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Abstract. After reading the following paper the reader will have a basic understanding of
Ramanujan graphs and their importance. First, we will do some linear algebra background,
after which we will focus on the diagonalization of matrices. Before introducing expander
graphs, we will give some basic definitions of graph theory. When discussing expander graphs
we will explain what a good and bad expander is, and relate it to the graph connectivity.
Finally, we will explain the properties of a Ramanujan Graph and give some basic examples
and constructions.

1. Introduction

Graph theory enables us to understand complicated processes in the world around us
at a single glance. It is now used routinely to model communication networks, and many
theorems of graph theory are applied to resolve practical concerns of optimization. There
have been attempts to model the human brain using graph theory, with neurons being
represented as vertices and synapses being the edges. Though the discipline now has wide
application, graph theory as a proper subject of mathematics is relatively of recent origin and
its beginning can be traced back to 1736 when Euler solved the famous Königsberg bridge
problem using basic ideas of graph theory. Its rapid development is a twentieth century
phenomenon. The topic of this paper, Ramanujan graphs as an optimization of expander
graphs, connects Linear Algebra with Graph Theory. Ramanujan graphs are named after
the famous mathematician Srinivasa Ramanujan and are regular graphs with some extra
properties. They can be formally understood in terms of the eigenvalues of the adjacency
matrix of a graph:

Definition 1.1. A finite, connected, k-regular graph G = (V,E) with adjacency matrix
A(G) is a Ramanujan graph if for all eigenvalues λ, |λ| ≠ k of A(G) the inequality

|λ| ≤ 2
√
k − 1

holds.

Ramanujan graphs have a lot of special properties which are really applicable in the real
world as well as in pure math. They are used in computer science, physics, algebraic geom-
etry and number theory. In addition, Ramanujan graphs possess many of the sought after
properties of random graphs, which make them optimal for efficient network communication.

In order to be able to fully understand Ramanujan graphs and its importance we will dis-
cuss some important Linear Algebra background in 2 and 3. We will introduce Eigenvalues,
Eigenvectors and the characteristic polynomial in 2 and talk about why they are interesting
for us. In 3 we will talk about the importance of the diagonalization of matrices, and we
will proof the spectral theorem, which tells us that any symmetric matrix with real entries
is diagonalizable. After that, we will switch over to graph theory and introduce some graph
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theory notion in 4. Then we will talk in 5 about spectral graph theory, which combines
graph theory and linear algebra, and we will show what the eigenvalues of the adjaceny
matrix can tell about the graph properties. In 6 we will talk about expander graphs and
what a well-connected graph means, relating the eigenvalues of a graph to it’s connectivity.
Finally, in 7 we will conclude this paper with introducing Ramanujan graphs which are the
best possible expander graphs.

2. Background to Linear Algebra

In the following section we will learn about the Linear Algebra that is necessary for
understanding Ramanujan Graphs. First, we will introduce Eigenvectors and Eigenvalues,
which are important in Linear Algebra as they make Linear Transformations easier. After
that we will talk about how to compute the eigenvalues of a matrix.

2.1. Linear Transformation. Linear transformations can be found everywhere in the world,
for example a reflection or a rotation is a linear transformation. In the text below we will
often call a matrix of a transformation an operator, i.e. a mapping that acts on elements of
a space to produce elements of another space.

We define a linear transformation then as:

Definition 2.1. A linear transformation between two vector spaces V and W is a map
T : V → W such that the following hold:

(1) T (v1 + v2) = T (v1) + T (v2), ∀v1, v2 ∈ V , and
(2) T (αv) = αT (v), ∀α. ∈ C.

Using matrices we can represent information, since the entries in a matrix can represent
data. Matrices are used a lot in computer science to model data, but they are also very
useful in math, for example we can represent mathematical equations in matrices. Every
multiplication by a matrix Mm,n can be viewed as a linear transformation T: Rn → Rm,
because the matrix multiplication satisfies (1) and (2).

