
of transcendental numbers with an argument of Georg Cantor. Next, we use some ideas
from Diophantine approximation to construct the first known transcendental numbers, due
to Liouville. We then state a general strategy to prove transcendence and apply it to
Hermite’s proof that e is transcendental. Hermite’s argument can be modified to prove the
transcendence of π, and we extend this further to a generalization known as the Lindemann-
Weierstrass theorem.

2 Cantor and Classifications of Numbers

2.1 The History of Numbers

To define transcendence effectively, we take a chronological excursion through the different
classes of numbers. We begin with the set of numbers used for counting: {1, 2, 3, 4, 5, . . . }.
These are the natural numbers, N. If we take a deeper, more analytical look at N, we may
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notice that it is closed under addition. In other words, for all x, y ∈ N, x+y ∈ N. Moreover,
N is closed under multiplication. (Note that multiplication is simply repeated addition.)
What about subtraction? Consider the counterexample 2 − 5, which has no solution in
N. To construct a set which is closed under subtraction, we must add 0 and the negative
numbers, to create Z = {. . . ,−2,−1, 0, 1, 2, . . . }, the integers. However, we have still left
out one basic operation: division. We can verify that Z is not closed under division (take
2 ÷ 5, for example). What more do we need to perform all four basic operations freely?
Fractions. With this addition, we have the rational numbers Q, in which we can perform a
large range of calculations.

For approximately 1100 years after the discovery of the first fractions, ancient civiliza-
tions believed that all numbers were rational. Even

√
2, discovered using the Pythagorean

Theorem, was conjectured to be rational at first. However, Pythagorean mathematicians
later realized that

√
2 was irrational. This discovery was so appalling and controversial that

it was kept secret. Legend claims that Hippasus of Metapontum was the first to reveal a
proof to the public and was drowned as a result.

Nevertheless, mathematicians began to accept the notion of irrational numbers, and the
real numbers R became the new set believed to contain all numbers. With the development
of algebra in Arabia, it was noticed that most real numbers could be represented as solutions
to some polynomial. The handful of exceptions included e and π, but they had not even
been proven to be irrational. Thus, it was conjectured that they too were roots to some
undiscovered polynomials.

Complex and imaginary numbers were invented in the 1500s to fill in the missing roots to
polynomial equations. With so many numbers which could be characterized by polynomials,
many wondered if all numbers satisfied this condition.

Definition 2.1. A complex number is algebraic if it is a root of some nonzero polynomial
with integer (or equivalently rational) coefficients.

Were all numbers algebraic, or did there exist some which could transcend the world of
algebra? (See Figure 2.1 for a diagram of the numbers conjectured to be algebraic.) We
travel to the late 19th century, when Georg Cantor provided a straightforward argument to
answer this question using the cardinalities of sets.

2.2 Countability

We begin with a definition:

Definition 2.2. The cardinality of a set S is a measure of the number of elements in S,
denoted |S|. For finite sets, the cardinality is simply the number of elements in the set, but
this has been generalized to infinite sets as well. Two sets have the same cardinality if there
is a bijection between them.

In his first set theory article (see [Gra94]), Cantor developed the notion of countability.

Definition 2.3. An infinite set S is said to be countable if |S| = |N|. (All finite sets are
also countable, but this is of little significance.)

Equivalently, if an infinite set is countable, then there exists some order in which we can
“count” its elements. We now make the following claim, which is intuitively surprising at
first:
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Complex Numbers (C)

Real Numbers (R) Non-Real Numbers (C \ R)

Rational Numbers (Q) Irrational Numbers (R \Q) Imaginary Numbers (iR})

Integers (Z)

Natural Numbers (N)

Figure 2.1: Number Classification Tree

Theorem 2.4. The integers Z are countable. In other words, |Z| = |N|.

Proof. For every n ∈ N, both n and −n are elements of Z. Therefore, it is natural to
expect that |Z| is at least 2 times |N|. It turns out, however, that constant factors like 2 are
insignificant in the presence of infinite quantities like |N|.

To show that |N| = |Z|, we provide a one-to-one correspondence from the natural num-
bers to the integers and vice versa. Consider the following function f : N → Z and its
inverse f−1 : Z → N:

f(x) =


0 x = 1
x
2 x ≡ 0 (mod 2)

−x−1
2 x ≡ 1 (mod 2), x ̸= 1

.

f−1(x) =


1 x = 0

2x x > 0

−2x+ 1 x < 0

.

We can verify f is a bijection between N and Z. Thus, Z is countable.

With Theorem 2.4 established, we propose an even more seemingly outlandish statement:

Theorem 2.5. The rational numbers Q are countable.

Proof. We will present a strategy to “count” the rational numbers rather than a function.
Figure 2.2 depicts the strategy visually. Consider the points of Z2 on a coordinate plane.
Starting at (0, 0), follow the blue counterclockwise spiral of points depicted in the figure.
We now explain what to do at any point in time.

Suppose that during our counting strategy, we are at point (i, j) and have counted the
first n elements of Q called a1, a2, . . . , an. Then, if i

j = ak for some 1 ≤ k ≤ n or if i
j is

undefined, call the point (i, j) “bad.” (In the figure, we have circled all bad points in red.)
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Figure 2.2: Counting the rational numbers.

If (i, j) is bad, then continue to the next point in the spiral. Otherwise, set an+1 = i
j and

continue to the next point in the spiral.
This strategy is a valid bijection between N and Q because given a natural number,

we can move along the spiral to find its corresponding rational number. Similarly, given a
rational number, we can follow the spiral and strategy for a finite number of moves until we
reach the integer which it corresponds to.

The instinctive confusion we may initially have with the statements of Theorems 2.4 and
2.5 can be allayed with the following lemma, which can be applied to both results:

Lemma 2.6. The union of countably many countable sets is countable.

Proof. Suppose we have a countable number of sets, each of which is countable. Since we
have countably many sets, we can count them in some order, say A1, A2, A3, A4, . . . . Now,
since each set is countable, we can count the elements of Ai. We denote the jth element of
Ai as ai,j .

Our next step is to an order by which to count all the ai,j ’s. We begin by sorting all the
ai,j ’s by their corresponding sum i+ j. For i+ j = 2, there is only one such element: a1,1.
We count this as the first element. For i + j = 3, we have a1,2 and a2,1. We count a1,2 as
the second element and a2,1 as the third element because a1,2 has a smaller i. Continuing
this strategy, we iterate through each possible i+ j, sorting all of its corresponding a′i,js by
i value. The first few elements we count are

a1,1, a2,1, a1,2, a1,3, a2,2, a3,1, a1,4, a2,3, a3,2, a4,1, . . .

