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Background Linear Algebra

Eigenvalues and Eigenvectors

Definition (Eigenvalues and Eigenvectors)

A scalar ) is called an eigenvalue of an operator A: V — Vif there exist a
non-zero vector v € V such that

Av = v

The vector v is called the eigenvector of A (corresponding to the
eigenvalue \).

-6 3
For example: T = (4 5)

V] = <11>,V2: <i> )\1:—7,)\2:6
3
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Background Linear Algebra

Characteristic polynomial

To find the eigenvalues of a matrix M, we have to find the roots of the
characteristical polynomial.

Definition

Consider an n x n matrix M. The characteristic polynomial of M, is the

polynomial defined by
pm(A) = det(M — \)

where | denotes the n X n identity matrix.

Definition (Spectrum)

The spectrum of a matrix is the set of its eigenvalues.

The whole spectrum provides valuable information about a matrix.
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Adjacency Matrix

Definition (Graph)

A graph is a tupel G = (V,E), where V is a set whose elements are called
vertices and E is a set of paired vertices, whose elements are called edges.

Graphs can be represented in different types of matrices, the most
commonly used representation is the following

Definition
Let G be a (finite, undirected) graph with node set V(G) = 1,...,n. The
adjacency matrix of G is defined as the n x n matrix Ag = (Aj;) in which

A 1, ifi and j are adjacent,
Y71 0 otherwise.

Ag is always symetric.
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Spectral Graph Theory
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Knowing that a graph can be represented as a matrix it raises the question
whether the properties of the adjacency matrix can tell us properties of the

Graph.
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Spectral Graph Theory

Definition

Spectral graph theory is the study of the properties of a graph in
relationship to the characteristic polynomial, eigenvalues and eigenvectors
of the matrices associated with the graph.

For example one can easily show that for a d-regular graph (each vertex
has d edges), for every eigenvalue \; of the adjacency matrix \; < d.
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Spectral Graph Theory

Properties

The adjacency matrix of a d-regular graph has in every row (and column)
a sum of d.

001101
001110
110001
110010
010101
101010

If we take the vector v= {1,...1}7 then d is the eigenvalue and there
can't exist one bigger then d.
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Spectral Graph Theory

Properties

If the graph is d-regular and bipartite then we obtain that A = —d is an

eigenvalue as well. In fact, all eigenvalues are symetric about 0.

0
3 6 0
0
2 5 X
1 4 0
1
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Spectral Gap

Let A(G) be the adjacency matrix of a k-regular graph G = (V,E) with
eigenvalues A1, Ao, ..., A\, then we can order them wlog

k=X1>X>...>2 X 212> Ay > —k

Every k-regular graph has eigenvalues A\; = k so it's usually referred to as
a trivial eigenvalue.

Definition (Spectral Gap)

Given a connected d-regular graph G with adjacency matrix A(G) and
associated eigenvalues d = A1 > A\p > ... > A, the spectral gap of G is d
- Ag.
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Expanders

Expander graphs are sparse, regular well-connected graphs with many
properties. They are quantified using vertex, edge or spectral expansion.
Expanders have many applications in computer science including:

@ Error Correcting Codes
@ Pseudorandom generators
@ Sparse approximation problems

@ Major Theorems in Theoretical Computer Science

Definition (Edge boundary)

Let G be a k-regular graph on n vertices and let S be a subset G of
vertices of V (G=(V,E)). The edge boundary of S denoted by ¢S is

0S:={(u,v) e E:uec S v¢ S} (3.1)
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Example

5

: H
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Example

Now lets pick: S={5,7}
3 \
/ '
T
2 7

%

— §S={(4,5),(5,6),(3,5),(2,7),(6,7)} = [35| =5.
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Expanders

Since S or the complement of S, has size at most n/2 we define the edge
expansion of G, denoted h(G), as

Definition (Edge Expansion)
The expanding constant of a graph G(V,E) on n vertices is denoted by
h(G) where

h(G) := @

= . 3.2
sevTin 7S] (3.2)

The bigger h(G) the better the graph connectivity. Therefore, the
expanding constant h(G) says how good of an expander a graph is.

Definition
For a fixed § > 0, we say G is a (k, d)-expander if h(G) > 4.
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Example
3 \
/R

[\

For S={5,7} (|0S| = 5) we get |‘55$|| = 2. However, for S = {1,2,3} we

have [0S = [{(2,4),(2,7),(3,5)}| =3, so ‘l—s‘ = 3 = 1. It turns out that

the second case is the minimum, thus h(G) = 1.
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Example

3 important Takeaways:

@ A disconnected graph is not an expander since the expanding constant
would be 0. (Pick S to be the unconnected vertex to obtain that)

@ The lowest value of h(G) appeared when we picked the vertex 1,
because it only was adjacent to 2. = it is more interesting to
investigate d-regular graph (they are better expanders)

© A regular graph with a high degree is very likely to have a good
expansion property. A good expander therefore has to have a low
degree but a high expanding constant. The challenge is to construct
infinite families of fixed degree.
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Cheeger Inequality

Theorem (Cheeger Inequality)
Given a connected k-regular graph G=(V,E) with eigenvalues of A(G)
k=X > A1 >... 2> Ap—1 > k then the following inequalities

k— X\
2

< h(G) < \/2k(k — \1). (3.3)

are true.

The Cheeger Inequality relates the spectral gap with h(G) which implies
that a high spectral gap means a good expander.
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Small eigenvalues

G is a good expander if all non-trivial eigenvalues are small.
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Alon-Boppana Bound

] ] ] ]

T4 (Cavd-1) N 0 N (vd-1) 4

Theorem (Alon-Boppana Bound)

Let G(V,E) be a d-regular graph on n vertices and let A(G) be its
adjacency matrix. Let \y > Ao > ... > A\, be its eigenvalues. Then

A >2v/d—-1
Alon-Boppana (1986): Cannot beat 2v/d — 1.
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Ramanujan Graphs

Definition

Ramanujan Graph Let G = (V,E) be a connected d-regular graph with n
vertices, and let d = A1 > Ay > ... > A\, > —d be the eigenvalues of
A(G). Define A\(G) = r{;éalx\)\,-| = max(| 2|, |An])- A connected d-regular

graph G is a Ramanujan graph if A(G) < 2v/d— 1.

@ Ramanujan graphs are the best possible expanders.

e Margulius, Lubotzky-Philips-Sarnak (1988): Infinte sequences of
Ramanujan graphs exist for d = prime + 1.
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Ramanujan Graphs

Example for a Ramanujan Graph: Bipartite Complete

Graph

Adjacency matrix has rank 2, so all non-trivial eigenvalues are 0.

0
3— (6 0
0
2 5 X
1 4 1
1

== O OO

= = O OO

1

O O = = =

0

OO = =

0

(o M e N N

(=}

Therefore it has the best possible spectral gap, and satisfies the ramanujan
property. However it has a high degree k and is not a great expander.
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Throughout the years

@ Friedman (2008): A random d-regular graph is almost Ramanujan:
2Vd—1+e.
@ Why are Random Graphs not sufficient?

e Ramanujan can be constructed more quickly
e Random graphs are not reliable
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