2.2. Motivation. As a rule in math we want to take a general thing and do the best we can
to reduce it to a simple thing. In the case of Eigenvalues and Eigenvectors, the general thing
is “linear transformations” and the simple thing is “scalar multiplication”. Thus we want
to reduce linear transformations to scalar multiplication. If we have a linear transformation
A : V → V , where A is a n× n matrix, we can multiply it by itself, take any power of it, or
any polynomial. To explain the main idea let us consider the following. Many processes can
be described by the equations of the following type

xn+1 = Axn, n = 0, 1, 2, . . . ,

where A : V → V is a linear transformation, and xn is the state of the system at the time n.
Now a common interest is to know the state xn at the time n, given the initial state x0. One
easily can find the formula xn = Anx0. However if n is a very big number then it is very hard
to compute the term An. Even computers start taking a long time if n → ∞. Fortunately
there exists a way around it. Suppose there exists some scalar λ such that Ax0 = λx0. Then
Anx0 = λnx0 so the behaviour of the solution is simplified and can be computed easier and
therefore better understood.
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2.3. Eigenvalues and Eigenvectors.

Definition 2.2. A scalar λ is called an eigenvalue of an matrix A if there exist a non-zero
vector v ∈ V such that

Av = λv.

The vector v is called the eigenvector of A (corresponding to the eigenvalue λ).

Note that we write any vector v as a column vector v =

x1

...
xn

. Because the scalar λ

just multiplies every row in the matrix representation of v by λ, one can write instead of
λv = λIv, where I is the Identity-matrix i.e a n × n square matrix with ones on the main
diagonal and 0 elsewhere, we can obtain for the above definition

Av = λv <=> Av = λIv <=> (A− λI)v = 0

Therefore if we know that λ is an eigenvalue, in order to find the eigenvectors we just have
to find the nullspace (or kernel) of A − λI (i.e. given a linear map L : W → V , the kernel
of L is the vector space of all elements w of W such that L(w) = 0).

Definition 2.3 (Eigenspace). The nullspace Ker(A−λI), i.e. the set of all eigenvectors and
0 vector, is called eigenspace.

The equation (A− λI)v = 0 will always be true if v is the 0 vector, so this won’t tell us
anything about the transformation. Therefore we are looking for vectors that are not the
trivial solution. So we say a scalar λ is an eigenvalue if and only if the equation (A−λI)v = 0
has a non-trivial solution.

Definition 2.4 (Spectrum). The set of all eigenvalues of a matrix A is called spectrum of
A, and is usually denoted σ(A).

The whole spectrum of a matrix provides valuable information about a matrix, which we
will see later. In order to find the spectrum of the matrix we have to find it’s eigenvalues
first. In order to find the eigenvalues one has to be familiar with the determinant. In this
paper we will note the determinant of A by det(A). Here are some important properties of
the determinant [Tre13]:

(1) The determinant remains unaltered if its rows are changed into columns and the
columns into rows.

(2) If all the elements of a row (or column) are zero, then the determinant is zero.
(3) If some row (or column) is a linear combination of the other rows (or column), then

the determinant is zero.
(4) The interchange of any two rows (or columns) of the determinant changes its sign.
(5) If all the elements of a row (or column) of a determinant are multiplied by a non-zero

constant, then the determinant gets multiplied by the same constant.
(6) Determinant of a Identity matrix is 1.
(7) Let A and B be two matrices, then det(AB) = det(A)det(B)

Let A be a square n×n matrix. Then A−λI has a non-trivial nullspace if and only if it is
not invertible. We know that a square matrix is not invertible if and only if its determinant
is 0. Therefore λ is an eigenvalue of A if and only if det(A− λI) = 0.
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λ ∈ σ(A), i.e. λ is an eigenvalue of A ⇐⇒ det(A− λI)

Let’s compute the eigenvalue of a 2x2 matrix. Note that the determinant of a 2×2 matrix
is:

(2.1) det

(
a b
c d

)
= ad− bc.

Example. Say we have the matrix of transformation T : V → V with

T =

(
−6 3
4 5

)
.

Then in order for λ ∈ σ(T ), det(T − λI) = 0. So we have

det(A− λI) = 0 ⇐⇒ det

(
−6− λ 3

4 5− λ

)
= 0

By (2.1) we get

(−6− λ)(5− λ)− 12 = 0 ⇐⇒ λ2 + λ− 42 = 0

Solving this quadratic equation in λ reveals λ1 = −7 and λ2 = 6. So the spectrum of T
is σ(T ) = {−7, 6}. Now to find the eigenvectors of the two eigenvalues we have to plug the
eigenvalues in the equation (T − λI)v = 0. For λ1 = −7 we get(

−6− (−7) 3
4 5− (−7)

)
v = 0 ⇐⇒

(
1 3
4 12

)
v = 0

The vector v can be represented as: v =

(
x1

x2

)
. So if multiply the two matrices v and T we

obtain the two equations

1x1 + 3x2 = 0
4x1 + 12x2 = 0.