Since we are considering the union, there may be some duplicate elements. We can simply
remove those from our count if we encounter them along the way. We have presented an
order to count the union of A1, A2, A3, A4, . . . , so it is countable.
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Figure 2.3: Cantor’s diagonalization argument.

Now, we are ready to discuss Cantor’s article. His two main claims:

Theorem 2.7. The algebraic numbers are countable.

Theorem 2.8. The real numbers R are uncountable, or not countable.

Proof of Theorem 2.7. If we can show that the roots of all nonzero polynomials with integer
coefficients of degree d form a countable set, then we can apply Lemma 2.6 to prove our
desired result. We have already shown this for d = 1, since those are the rational numbers.
For other integers d, we have the following counting strategy:

Consider the set Pd of all such polynomials of degree d, in the form

adx
d + ad−1x

d−1 + · · ·+ a2x
2 + a1x+ a0.

Sort Pd lexicographically by the coefficients ad, ad−1, . . . , a2, a1, a0. Now, iterating through
Pd in this order, sort each polynomial’s roots by their complex magnitude and count them.
When there are duplicates, do not count them a second time.

Thus, the algebraic numbers are countable.

For the second claim, we present the famous proof known as Cantor’s diagonalization
argument. Contrary to popular belief, this was not presented in Cantor’s first set theory
article but in a later publication.

Proof of Theorem 2.8. See Figure 2.3 for a visualization of this proof. Suppose on the
contrary that R is countable. Then, we can count all of the reals in some order, say as a1,
a2, a3, . . . . Write down the list of ai’s in binary, such that the decimal points of each ai
line up. Add trailing zeroes if necessary. The list we have should form a table of digits like
that in the figure.

We will now construct a real number α in the interval [0, 1] which cannot possibly be in
our list. For every natural number i, make the ith digit after the decimal point of α the
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opposite of the ith digit after the decimal point of ai. That is, if the ith digit of ai is 0, let
the ith digit of α be 1, and vice versa. We claim that the binary number α built by this
process cannot be in our list. This is because for any natural number i, α ̸= ai since their
ith digits are different. We have reached a contradiction by showing that there always exists
a real number which is not in our list, regardless of its size. This completes the proof.

Here is an immediate corollary of the uncountability of R:

Corollary 2.8.1. The complex numbers C are uncountable.

Proof. Since R ⊂ C and R is uncountable, |N| < |R| ≤ |C|. C has cardinality greater than
that of the natural numbers, so it is uncountable.

Since the set of all algebraic numbers is countable while the set of all complex numbers
is uncountable, Cantor concluded that there must exist complex numbers which are not
algebraic. (In fact, the vast majority of complex numbers are not algebraic.) With this
established, we are finally ready to define the transcendental numbers.

Definition 2.9. A complex number is transcendental if it is not algebraic.

Notice that the transcendental number is defined by what it is not, rather than what it
is. This nuance is the root cause of the extreme difficulty it requires to show that a number
is transcendental.

3 Liouville Discovers Transcendence

Georg Cantor was not the first to disprove the conjecture that all complex numbers are
algebraic. In 1844, thirty years before Cantor’s work, Joseph Liouville did the same by
cleverly constructing the first transcendental numbers from an elegant result. To understand
what influenced his thought process, we present some ideas from Diophantine approximation.

3.1 Diophantine Approximation

Diophantine approximation is the approximation of irrational numbers with rational num-
bers, having origins in Ancient Greece. For ancient civilizations, rational approximations
of many irrational numbers were of practical use in fields like architecture and engineering.
Additionally, early mathematicians were very interested in computing famous irrational
numbers to various levels of precision. As a result, by Liouville’s time, significant progress
had been made in the theory of Diophantine approximation.

To develop some basic intuition on the subject, let’s try to approximate
√
2 ourselves.

Without much thought, we can come up with 3
2 . This may seem useless, but given the size

of its denominator, 3
2 is indeed quite close to

√
2. With a bit more experimentation, we can

find 7
5 , which is within 2 hundredths of

√
2. Much closer, but can we do better? 17

12 is the

next approximation which is noticeably better than 7
5 , getting within 3 thousandths of

√
2.

If we continue this trend, we get the following sequence, known as the Pell-Lucas numbers:

1

1
,
3

2
,
7

5
,
17

12
,
41

29
,
99

70
,
239

169
,
577

408
, . . . .

Evidently, we can find more rational approximations and get closer and closer to
√
2, but

the denominators of the approximations are growing rapidly. Is 577
408 really that much better
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than 17
12 , given the level of precision with which twelfths are defined as opposed to 408ths?

Similarly, is the rate at which the denominators of the approximations grow proportional
to the rate at which the distance to

√
2 shrinks?

We can measure how “good” a rational approximation p
q of some real α is by counting

how many orders of magnitude (in terms of q) it is away from α. Mathematically phrased,
the largest integer u such that ∣∣∣∣α− p

q

∣∣∣∣ < 1

qu

helps measure how good p
q is at approximating α. We now have the background to motivate

Liouville’s result.

3.2 Liouville’s Theorem

In his studies of Diophantine approximation, Liouville noticed that irrational algebraic num-
bers cannot be approximated very well by rational numbers. We provide a preliminary
definition before stating the theorem:

Definition 3.1. The minimal polynomial p(z) associated with an algebraic number α is
the unique polynomial satisfying the following criteria:

• p(α) = 0,

• p(z) is irreducible,

• the coefficients of p(z) are all relatively prime integers,

• the leading coefficient of p(z) is positive.

Theorem 3.2 (Liouville). Suppose α is an irrational algebraic number, and d is the degree
of the minimal polynomial associated with α. Then, there exists some constant c depending
entirely on α such that for all rationals p

q , we have

c

qd
≤

∣∣∣∣α− p

q

∣∣∣∣.
That is to say, if α is irrational and algebraic, α cannot be approximated by some rational

p
q which gets within −d orders of magnitude (q−d) of α.

Proof. We begin with the case where α is a complex number. Let α = a + bi for some
a, b,∈ R. Then, since p

q is a real number,∣∣∣∣α− p

q

∣∣∣∣ = ∣∣∣∣a+ bi− p

q

∣∣∣∣ ≥ b ≥ b

qd
.

Thus, we let c = b since b
qd

≤ b ≤ |α− p/q|. From now on, we assume that α ∈ R. We now

consider another case: where p
q is a bad approximation of α. If

1 <

∣∣∣∣α− p

q

∣∣∣∣,
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then we can simply set c = 1 since 1
qd

≤ 1 for all q, d. Now, we can assume p
q is at most 1

away from α for the rest of the proof.
Let f be the minimal polynomial of α, and recall that d is the degree of f by definition.

