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Background Linear Algebra

Eigenvalues and Eigenvectors

Definition (Eigenvalues and Eigenvectors)

A scalar λ is called an eigenvalue of an operator A : V → V if there exist a
non-zero vector v ∈ V such that

Av = λv

The vector v is called the eigenvector of A (corresponding to the
eigenvalue λ).

For example: T =
(
−6 3
4 5

)

v1 =

(
1
−1

3

)
, v2 =

(
1
4

)
λ1 = −7, λ2 = 6
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Background Linear Algebra

Characteristic polynomial

To find the eigenvalues of a matrix M, we have to find the roots of the
characteristical polynomial.

Definition
Consider an n × n matrix M. The characteristic polynomial of M, is the
polynomial defined by

pM(λ) = det(M − λI)

where I denotes the n × n identity matrix.

Definition (Spectrum)
The spectrum of a matrix is the set of its eigenvalues.

The whole spectrum provides valuable information about a matrix.
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Spectral Graph Theory

Adjacency Matrix

Definition (Graph)
A graph is a tupel G = (V,E), where V is a set whose elements are called
vertices and E is a set of paired vertices, whose elements are called edges.

Graphs can be represented in different types of matrices, the most
commonly used representation is the following

Definition
Let G be a (finite, undirected) graph with node set V(G) = 1, . . . , n. The
adjacency matrix of G is defined as the n × n matrix AG = (Aij) in which

Aij =

{
1, if i and j are adjacent,
0 otherwise.

AG is always symetric.
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Spectral Graph Theory

a

b

c d

e

f Adjacency matrix A =



0 1 1 0 0 0
1 0 1 1 0 0
1 1 0 0 0 1
0 1 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0


Knowing that a graph can be represented as a matrix it raises the question
whether the properties of the adjacency matrix can tell us properties of the
Graph.
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Spectral Graph Theory

Spectral Graph Theory

Definition
Spectral graph theory is the study of the properties of a graph in
relationship to the characteristic polynomial, eigenvalues and eigenvectors
of the matrices associated with the graph.

For example one can easily show that for a d-regular graph (each vertex
has d edges), for every eigenvalue λi of the adjacency matrix λi ≤ d.
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Spectral Graph Theory

Properties

The adjacency matrix of a d-regular graph has in every row (and column)
a sum of d. 

0 0 1 1 0 1
0 0 1 1 1 0
1 1 0 0 0 1
1 1 0 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0


If we take the vector v = {1, . . . 1}T then d is the eigenvalue and there
can’t exist one bigger then d.
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Spectral Graph Theory

Properties

If the graph is d-regular and bipartite then we obtain that λ = −d is an
eigenvalue as well. In fact, all eigenvalues are symetric about 0.

1

2

3

4

5

6


0 0 0 1 0 1
0 0 0 1 1 0
0 0 0 0 1 1
1 1 0 0 0 0
0 1 1 0 0 0
1 0 1 0 0 0
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Spectral Graph Theory

Spectral Gap

Let A(G) be the adjacency matrix of a k-regular graph G = (V,E) with
eigenvalues λ1, λ2, . . . , λn then we can order them wlog

k = λ1 > λ2 ≥ . . . ≥ λn−1 ≥ λn ≥ −k

Every k-regular graph has eigenvalues λ1 = k so it’s usually referred to as
a trivial eigenvalue.

Definition (Spectral Gap)
Given a connected d-regular graph G with adjacency matrix A(G) and
associated eigenvalues d = λ1 ≥ λ2 ≥ . . . ≥ λn, the spectral gap of G is d
- λ2.
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Expanders

Expanders

Expander graphs are sparse, regular well-connected graphs with many
properties. They are quantified using vertex, edge or spectral expansion.
Expanders have many applications in computer science including:

Error Correcting Codes
Pseudorandom generators
Sparse approximation problems
Major Theorems in Theoretical Computer Science

Definition (Edge boundary)
Let G be a k-regular graph on n vertices and let S be a subset G of
vertices of V (G=(V,E)). The edge boundary of S denoted by δS is

δS := {(u, v) ∈ E : u ∈ S, v /∈ S} (3.1)
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Expanders