We get out of both equations that x1 = −3x2. So there infinitely many possible eigenvectors

but they are linearly dependent. For example

(
1
−1

3

)
and

(
3
−1

)
are both possible Eigenvec-

tors of the eigenvalue λ1 = −7. We can just say that the eigenvectors of λ1 is any non-zero

multiple of v1 =

(
1
−1

3

)
.

With the same procedure we will get that all the eigenvectors of λ2 is any non-zero multiple

of v2 =

(
1
4

)
. So we have the eigenspace {(1,−1

3
)t, (1, 4)t}

Since a 2×2 matrix has a maximum of 2 eigenvalues, we found all the eigenvalues and cor-
responding eigenvectorx. More generally, if A is an n×n matrix, the determinant det(A−λI)
is a polynomial of degree n of the variable λ. This polynomial is called the characteristic
polynomial of A. To find all eigenvalues of A one needs to compute the characteristic polyno-
mial and find all its roots. However, this method of finding the spectrum of an operator is not
very practical in higher dimension, because it’s hard to find the roots of high polynomials.
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2.4. Characteristic polynomial.

Definition 2.5 (Characteristical Polynomial). Let A be n × n matrix. The characteristic
polynomial of A is the polynomial p(λ) given by

p(λ) = det(A− λI)

.

As indicated above, this will give a polynomial of degree n. Based on the fundamental
theorem of algebra, this has n not necessarily distinct roots. We will have to find the roots
of the polynomial to find the eigenvalues.

The roots (i.e. the eigenvalues) of the characteristic polynomial are not always real.
Thus linear transformations have not necessarily real eigenvalues. For example the rotation
Rα, α ̸= πn in R2 is a real vector space without real eigenvalues. Therefore, the complex
case (i.e. operator acting in complex vector spaces) seems to be the most natural setting for
the spectral theory (i.e. the studies of the eigenvalues and eigenvectors of a matrix). Since
R ⊂ C, we can always treat a real n x n matrix as an operator in Cn to allow complex
eigenvalues. Treating real matrices as operators in Cn is typical in the spectral theory, and
we will follow this agreement.

If p(z) is a polynomial, and λ is its root (i.e. p(λ) = 0) then (z−λ) divides p(z). The largest
positive integer k such that (z − λ)k divides p(z) is called the (algebraic) multiplicity of the
root λ. Any polynomial p(z) =

∑n
k=0 akz

k of degree n (an ̸= 0) has exactly n complex roots,
counting multiplicity. The words counting multiplicities mean that if a root has multiplicity
d we have to list (count) it d times. In other words p can be represented as

p(z) = an(z − λ1)(z − λ2) . . . (z − λn)

where λ1, λ2, . . . , λn are its complex roots, counting multiplicities.
There is another notion of multiplicity of an eigenvalue: the dimension of the eigenspace

Ker(A - λI) is called geometric multiplicity of the eigenvalue λ.
Geometric multiplicity is not as widely used as algebraic multiplicity. So, when people say

simply “multiplicity” they usually mean algebraic multiplicity.

Definition 2.6. Two square matrices A and B are said to be similar if there exists an
invertible matrix P such that

B = P−1AP

If two matrices are similar then they have the same rank, trace, determinant and eigenval-
ues. Moreover, their eigenvalues have the same algebraic and geometric multiplicities. We
will prove that two similar matrices have the same characteristic polynomial.

Proof. Note that if A = PBP−1 then

A− λI = PBP−1 − λPIP−1 = P (BP−1 − λIP−1) = P (B − λI)P−1,

so the matrices A−λI and B−λI are similar. Therefore from the property (7) of determinant
we have

det(A− λI) = det(B − λI)

i.e. characteristic polynomials of similar matrices coincide. ■
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3. Diagonalization of matrices

One of the application of the spectral theory is the diagonalization of operators, which
means given an operator to find a basis in which the matrix of the operator is diagonal. Such
a basis does not always exists, i.e. not all operators can be diagonalized (are diagonalizable).
Importance of diagonalizable operators comes from the fact that the powers, and more
general function of diagonal matrices are easy to compute. Diagonalizable matrices are
especially easy for computations, once their eigenvalues and eigenvectors are known. In this
section we will give necessary and sufficient conditions for a matrix to be diagonalizable. At
the end of this section we will proof the spectral theorem.