Consider f(p/q), which is

f

(
p

q

)
= ad

(
p

q

)d

+ ad−1

(
p

q

)d−1

+ · · ·+ a1

(
p

q

)
+ a0,

where the ai’s are the integer coefficients of f . We can rewrite this expression as a fraction
with denominator qd as follows:

f

(
p

q

)
=

adp
d + ad−1p

d−1q + · · ·+ a1pq
d−1 + a0q

d

qd
.

For simplicity, let N be the numerator of the RHS. Note that N is an integer. It is also
nonzero because f is irreducible, so f(p/q) ̸= 0. We can use these two facts to construct a
simple bound:

1

qd
≤ |N |

qd
=

∣∣∣∣f(p

q

)∣∣∣∣.
The LHS of the inequality is starting to look like what we want, and it explains the mo-
tivation for considering f(p/q). But we are still missing one piece of the puzzle: α. Since
f(α) = 0 by definition, we can simply add it in as we like. We now have

1

qd
≤

∣∣∣∣f(α)− f

(
p

q

)∣∣∣∣.
We need to get rid of f in our inequality and somehow end up with |α− p/q| on the RHS.
Fortunately, the Mean Value Theorem fixes this issue. It states that for some ξ in between
α and p

q ,

f ′(ξ)

(
α− p

q

)
= f(α)− f

(
p

q

)
.

Substituting this into our inequality gives

1/|f ′(ξ)|
qd

≤
∣∣∣∣α− p

q

∣∣∣∣.
It seems as if we can set c = 1/|f ′(ξ)| and complete the proof, but ξ is defined in terms of
both α and p

q . We need a constant determined entirely by α. By our assumption early in

the proof that |α− p
q | ≤ 1, we know that α− 1 ≤ ξ ≤ α+ 1. Therefore, we can set

m = max
α−1≤x≤α+1

|f ′(x)|.

Note that m depends entirely on α. Since m ≥ |f ′(ξ)|, we know that

1/m

qd
≤ 1/|f ′(ξ)|

qd
≤

∣∣∣∣α− p

q

∣∣∣∣.
Thus, we set c = 1

m for the case when α is real and |α− p/q| ≤ 1
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3.3 The First Transcendental Numbers

Since we have shown that irrational algebraic numbers cannot be approximated very well
by rationals, any such number that can must be transcendental! Our first transcendental
number:

Corollary 3.2.1. The number

L1 =

∞∑
n=1

10−n! = 0.11000100000000000000000100 . . .

is transcendental.

Proof. We first show that L1 is irrational so that we can derive a contradiction from Li-
ouville’s theorem. To do this, note that the number of zeros between each pair of ones in
the decimal expansion grows without bound, so L1 cannot be a terminating or repeating
decimal. Now that we know L1 is irrational, suppose for the sake of contradiction that there
exists some c satisfying

c

qd
≤

∣∣∣∣L1 −
p

q

∣∣∣∣
for all p, q. We will use some good rational approximations of L1 to show that there p, q for
which we cannot construct a valid c in terms of α. Consider truncations of the the series
which defines L1, or

pN
qN

=

N∑
n=1

10−n!.

We set

pN = 10N !
N∑

n=1

10−n!,

qN = 10N !.

Because of the way L1 is defined, these are very good approximations of it. We have∣∣∣∣L1 −
p

q

∣∣∣∣ = ∞∑
n=1

10−n! −
N∑

n=1

10−n! =

∞∑
n=N+1

10−n!.

To bound c, we can form an upper bound on |L1 − p
q |, which is easy to do with a geometric

series. Since 10−n! < 10−n for all n > 2,∣∣∣∣L1 −
p

q

∣∣∣∣ = ∞∑
n=N+1

10−n! <

∞∑
n=N+1

10−n =
10

9
10−(N+1)!

by the formula for geometric series. Connecting this to our proposed inequality with c, we
have

c

qd
= 10−dN !c ≤

∣∣∣∣L1 −
p

q

∣∣∣∣ < 10

9
10−(N+1)!.

To reach the contradiction, we remove the middle expression to deal with just c, d, and N .
Because 0 < 10−dN !c, we have

0 < 10−dN !c <
10

9
10−(N+1)!,

9



which can be rewritten as

0 < 9 <
10

c
10dN !−(N+1)!.

For any N ≥ d, the exponent 10dN !−(N+1)! gets arbitrarily close to 0 as N increases. Thus,
if we choose sufficiently large N , the RHS expression will be less than 1 regardless of c (c
cannot be defined in terms of N). This gives us

0 < 9 <
10

c
10dN !−(N+1)! < 1

for N greater than some N1. Since 9 is not in between 0 and 1, we have a contradiction.
The only problem with our argument is the assumption that Liouville’s Theorem holds true
for L1, so L1 is transcendental.

All numbers which can be approximated very well like L1 are named after Liouville in
his honor.

Definition 3.3. A Liouville number is a real number with very good rational approxima-
tions. Formally, L is a Liouville number if for all positive integers n, there exists a rational
number p

q such that ∣∣∣∣L − p

q

∣∣∣∣ < 1

qn
.

By Liouville’s theorem and the definition of Liouville numbers, we know that

Theorem 3.4. All Liouville numbers are transcendental.

An interesting consequence of the way Liouville numbers are defined is the following:

Theorem 3.5. Every real number can be represented as the sum and product of two Liouville
numbers.

See [Erd32] for the proof. With Theorem 3.5 established, it seems as if the Liouville
numbers are abundant and might even be able to help us prove the transcendence of other
real numbers. However, this is not the case. It turns out that the set of Liouville numbers
has measure 0. In other words, the probability of randomly choosing a Liouville number
from R is 0.

We conclude by realizing that the Liouville numbers were designed specifically to make it
easier to prove their transcendence. Because the vast majority of numbers do not have desir-
able Liouville properties, we must employ other techniques to discover more transcendental
numbers.

It is logical to wonder whether the bound c/qd in Liouville’s theorem can be improved
to reveal the transcendence of more numbers and provide a better characterization of the
algebraic numbers. This was of great interest to many mathematicians, including Axel
Thue, Carl Ludwig Siegel, Freeman Dyson, and Klaus Roth. Roth was awarded the Fields
Medal in 1958 for his groundbreaking improvement:

Theorem 3.6. Suppose α is an irrational algebraic number and ϵ is any (very small)
positive number. Then, there exists a positive constant c depending on α and ϵ such that for
all rationals p

q ,

c

q2+ϵ
<

∣∣∣∣α− p

q

∣∣∣∣.
10



Roth’s theorem allows us to prove the transcendence of a few more numbers (such as
the Champernowne constant), but even now, the vast majority of transcendental numbers
remain unproven. Is more work being done to improve Roth’s result and perhaps unearth
more transcendental numbers? It turns out that Roth optimized Liouville’s theorem so well
that it cannot be pushed much further. Consider this immediate corollary of Dirichlet’s
approximation theorem:

Theorem 3.7. For irrational α, there exist infinitely many integers p, q such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2

This means that if ϵ = 0 in Theorem 3.6, the statement would not hold. Roth’s theorem
is (almost) the best possible improvement to Liouville’s theorem. Therefore, we are forced
to abandon Liouville’s techniques in pursuit of more results about transcendence.