Example

1

2

3

4

5

6

7
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Expanders

Example

Now lets pick: S = {5, 7}

1

2

3

4

5

6

7

=⇒ δS = {(4, 5), (5, 6), (3, 5), (2, 7), (6, 7)} =⇒ |δS| = 5.
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Expanders

Expanders

Since S or the complement of S, has size at most n/2 we define the edge
expansion of G, denoted h(G), as

Definition (Edge Expansion)
The expanding constant of a graph G(V,E) on n vertices is denoted by
h(G) where

h(G) := min
S⊂V:|S|≤n/2

|δS|
|S| . (3.2)

The bigger h(G) the better the graph connectivity. Therefore, the
expanding constant h(G) says how good of an expander a graph is.

Definition
For a fixed δ > 0, we say G is a (k, δ)-expander if h(G) ≥ δ.
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Expanders

Example

1

2

3

4

5

6

7

For S = {5, 7} (|δS| = 5) we get |δS|
|S| = 5

2 . However, for S = {1, 2, 3} we
have |δS| = |{(2, 4), (2, 7), (3, 5)}| = 3, so |δS|

|S| = 3
3 = 1. It turns out that

the second case is the minimum, thus h(G) = 1.
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Expanders

Example

3 important Takeaways:
1 A disconnected graph is not an expander since the expanding constant

would be 0. (Pick S to be the unconnected vertex to obtain that)
2 The lowest value of h(G) appeared when we picked the vertex 1,

because it only was adjacent to 2. =⇒ it is more interesting to
investigate d-regular graph (they are better expanders)

3 A regular graph with a high degree is very likely to have a good
expansion property. A good expander therefore has to have a low
degree but a high expanding constant. The challenge is to construct
infinite families of fixed degree.
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Expanders

Cheeger Inequality

Theorem (Cheeger Inequality)
Given a connected k-regular graph G=(V,E) with eigenvalues of A(G)
k = λ0 > λ1 ≥ . . . ≥ λn−1 ≥ k then the following inequalities

k − λ1
2 ≤ h(G) ≤

√
2k(k − λ1). (3.3)

are true.

The Cheeger Inequality relates the spectral gap with h(G) which implies
that a high spectral gap means a good expander.
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Expanders

Small eigenvalues

G is a good expander if all non-trivial eigenvalues are small.

−d λi 0 λiλi λi d
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Ramanujan Graphs

Alon-Boppana Bound

−d λi 0 λi(−2
√

d − 1) (2
√

d − 1) d

Theorem (Alon-Boppana Bound)
Let G(V,E) be a d-regular graph on n vertices and let A(G) be its
adjacency matrix. Let λ1 > λ2 ≥ . . . ≥ λn be its eigenvalues. Then

λ2 ≥ 2
√

d − 1

Alon-Boppana (1986): Cannot beat 2
√

d − 1.
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Ramanujan Graphs

Definition
Ramanujan Graph Let G = (V,E) be a connected d-regular graph with n
vertices, and let d = λ1 > λ2 ≥ . . . ≥ λn ≥ −d be the eigenvalues of
A(G). Define λ(G) = max

i̸=1
|λi| = max(|λ2|, |λn|). A connected d-regular

graph G is a Ramanujan graph if λ(G) ≤ 2
√

d − 1.

Ramanujan graphs are the best possible expanders.
Margulius, Lubotzky-Philips-Sarnak (1988): Infinte sequences of
Ramanujan graphs exist for d = prime + 1.

Tudor Braicu Spectral Graph Theory and Ramanujan Graphs July 6, 2022 24 / 28



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Ramanujan Graphs

Example for a Ramanujan Graph: Bipartite Complete
Graph

Adjacency matrix has rank 2, so all non-trivial eigenvalues are 0.

1

2

3

4

5

6


0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0


Therefore it has the best possible spectral gap, and satisfies the ramanujan
property. However it has a high degree k and is not a great expander.
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Ramanujan Graphs

Throughout the years

Friedman (2008): A random d-regular graph is almost Ramanujan:
2
√

d − 1 + ε.
Why are Random Graphs not sufficient?

Ramanujan can be constructed more quickly
Random graphs are not reliable
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