Definition 3.1 (Symmetric matrices). A matrix A with real entries is a symmetric matrix
if it is equal to its own transpose.

A is symmetric ⇐⇒ A = At

Note that a symmetric matrix is always square.

Definition 3.2 (Diagonal matrix). A diagonal matrix is a matrix in which the entries outside
the main diagonal are all 0.

Definition 3.3. Let A be a n × n matrix. A is diagonalizable if there exists an invertible
matrix P such that

A = PDP−1

where D is a diagonal matrix.

Remark 3.4. A square matrix that is not diagonalizable is called defective.

Definition 3.5. A square matrix is called lower triangular if all the entries above the main
diagonal are zero. Similarly, a square matrix is called upper triangular if all the entries below
the main diagonal are zero.

Computing eigenvalues (finding roots of the characteristic polynomial) can be quite time
consuming, however, there is one particular case, when we can just read them off the matrix.
Namely

Proposition 3.6. The eigenvalues of a triangular matrix (counting multiplicities) are exactly
the diagonal entries a11, a22, . . . , ann.

By triangular here we mean either upper or lower triangular matrix. We will show a proof
for the upper triangular matrix, the proof is similar for the lower triangular matrix. Let’s
introduce the following lemma for our proof.

Lemma 3.7. The determinant of an upper triangular (and lower triangular) matrix is the
product of it’s diagonal entries.

In order to prove this lemma we will have to introduce some characterization of the
determinant first.

Definition 3.8. Let A = [aij] i, j = 1, . . . n be a matrix. The cofactor of aij is Aij =
(−1)i+j∆ij, where ∆ij is the determinant of order n−1 obtained from A by deleting the i-th
row and the j-th column.

The following results are well-known: If A = [aij], i, j = 1 . . . n is the square matrix, then
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(1) det A =
∑n

j=1 ai,jAij (expansion with respect to the i-th row)

(2) det A =
∑n

i=1 ai,jAij (expansion with respect to the j-th column)

Now let U be an upper triangular matrix:

Un =


a11 a12 a13 . . .
0 a22 a23 . . .
...

. . .

0 . . . 0 ann

 .

Now we will proof the lemma (3.7) namely that

det Un = a11a22 . . . ann

by induction.

Proof. For n = 1 the assertion is trivial. Let’s suppose that for any triangular matrix of
order n-1 the determinant is equal to the product of the diagonal entries. From (2), with
i = 1 we get

det Un = a11(−1)1+1∆11 = a11∆11.

Now ∆11 is the determinant of the triangular matrix of order n-1.
a22 a23 a24 . . .
0 a33 a34 . . .
...

. . .

0 . . . 0 ann


By the induction hyptothesis it follows that ∆11 = a22 . . . ann =⇒ det Un = a11a22 . . . ann.

■

Now we can prove proposition (3.6)

Proof. If we take a look at det(A− λI), we have

det

(
a11 a12 a13 . . .
0 a22 a23 . . .
...

. . .

0 . . . 0 ann

−λ


1 0 . . .
0 1 . . .
...

. . .

0 . . . 0 1


)

= det

(
(a11 − λ) a12 a13 . . .

0 (a22 − λ) a23 . . .
...

. . .

0 . . . 0 (ann − λ)


)
.

Therefore we get

det

(
(a11 − λ) a12 a13 . . .

0 (a22 − λ) a23 . . .
...

. . .

0 . . . 0 (ann − λ)


)

= (a11 − λ)(a22 − λ) . . . (ann − λ).

So the diagonal entries are the roots of the characteristic polynomial. ■
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Since a diagonal matrix is a particular case of a triangular matrix (it is both upper and
lower triangular) we have the following corollary

Corollary 3.9. The eigenvalues of a diagonal matrix are its diagonal entries.

Note that the important following theorems follow from the properties of a diagonal matrix:

Theorem 3.10. A matrix A admits a representation A = SDS−1, where D is a diagonal
matrix and S is an invertible one, if and only if there exists a basis of eigenvectors of A.