We noticed that the Liouville numbers have a special property which helps dramatically
in proving their transcendence: good rational approximations. Another number with many
special properties and more mathematical relevance is e. We investigate its transcendence
next.

4 The Transcendence of e

Euler’s number e is needs no introduction, appearing in a variety of formulas and natural
observations. Among the numbers conjectured to be transcendental after Liouville’s results,
e was the first to be proven so, by Charles Hermite in 1873. We begin our discovery that
e and a number of its cousins are transcendental by providing a general strategy to prove
transcendence. Some of the strategy is motivated by our proof of Corollary 3.2.1.

4.1 How to Prove a Number is Transcendental

This subsection is adapted primarily from [BT04].
Suppose we wish to prove that α is transcendental. Since a transcendental number

is defined by being not algebraic, we will employ proof by contradiction. Consequently,
our first step is to assume that α is the solution to some nonzero polynomial with integer
coefficients, say

p(x) = adx
d + ad−1x

d−1 + · · ·+ a2x
2 + a1x+ a0.

We wish to show that if p(α) = 0, we can manipulate this equation to derive a contradiction
to some underlying principle of mathematics.

One way to do this is to build an integer N using the coefficients of p and α. If we
build a good integer N using some properties of α, we can provide lower and upper bounds
on N . We can use these bounds to show that N lies between consecutive integers or even
conflicting bounds (ie A < N and N < B but A > B). Since N is not an integer, we have
reached a contradiction.

Now, (if all our statements directly follow from each other,) the only possible flaw in the
argument is our assumption that α is algebraic. Thus, α is transcendental. See Table 4.1
for a condensed version of this subsection.

Building an integer N which we can bound requires some helpful properties of α. There-
fore, to begin our journey to the transcendence of e, we state a few useful facts about
e:
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Steps
1. Assume on the contrary that α is a root of some polynomial p.
2. Build an integer N using α and the coefficients of p.
3. Find a lower bound A on N .
4. Find an upper bound B on N .
5. Show that N cannot be an integer using A and B.
6. Conclude that since N cannot be an integer, α must be transcendental!

Table 4.1: Six Steps to Prove α is Transcendental

Theorem 4.1.

ex =

∞∑
n=0

xn

n!
=

1

0!
+

x

1!
+

x2

2!
+

x3

3!
+

x4

4!
+ . . . .

Theorem 4.2 (Gamma function).

Γ(n) =

∫ ∞

0

xn−1e−xdx = (n− 1)!.

Theorem 4.3 (Euler).
eiθ = cos(θ) + i sin(θ).

Corollary 4.3.1.
eiπ = −1.

4.2 The Irrationality of e

To motivate how we will approach the transcendence of e, let’s start with a simpler problem.
Instead of showing e is not the solution to any polynomial with integer coefficients, we can
consider only polynomials of degree 1. Namely, we will show that

Theorem 4.4. e is irrational.

We present Fourier’s remarkably quick proof.

Proof. Suppose, for the sake of contradiction, that e is rational. Then, let the nonzero
polynomial p(x) = sx− r satisfy p(e) = 0. Then, it follows that e = r

s .
Following the strategy from the previous section, our next step is to build an integer

which we can bound. Consider Theorem 4.1, which we restate:

ex =

∞∑
n=0

xn

n!
=

1

0!
+

x

1!
+

x2

2!
+

x3

3!
+

x4

4!
+ . . . .

If we substitute x = 1, we have

e =

∞∑
n=0

1

n!
=

1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+ . . . . (1)

12



This allows us to produce very good approximations of e by truncating the series. If we
subtract the truncation at s from e, we get

e−
s∑

n=0

1

n!
=

r

s
−

s∑
n=0

1

n!
.

This is evidently a positive number, so we have

0 <
r

s
−

s∑
n=0

1

n!
,

the foundation for our lower bound. We wish to build an integer, so we can multiply the
inequality by s! to cancel denominators.

0 < s!

(
r

s
−

s∑
n=0

1

n!

)
.

This gives us not only our desired integer, but the lower bound as well. All we have left to
find is an upper bound. If we substitute (1) back in for r

s , we get

s!

( ∞∑
n=0

1

n!
−

s∑
n=0

1

n!

)
= s!

( ∞∑
n=s+1

1

n!

)
=

1

(s+ 1)
+

1

(s+ 1)(s+ 2)
+ . . . .

Since s+ 1 > 2, 1
s+1 < 1

2 . Thus, we have

1

(s+ 1)
+

1

(s+ 1)(s+ 2)
+

1

(s+ 1)(s+ 2)(s+ 2)
+ · · · < 1

(2)
+

1

22
+

1

23
= 1

by the formula for a geometric series. Combining our inequalities, we have

0 < s!

(
r

s
−

s∑
n=0

1

n!

)
< 1.

Thus, our expression cannot be an integer, so e must be irrational.

It turns out that we cannot directly use e’s power series to prove its transcendence, but
we have practiced the strategy from Table 4.1 effectively. The next course of action is to
explore the property of e that will help us do the job.

4.3 The Gamma Function and the Proof

We will present Hilbert’s simplified and modified version (from [Hil32]) of Hermite’s proof,
rather than the original. The main ingenious ideas of Hermite’s are in building the ideal
integer N to bound and construct a contradiction for. For a detailed exposition on why
Hermite considered the specific integrals and auxiliary polynomial(f) that we will utilize in
the proof, see [Coh06] on the Padé approximations of irrational numbers. We turn to the
gamma function to discover these same tools.

Recall Theorem 4.2, the gamma function:

Γ(n) =

∫ ∞

0

xn−1e−xdx = (n− 1)!.

13



The second equality arises from integration by parts. We have little interest in the function
Γ itself, so we’ll replace n− 1 with k:∫ ∞

0

xke−xdx = k!.

Note that for any polynomial f ∈ Z[x], we have∫ ∞

0

f(x)e−xdx ∈ Z. (2)

This follows because f(x) is a polynomial with integer coefficients, so we can represent the
above expression as a sum of gamma integrals.

For some large prime p, we also notice that

1

(p− 1)!

∫ ∞

0

xke−xdx =
k!

(p− 1)!
=

{
1, k = p− 1

a multiple of p, k > p− 1.
(3)

(The case where k < p − 1 will not be significant in the future.) This will be of use to us
when providing arguments for divisibility by p and p− 1.

We combine the integrals from (2) and (3) to get

1

(p− 1)!

∫ ∞

0

f(x)e−xdx,

which we will investigate in the proof. Using the above integral, let’s construct an expression
for ek where k is an integer. With no effort, we have

ek =
ek/(p− 1)! ·

∫∞
0

f(x)e−xdx

1/(p− 1)! ·
∫∞
0

f(x)e−xdx
.

This seems to be useless. However, since d
dke

k = ek, we can put the ek into the integral to
get

ek =
1/(p− 1)!

∫∞
0

f(x)ek−xdx

1/(p− 1)!
∫∞
0

f(x)e−xdx
. (4)

We are interested in an expression for ek because any polynomial in e will have terms of
the form ake

k. Notice that f(x) remains unspecified; we will choose this auxiliary polynomial
in the proof. With (3) and (4) in mind, we are ready to prove the transcendence of e, using
our favorite six-step strategy (from Table 4.1).

Theorem 4.5. e is transcendental.

Proof. We begin with the assumption that e is algebraic. Let there be a nonzero polynomial

a(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0

with integer coefficients such that a(e) = 0.
Our next step is to build an integer N . Let

f(x) = xp−1(x− 1)p(x− 2)p . . . (x− d)p

14



for some large prime p. (This relates to (3).) The reasoning behind this choice of f will
become apparent later in the proof. Now, consider (4). We can split the integral in the
numerator into two parts: from 0 to k and k to ∞. We have

1

(p− 1)!

∫ ∞

0

f(x)ek−xdx =
1

(p− 1)!

∫ k

0

f(x)ek−xdx+
1

(p− 1)!

∫ ∞

k

f(x)ek−xdx.

For all 1 ≤ k ≤ d, define

δk =
1

(p− 1)!

∫ k

0

f(x)ek−xdx,

Rk =
1

(p− 1)!

∫ ∞

k

f(x)ek−xdx.

Also, let

S =
1

(p− 1)!

∫ ∞

0

f(x)e−xdx.

With these substitutions into (4), we have

ek =
Rk + δk

S
. (5)

We claim that S is an integer and p ∤ S. If we expand f(x), all the terms are multiples
of xp−1, so it follows by (3) that S is an integer. p ∤ S because in the expansion of f(x),
there is only one term that is not divisible by xp. We have

f(x) = xp−1(x− 1)p(x− 2)p . . . (x− d)p

= xp−1(−1)p(−2)p . . . (−d)p + a huge multiple of p.

If p is sufficiently large, the integral of this term cannot be a multiple of p!, so p ∤ S. The
goal of making S an integer while ensuring that p ∤ S inspires the xp−1 term in f(x).

For all 1 ≤ k ≤ d, Rk is also an integer but p | Rk. If we substitute t = x − k into the
expression for Rk, we have

Rk =
1

(p− 1)!

∫ ∞

k

f(x)ek−xdx =
1

(p− 1)!

∫ ∞

0

f(t+ k)e−tdx.

Since 1 ≤ k ≤ d, there is a term (x − k)p in f(x). Therefore, we will have a term tp in
f(t+ k). If we expand f(t+ k), all the terms will be multiples of tp, so p | Rk by (3). The
goal of making Rk a multiple of p motivates all the (x− k)p terms in f(x).

Since both Rk and S are integers (and we can verify δk is a small number), we have
constructed rational approximations Rk

S of ek. Notice that the approximations of ek for
each k have the same denominator S. Thus, to start building our integer, we consider
S · a(e) and substitute (5) for all 1 ≤ k ≤ d.

S · a(e) = S

(
a0 +

d∑
k=1

ak
Rk + δk

S

)

= Sa0 + S

d∑
k=1

ak(Rk + δk)

= Sa0 + S

d∑
k=1

akRk + S

d∑
k=1

akδk

15



Remember that we assumed that a(e) = 0, so S · a(e) = 0. Let

R = S

d∑
k=1

akRk,

and our desired integer

N = S

d∑
k=1

akδk.

N is an integer because S · a(e), Sa0, and R are integers.
For step 3 (in Table 4.1), we now provide the lower bound 0 < |N |. Since p ∤ S while

p | Rk and we can choose p > a0,
p | S · a(e) = 0,

p ∤ Sa0,

p | R = S

d∑
k=1

akRk.

Thus, we have
|N | = |S · a(e)− Sa0 −R| > 0,

because an integer multiple of p minus an integer which is not a multiple of p cannot be 0.
For step 4, We will show that |N | < 1 by providing an upper bound on |N | involving p.

Note that every term in f(x) is of the form x − k for 0 ≤ k ≤ d. For all 1 ≤ x ≤ d, Since
|x− k| ≤ d, we have

f(x) ≤ ddp+p−1

because the degree of f is dp+ p− 1. Plugging this into the expression for δk yields

δk ≤ edd(d+1)p

(p− 1)!
.

Given d and any ϵ > 0, we can make δk < ϵ with a sufficiently large p. Since N is a linear
combination of δk’s, we can also ensure that |N | < 1 for a large enough p.

Thus, as long as p is very large, 0 < |N | < 1, so N cannot be an integer. We have
reached our contradiction, so e is transcendental!

We dealt with e raised to integers in the above proof. Recall the famous relation Corollary
4.3.1, which we state here:

eiπ = −1.

Equivalently, we have
eiπ + 1 = 0.

This is a polynomial in e, just with complex exponents instead of integers. Is it possible
to manipulate our special integrals to reveal the transcendence of π? With this in mind,
our next venture is to tackle the transcendence of π and search for a great generalization to
Theorem 4.5.
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5 Lindemann and π

In 1882, Ferdinand von Lindemann generalized Hermite’s argument and showed that π is
transcendental with the following theorem:

Theorem 5.1 (Hermite-Lindemann). eα is transcendental for all algebraic nonzero α.

This establishes the transcendence of π because if π is algebraic and is a solution to
some polynomial p(x) with integer coefficients, then iπ is also algebraic because q(iπ) =
p(iπ)p(−iπ) = 0. If iπ is algebraic, eiπ should be transcendental by Theorem 5.1. Since eiπ =
−1 which is clearly not transcendental, we have a contradiction, so π must be transcendental.

There are many other important corollaries to the Hermite-Lindemann theorem:

Corollary 5.1.1. If α is a nonzero real algebraic number, sin(α), cos(α), and tanα are
transcendental.

We provide an argument assuming that if we have polynomials p, q ∈ Z[x] satisfying
p(a) = 0 and q(b) = 0, then we can construct a polynomial r ∈ Z[x] satisfying r(a+ b) = 0
or r(ab) = 0.

Proof. Recall Theorem 4.3, which states that

eiθ = cos (θ) + i sin (θ).