Moreover, in this case the diagonal entries of D are the eigenvalues and the columns of S
are the corresponding eigenvectors (column number k corresponds to the kth diagonal entry
of D).

Theorem 3.11. If an operator A : V → V has exactly n = dim V distinct eigenvalues, then
it is diagonalizable.

Since the eigenvalues of a diagonal matrixD = diag{λ1, λ2, . . . , λn} are exactly λ1, λ2, . . . , λn,
we see that if an operator A : V → V is diagonalizable, it has exactly n = dim V eigenvalues
(counting multiplicities). Thus we can write the following theorem.

Theorem 3.12. Let an operator A : V → V have exactly n = dim V eigenvalues (counting
multiplicities). Then A is diagonalizable if and only if for each eigenvalue λ the dimension of
the eigenspace Ker(A−λI) (i.e. the geometric multiplicity of λ) coincides with the algebraic
multiplicity of λ.

Proof. First of all let us note, that for a diagonal matrix the algebraic and geometric multi-
plicities of eigenvalues coincide, and therefore the same hold for the diagonalizable operators.

Let us now prove the other implication. Let λ1, λ2, . . . , λp be eigenvalues of A, and let
Ek := Ker(A − λkI) be the corresponding eigenspaces. Because the system of eigenspaces
Ek of an operator A is linearly independent, the subspaces Ek,k = 1, 2, . . . , p are linearly
independent.

Let Bk be a basis in Ek. It follows that B = ∪kBk is a linearly independent system of
vectors.

We know that each Bk consists of dim Ek (= multiplicity of λk) vectors. So the number of
vectors in B equal to the sum of multiplicities of eigenvalues λk. But the sum of multiplicities
of the eigenvalues is the number of eigenvalues counting multiplicities, which is exactly n =
dim V. So we have a linearly independent system of n = dim V eigenvectors, which means
it is a basis. ■

3.1. Spectral Theorem. In the above section of Diagonalization we came to the conclu-
sion in theorem (3.12) that a matrix is diagonalizable if and only if for each eigenvalue the
dimension of the eigenspace coincides with the algebraic multiplicity of the eigenvalue. The
spectral Theorem tells us that every symmetric matrix is diagonalizable. Augustin-Louis
Cauchy proved the spectral theorem for symmetric matrices, i.e., that every real, symmetric
matrix is diagonalizable. In addition, Cauchy was the first to be systematic about deter-
minants. The spectral theorem as generalized by John von Neumann is today perhaps the
most important result of operator theory( [FMM+13]). In this section we will look prove the
spectral theorem. However, we have to look at some necessary background first.

Lemma 3.13. Let A be a square matrix n× n then det(A) = Πn
i=1λi.
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Recall, that if x = a+ ib is a complex number, then x̄ = a− ib is the complex conjugate.
A complex number is real if and only if x = x̄. If M ∈ Cn×n is a matrix, then M∗ denotes
the conjugate transpose of M, that is, (M∗)i,j = Mj,i. Notice that if the entries of M are
real, then M∗ = M t, where M t is the transpose of M.

Definition 3.14 (Hermitian Matrices). We say that a square matrix M is Hermitian if
M = M∗.

Note that real symmetric matrices are Hermitian. We will use the following inner product
on Cn:

Definition 3.15 (Inner product). If v,w ∈ Cn are two vectors then their inner product
(scalar product) is defined as

(3.1) ⟨v , w⟩ := v ∗ w =
∑
i

vi · wi.

Notice that, by definition, we have ⟨v , w⟩ = (⟨v , w⟩)∗ and ⟨v , v⟩ = ||v||2. Note also
that, for two matrices A, B, we have (A · B)∗ = B∗ · A∗, and that for every matrix M and
every two vectors x,y, we obtain:

(3.2) ⟨Mx , y⟩ = x∗M∗y = ⟨x , M∗y⟩.

Theorem 3.16 (Gram-Schmidt, [Tre13]). Let v1, v2, . . . , vn be n linear independent vectors
each of them with magnitude 1 in a vector Space V containing a scalar product ⟨ , ⟩. Then
we can always find a orthonormal system z1, z2, . . . , zn.

Remark 3.17. It is sufficient to construct n orthogonal vectors, because if w1, w2, . . . , wn

are orthogonal (⟨wi , wj⟩ = 0, i ̸= j, i, j = 1, . . . , n) then zi = wi

||wi|| , i = 1, . . . n are

orthonormal.