Now, suppose on the contrary that cos (α) is algebraic. Then, because

cos2 (α) + sin2 (α) = 1,

it follows that sin (α) is algebraic. This means i sin (α) is algebraic as well, so eiα must be
algebraic by Theorem 4.3. Since we know eiα is transcendental by the Hermite-Lindemann
theorem, we have reached a contradiction, so cos (α) is transcendental. We can swap the
sines and cosines to show the same for sin (α).

To show that tan (α) is transcendental, we provide the following formula:

cos (θ) =
1√

1 + tan2 (θ)
.

Thus, if tan (α) is algebraic, cos (α) must be algebraic. Since we have just shown cos (α) to
be transcendental, tan (α) must be as well.

Corollary 5.1.2. If α ̸= 0, 1 is a real algebraic number, lnα is transcendental.

Proof. If lnα is algebraic, then elnα should be transcendental. But elnα is simply equal to
α (which we defined as algebraic), so lnα is transcendental.

We will not actually prove the Hermite-Lindemann theorem, but instead consider the
case of π. To show that π is transcendental, we will need to understand some important
modifications to our proof of the transcendence of e as well as a few results from the theory
of symmetric polynomials.
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5.1 The New Integral

In proving the transcendence of e, we used

δk =
1

(p− 1)!

∫ k

0

f(x)ek−xdx,

Rk =
1

(p− 1)!

∫ ∞

k

f(x)ek−xdx,

S =
1

(p− 1)!

∫ ∞

0

f(x)e−xdx,

to get

ek =
Rk + δk

S
.

Rk

S were very good rational approximations of ek. Therefore, we showed that if there exists a
polynomial a with integer coefficients such that a(e) = 0, the error of the linear combination
of approximations

S

d∑
k=1

akδk = S · a(e)− Sa0 − S

d∑
k=1

akRk

is not an integer, where ai are the coefficients of a.
The main unique idea in Hilbert’s proof (which we presented) as opposed to the original

one is the phrasing of δk as the error term of a rational approximation of ek. It turns out
that we need not view δk from the perspective of rational approximations, which is what
Hermite originally did. Hermite provided bounds on

d∑
k=0

(
ak

∫ k

0

f(x)ek−xdx

)
,

which is just a simpler formation of the sum of δk’s, without any reliance on the notion of
rational approximations.

Although this method has less clear motivation, it will be much easier to generalize to
π. Thus, we define

I(k, f) =

∫ k

0

f(x)ek−xdx,

where f is the auxiliary function with integer coefficients that we will choose later. Because
we have abandoned our reliance on the framework of rational approximation, we must
explore some new properties involving I(k, f) to help build a good real number and form
bounds on it.

First, with repeated integration by parts, we have

I(k, f) = ek
m∑
j=0

f (j)(0)−
m∑
j=0

f (j)(k), (6)

where m = deg f and f (j)(x) is the jth derivative of f(x).
If

f(x) =

m∑
i=0

bix
i,
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then let

f̄(x) =

m∑
i=0

|bi|xi.

With the help of norms, we have

|I(k, f)| ≤
∫ k

0

|f(x)ek−x|dx ≤ |k|e|k|f̄(|k|). (7)

This will be our main mechanism for constructing an upper bound on |I(k, f)|.

5.2 Symmetric Polynomials

We now discuss the necessary background on symmetric polynomials.

Definition 5.2. A polynomial P in n variables is said to be symmetric if for all permutations
σ of [n], we have

P (X1, X2, . . . , Xn) = P (Xσ1
, Xσ2

, . . . , Xσn
).

In other words, changing the order of the variables does not affect the polynomial. Some
examples of symmetric polynomials include X2

1 + 7X1X2 +X2
2 and

4X3
1 + 4X3

2 + 4X3
3 + 2X1X2 + 2X2X3 + 2X1X3 + (X1 +X2 +X3)

5.

Definition 5.3. The degree d elementary symmetric polynomial of (X1, X2, . . . , Xn) is the
sum of the distinct products of a subset of d elements from {X1, X2, . . . , Xn}. For 1 ≤ d ≤ n,
we have the elementary symmetric polynomials ed:

e1(X1, X2, . . . Xn) =
∑

1≤a≤n

Xa,

e2(X1, X2, . . . Xn) =
∑

1≤a<b≤n

XaXb,

e3(X1, X2, . . . Xn) =
∑

1≤a<b<c≤n

XaXbXc,

. . .

en(X1, X2, . . . Xn) = X1X2 . . . Xn.

For example, the elementary symmetric polynomials in 3 variables are

e1(X1, X2, X3) = X1 +X2 +X3,

e2(X1, X2, X3) = X1X2 +X2X3 +X1X3,

e3(X1, X2, X3) = X1X2X3.

Proposition 5.4. The d roots of a polynomial a(x) = adx
d + ad−1x

d−1 + · · · + a1x + a0
with integer coefficients have elementary symmetric polynomials which are rational.

Proof. Let the roots of a(x) be r1, r2, . . . , rd. Then, by the fundamental theorem of algebra,
we have

ad(x− r1)(x− r2) . . . (x− rd) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0.
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By considering the terms with d− k x’s in the expansion of the LHS, we get

ad(−1)kek(r1, r2, . . . , rd) = ad−k.

We can rearrange this to get

ek(r1, r2, . . . , rd) =
ad−k(−1)k

ad
,

which is a rational number.

Theorem 5.5 (Fundamental Theorem of Elementary Symmetric Polynomials). Any sym-
metric polynomial P (X1, X2, . . . , Xn) can be expressed as a polynomial in the elementary
symmetric polynomials ek(X1, X2, . . . , Xn). We have

P (X1, X2, . . . , Xn) = Q

(
e1(X1, X2, . . . , Xn), . . . , en(X1, X2, . . . , Xn)

)
.

Essentially, the elementary symmetric polynomials are the building blocks of all sym-
metric polynomials. Consider the example

P (X1, X2) = X2
1 +X3

2 −X1X2 = e1(X1, X2)
2 − 3e2(X1, X2).

See [Mac98] for a proof of Theorem 5.5. This concludes our discussion of symmetric
polynomials, and we are ready to prove that π is transcendental. The proofs in the next
two subsections are taken from [Bak90].

5.3 The Transcendence of π

Theorem 5.6. π is transcendental.

Proof. Recall that it suffices to show that iπ is transcendental. (If iπ is not algebraic, then
π cannot be algebraic.)

As usual, assume that iπ is the solution to some nonzero polynomial

a(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0

with integer coefficients. Define θ1 = iπ, and let θ2, θ3, . . . , θd be the other roots of a. Since

eiπ + 1 = 0,

we have
(1 + eθ1)(1 + eθ2) . . . (1 + eθd) = 0.