Gram and Schmidt constructed inductively the vector zi: Let z1 = x1, z2 = x2−⟨x2 , z1⟩ ·
z1. We note that ⟨z2 , z1⟩ = 0 using scalar property: ⟨v1, αv2+βv3⟩ = α⟨v1 , v2⟩+β⟨v1 , v3⟩.
By induction we obtain: zk = xk − ⟨xk , zk−1⟩ · zk−1 − ⟨xk , zk−2⟩ · zk−2 . . .− ⟨xk , z1⟩z1.

Theorem 3.18 (Spectral Theorem, [Tre11]). Let M ∈ Rn×n be a symmetric matrix with real
values entries then there are n real numbers (not necessarily distinct) λ1, λ2, . . . , λn and n
orthonormal real vectors x1, . . . xn, xi ∈ Rn such that xi is an eigenvector of λi.

Proof. The eigenvalue is a scalar λ ∈ C for which there exists a vector x ∈ Rn, x ̸= 0 such
that

(3.3) Mx = λx.

The system (3.3) is a homogeneous one. It has a solution x, x ̸= 0 if and only if

(3.4) P (λ) = det(M − λI) = 0.

P (λ) is a polynomial of degree n: By the fundamental theorem of algebra there exists
λ ∈ C and x ∈ C, x ̸= 0 such that (3.4) holds and so (3.3) has a solution x, x ̸= 0.

Lemma 3.19. If the square matrix M is real and symmetric then its eigenvalues are real.

This assertion is true for any hermitian matrix. Let us proof this lemma.
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Proof. We have

⟨Mx , y⟩ = ⟨x , M∗y⟩ = ⟨x , My⟩.
If x is an eigenvector corresponding to λ, then we get from the properties of the scalar
product and from the above equality that

(3.5) ⟨Mx , x⟩ = ⟨λx , x⟩ = λ̄||x||2 and ⟨x , Mx⟩ = ⟨x , λx⟩ = λ||x||2

because ||x||2 ̸= 0, we obtain

(3.6) λ̄ = λ <=> λ ∈ R.
■

Let M ∈ Rn×n be a real symmetric matrix and λ ∈ R eigenvalue and a eigenvector
z = x + yi, x, y ∈ Rn. Using Mz = λz, we get Mx + iMy = λx + iλy. Note that two
complex numbers are equal if and only if the real and imaginary part coincide. Thus we get

(3.7) Mx = λx and My = λy

Because z ̸= 0 (the eigenvector can’t be 0) it follows that x or y is different from 0. Thus M
has a real eigenvector.

To finish the proof, we proceed by induction on n×n (for the dimension of the matrix M):
The case n = 1 is trivial (the eigenvalue is the entry a11 and every vector is an eigenvector,
so just pick a real one). Suppose now that the statement is true for the dimension n−1. Let
λ1 be a eigenvalue of M and x1 be a real eigenvector corresponding to λ1. From ⟨x1 , My⟩ =
⟨Mx1 , y⟩ = ⟨λx1 , y⟩ = λ̄⟨x1 , y⟩ follows that if x1 ⊥ y then My ⊥ x1.
Let V be the n − 1 dimensional subspace of Rn that contains all the vectors orthogonal

to x1. Let B ∈ Rn×n−1 be a matrix that computes a bijective map from Rn−1 to V (if
b1, b2, . . . , bn is an orthonormal basis for V, then B is the matrix whose columns are the
vectors bi, i = 1, . . . , n − 1). Let B′ ∈ Rn−1×n be the matrix such that for every y ∈ V
BB′y = y (B′ = Bt). We can apply the inductive hypothesis to the matrix

(3.8) M ′ = B′MB ∈ R(n−1)×(n−1)

and we find eigenvalues λ2, λ3, . . . λn and orthonormal eigenvectors y2, y3, . . . , yn for M ′. For
every i = 2, . . . , n we have

B′MByi = λiyi(3.9)

⇐⇒ BB′MByi = λiByi.(3.10)

Since Byi is orthogonal to x1 it follows that MByi ⊥ xi and so B′BMByi = MByi which
implies MByi = λByi and Mxi = λxi.
Finally we remark that xi ⊥ xj, i ̸= j because