Expanding this without any simplification yields 2d terms of the form eα. We know that
each exponent

α = ϵ1θ1 + ϵ2θ2 + · · ·+ ϵdθd,

where ϵj ∈ {0, 1}. Since at least one α is 0, let the nonzero α be α1, α2, . . . , αn, where n is
some number less than 2d. We have

2d − n+ eα1 + eα2 + · · ·+ eαn = 0. (8)
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For some large prime p, let our auxiliary function f be

f(x) = anpd xp−1(x− α1)
p(x− α2)

p . . . (x− αn)
p.

This is very similar to the f we used in proving the transcendence of e. The main difference
is that we multiply by ad a total of np times, which will cancel some denominators in the
future. Using f , we define our integer

N = I(α1, f) + I(α2, f) + · · ·+ I(αn, f).

Unlike the case of e, it is not clear that N is an integer. Therefore, we will show that
N ∈ Z while simultaneously constructing the lower bound on N . By (6), we have

N =

n∑
i=1

(
ek

m∑
j=0

f (j)(0)−
m∑
j=0

f (j)(k)

)

=

n∑
i=1

eαi

m∑
j=0

f (j)(0)−
n∑

i=1

m∑
j=0

f (j)(αi)

= (n− 2d)

m∑
j=0

f (j)(0)−
n∑

i=1

m∑
j=0

f (j)(αi)

= (n− 2d)

m∑
j=0

f (j)(0)−
m∑
j=0

n∑
i=1

f (j)(αi),

where m = deg f = np− p− 1. We know that n− 2d =
∑n

i=1 e
αi from (8).

Let’s start making our lower bound by dealing with the double sum

m∑
j=1

n∑
i=1

f (j)(αi).

We claim that

S1 =

n∑
i=1

f (j)(αi)

is an integer. To see this, notice that S1 is a symmetric polynomial in all 2r exponents of
the form α (not just the αi’s), and therefore a symmetric polynomial in θ1, θ2, . . . , θd. By
Theorem 5.5 and Proposition 5.4, S is rational. Since f has a factor of anpd , the denominators
of every f (j)αi will cancel out. (The proof of Proposition 5.4 states the denominators in
question.) Thus, S1 ∈ Z, so the double sum is an integer.

Now, consider the derivatives f (j)(αi). If j < p, f (j)(αi) = 0. If j ≥ p, all the nonzero
terms in the expansion have (x − αi)

p differentiated into p!, so p! | f j(αi). Therefore, the
double sum is an integer divisible by p!.

Next, we’ll work with the remaining portion of N , namely

S2 = (n− 2d)

m∑
j=0

f (j)(0).

By similar reasoning to the consideration of f (j)(αi), we know that p! | f (j)(0) for all
j ̸= p− 1. For j = p− 1, however, we end up with

f (p−1)(0) = (p− 1)!(−ad)
np(α1α2 . . . αn)

p,
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because the remaining terms in f (p−1)(0) are equal to 0. Note that f (p−1)(0) is a nonzero
integer multiple of (p− 1)!, but it is not divisible by p if p is sufficiently large. Thus, if p is
also larger than 2d − n = |n − 2d|, S2 is a nonzero integer multiple of (p − 1)! but not p!.
Combining this with our characterization of the double sum, we have that N is a nonzero
integer and |N | ≥ (p− 1)!.

We now use (7) to create an upper bound on |N |. We can show that

|N | ≤
n∑

i=1

|αi|e|αi|f̄(|αi|) ≤ c1c
p
2,

where c1 and c2 are constants. One example that works is c1 = eM and c2 = 2n|αd|nMn+1,
whereM is the maximum value of |αi|. For sufficiently large p, however, (p−1)! ≥ c1c

p
2, so we

have contradictory bounds. Therefore, N cannot be an integer, so π is transcendental!

Having established the transcendence of π, Lindemann wondered if Hermite’s proof could
be extended even further.

5.4 The Lindemann-Weierstrass Theorem

We begin with a definition:

Definition 5.7. Two complex numbers α1 and α2 are linearly independent over the alge-
braic numbers if for all nonzero algebraic β1 and β2,

β1α1 + β2α2 ̸= 0

In other words, there is no linear combination of α1 and α2 with algebraic coefficients equal
to 0.

By Definition 5.7, the Hermite-Lindemann theorem (Theorem 5.1) is equivalent to the
statement that for all nonzero algebraic numbers α, we know that eα, e2α, e3α, . . . are
linearly independent over the algebraic numbers.

A natural question arises from this phrasing: can we establish the linear independence of
n distinct numbers eα1 , eα2 , eα3 , . . . eα4 , where the αi’s are algebraic? Lindemann pondered
this generalization and managed a sketch of the proof. In 1885, Karl Weierstrass filled in
most of the key details, along with David Hilbert among others. We have

Theorem 5.8 (Lindemann-Weierstrass). Let α1, α2, α3, . . . , αn be distinct algebraic num-
bers. Then eα1 , eα2 , eα3 , . . . , eαn are linearly independent over the algebraic numbers, or for
all nonzero algebraic numbers β1, β2, β3, . . . , βn,

β1e
α1 + β2e

α2 + β3e
α3 + · · ·+ βne

αn ̸= 0.

Before proving this theorem, we state one of its immediate consequences to transcenden-
tal number theory:

Corollary 5.8.1. Let α1, α2, α2, . . . , αn be distinct algebraic numbers. Then for all nonzero
algebraic numbers β1, β2, β3, . . . , βn,

β1e
α1 + β2e

α2 + β3e
α3 + · · ·+ βne

αn

is transcendental.
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Proof. If β1e
α1 + β2e

α2 + · · · + βne
αn is equal to some algebraic number, say β0, then we

can simply add β0e
0 to our existing expression to derive a contradiction to the Lindemann-

Weierstrass theorem. (If αk = 0 for some k, then add β0 to βk.)

Note that this corollary implies the transcendence of e, the transcendence of π, and the
Hermite-Lindemann Theorem. Now that we understand the vast applications of Theorem
5.8, let’s address a quick definition before jumping into the proof, which is quite similar that
of the previous section.

Definition 5.9. An algebraic integer is a number which can be expressed as the solution
to a polynomial p(x) = adx

d + ad−1x
d−1 + · · · + a1x + a0 with integer coefficients, where

the leading coefficient of p, or ad, is 1. The algebraic integers are a subset of the algebraic
numbers.

Proof of Theorem 5.8. Suppose on the contrary that

β1e
α1 + β2e

α2 + β3e
α3 + · · ·+ βne

αn = 0, (9)

for some distinct algebraic αi’s and nonzero algebraic βi’s. We will reduce this assumption
to a much simpler statement before building our integer N .

First, we may assume that all the βi’s are integers without loss of generality. We prove
this by constructing a new polynomial in e with integer βi’s from the existing one (provided
in 9). Given (9), let there be c(i) conjugates of βi, namely βi,1, βi,2, . . . , βi,c(i). Also, define
βi,0 = βi. Consider the product

∏
0≤i1≤c(1)
0≤i2≤c(2)

...
0≤in≤c(n)

(
β1,i1e

α1 + β2,i2e
α2 + · · ·+ βn,ine

αn

)
.

Essentially, we take the product of all expressions formed by substituting some subsets of
βi for some of their conjugates. The expansion of this product is equal to 0 and results in
the creation of a new polynomial in e, where the new β coefficients are rational. We can
clear denominators to reach integer β’s, which proves the assumption.

Second, we may assume that if αi is in α = {α1, α2, . . . , αn}, so are the conjugates of αi.
Additionally, if ai and aj are conjugates in the expression, βi = βj . As with the previous
assumption, we prove this by constructing a new polynomial in e satisfying the desired
constraints, using the existing polynomial (9). Consider the irreducible polynomial q with
integer coefficients. containing α1, α2, . . . , αn as roots. Since q has integer coefficients, all the
conjugates of the αi’s are also roots of q. Let the remaining roots of q be αn+1, αn+2, . . . , αN .
With this definition, we construct∏

σ

β1e
ασ(1) + β2e

ασ(2) + · · ·+ βne
ασ(n) = 0,

where σ is a permutation of [n] = {1, 2, . . . , n}. We take the product across N ! such
permutations σ. In the expansion of this product, each term is of the form

βeh1α1+h2α2+···+hNαN ,
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where β is some product of N ! Bi’s and h1+h2+ · · ·+hN = N !. The possible exponents of
e, namely h1α1+h2α2+ · · ·+hNαN , form a complete set of conjugates. We can verify with
a symmetry argument that if two exponents are conjugates, their coefficients β are equal.
Also, our product is not identically zero because the αi’s are all distinct. This proves the
second assumption.

From now onward, we assume once again that

β1e
α1 + β2e

α2 + β3e
α3 + · · ·+ βne

αn = 0,

but now we have the following conditions:

• Bi ∈ Z for all 1 ≤ i ≤ n,

• if αi is in α = {α1, α2, . . . , αn}, so are all the conjugates of αi,

• if αi and αj are conjugates, βi = βj .

For simplicity, let’s order the terms such that conjugates are adjacent to each other. In
other words, let there be integers 0 = n0 < n1 < · · · < nr = n such that for each 0 ≤ t < r,
we have

αnt+1, αnt+2, . . . , αnt+1 are conjugates,

and
βnt+1 = βnt+2 = · · · = βnt+1 .

Equivalently,

n∑
i=0

βie
αi =

∑
ni

(
βni+1e

αni+1 + βni+1e
αni+2 + · · ·+ βni+1e

αni+1

)
. (10)

We would prefer to work with algebraic integers as opposed to algebraic numbers, be-
cause Proposition 5.4 will allow us to build an integer more easily with algebraic integers.
Therefore, we make use of some integer A satisfying Aαi and Aβi are algebraic integers for
all 1 ≤ i ≤ n. With the help of A, we can define the auxiliary function:

fi(x) =
Anp(x− α1)

p . . . (x− αn)
p

(x− αi)

for all 1 ≤ i ≤ n, where p is a large prime. The main motivation behind this function f is
that we have an exponent of p−1 only for the term (x−αi), whereas the remaining exponents
are p. This will help in our divisibility by p argument, similar to the transcendence of π,
when bounding N . Also, although f does not have integer coefficients, it does have algebraic
integer coefficients. Let our integer N = N1N2 . . . Nn, where

Ni = β1I(α1, fi) + β2I(α2, fi) + · · ·+ βnI(αn, fi).

As with the proof that π is transcendental, our next step is to provide a lower bound on
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N and show that N is an integer. Substituting (6) into our definition for Ni, we have

Ni =

n∑
k=0

βkI(αk, fi)

=

n∑
k=0

(
βke

αk

m∑
j=0

f
(j)
i (0)

)
−

n∑
k=0

(
βk

m∑
j=0

f
(j)
i (αk)

)

=

( m∑
j=0

f
(j)
i (0)

)( n∑
k=0

βke
αk

)
−

n∑
k=0

(
βk

m∑
j=0

f
(j)
i (αk)

)

= −
n∑

k=0

(
βk

m∑
j=0

f
(j)
i (αk)

)

= −
n∑

k=0

m∑
j=0

(
βkf

(j)
i (αk)

)
,

where m = deg fi = np− 1. Consider f
(j)
i (ak). By arguments similar to those in the proof

of the transcendence of π, we have

f
(j)
i (αk) =

{
0, j < p

≡ 0 mod p!, j ≥ p

if i ̸= k. Otherwise,

f
(j)
i (αi) =


0, j < p− 1

Anp(p− 1)!
∏n

l=1,l ̸=i(αi − αl)
p, j = p− 1

≡ 0 mod p!, j ≥ p.

By combining these cases, we can show that Ni is nonzero and p ∤ Ni if p is sufficiently
large. Thus, Ni is a nonzero algebraic integer divisible by (p− 1)! but not p!.

It remains to show that Ni is an integer. By (10), we have

Ni = −
m∑
j=0

r−1∑
t=0

(
βnt+1

(
f
(j)
i (ant+1) + f

(j)
i (ant+2) + · · ·+ f

(j)
i (ant+1)

))
.

This is a symmetric polynomial in the αi’s. Since they form a complete set of conjugates
and are algebraic integers, we can apply Theorem 5.5 and Proposition 5.4 to show that Ni

is an integer. Since Ni is an integer and we have shown Ni is divisible by (p − 1)! but not
p!, |N | = |N1N2 . . . Nn| ∈ Z and |N | ≥ (p− 1)!.

We now construct an upper bound on N using 7. For each i,

|Ni| ≤
n∑

k=1

(
|βk||I(ak, fi|

)
≤

n∑
k=1

(
|βkαk|e|αk|f̄i(|αk|)

)
.

Using this inequality, we can show that N ≤ cp for some constant c. For sufficiently large
p, (p− 1)! ≥ cp, so we have contradictory bounds on N . Therefore, N cannot be an integer,
which is a contradiction and completes the proof.

25



The Lindemann-Weierstrass theorem expands the ideas of Hermite to reveal the tran-
scendence of a vast set of numbers, parameterized by the form described in Corollary 5.8.1.
We leave the reader with a conjecture involving our familiar friend e:

Conjecture 5.10 (Four Exponentials). If x1, x2 and y1, y2 are two pairs of complex num-
bers, each pair linearly independent over the rationals, then at least one of

ex1y1 , ex2y1 , ex1y2 , ex2y2

is transcendental.
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