(3.11) ⟨xi , xj⟩ = ⟨Byi , Byj⟩ = ⟨yi , BTByj⟩ = ⟨yi , yj⟩ = 0

Thus we have proven the spectral theorem. ■

Another proof of the spectral theorem can be done using Schur’s theorem

Theorem 3.20 (Schur’s Theorem). Let A be an n × n square matrix with the eigenvalues
λ1, λ2, . . . , λn then there exists an unitary matrix U ∈ Cn×n such that U∗AU = T = [t(i,j)]
where T is upper triangular matrix, having on the main diagonal t(i,i) = λi, i = 1, 2 . . . , n.
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This theorem is of great importance, because the following affirmations result for a square
matrix A:
1. det A = Πn

i=1λi.
2. Tr(A) =

∑n
i=1 λi.

and many more...
In the following section we will see that we can represent a graph as a matrix with real

entries, using the spectral theorem we can then say that the matrix is diagonalizable.

4. Background Graph Theory

In this section we will talk about the notions of graph theory that are necessary to un-
derstand spectral graph theory. We will introduce some basic graph notions as well as two
ways of how to represent a graph as a martix.

Definition 4.1. A graph G = (VG, EG) is an ordered pair the vertex set VG and the edge
set EG ⊆ VG × VG such that
∀v ∈ VG, (v, v) /∈ E.
∀v, w ∈ VG, (v, w) ∈ EG if and only if (w, v) ∈ EG.

We will refer to VG simply as V and EG as E. When discussing edges (elements of the
edge set), we will identify (v,w) with (w,v). In other words, we will only consider undirected
graphs.

Definition 4.2. Given a vertex v ∈ V of graph G, the degree of v is the number of edges
containing to v, i.e.

(4.1) deg(v) := #({(v, w) ∈ E |w ∈ V }) = #({(w, v) ∈ E |w ∈ V }).

We may then determine that 2#(E) =
∑
v∈V

deg(V ).

Corollary 4.3. G is a k-regular graph, if all vertices in G have degree k.

Definition 4.4. Given a graph G a path (vi) in G of length n is a sequence of distinct
vertices v1, . . . , vn+1 such that vivi+1 ∈ E for each i ∈ 1, . . . , n. A cycle in G of length
n ≥ 3 is a sequence of vertices v1, . . . , vn+1 such that (v1, . . . , vn) is a path, vnvn+1 ∈ E, and
vn+1 = v1.

Definition 4.5. A graph is connected if for any two vertices v and w, there exists a path
in G beginning at v and ending at w.

For the purposes of this paper, we will generally consider connected k-regular graphs G.

Definition 4.6 (Complete bipartite graph). The complete bipartite graph Kr,s is a special
bipartite graph where every of the first set is connected to every vertex of the second set.

We now have all the basic tools of graph theory and may now proceed to formalize these
notions into some algebraic setting.

4.1. Matrix of graphs. We introduce here representations of a graph in a matrix. The
adjacency matrix is the most common used representation of a graph as a matrix.



12 TUDOR BRAICU

Definition 4.7. Let G be a (finite, undirected, simple) graph with node set V(G) = 1, . . . , n.
The adjacency matrix of G is defined as the n× n matrix AG = (Aij) in which

Aij =

{
1, if i and j are adjacent,
0 otherwise.

Note that the characteristic polynomial of a graph, is the characteristic polynomial of it’s
adjacency matrix. There is also another widely used matrix representation which relates to
many useful properties of the graph.

Definition 4.8. The Laplacian of the Graph is defined as the n× n matrix LG = (Li,j) in
which

Lij =

{
di, if i = j
−Ai,j, if i ̸= j.

Here di denotes the degree of node i. The Laplacian can be used for example to calculate
the number of spanning trees for a given graph.

Example. Lets represent the following graph in the adjacency and Laplacian matrix.

a

b

c d

e

f

This graph has six vertices a, b, c, d, e and f . When looking at the two matrices, we have to
imagine the columns and rows labeled as a, b, c, d, e, f . For example the entry of 1 in row 2
column 3 of the adjacency matrix means that b is connected with c.

AG =


0 1 1 0 0 0
1 0 1 1 0 0
1 1 0 0 0 1
0 1 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

 LG =


2 −1 −1 0 0 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1
0 −1 0 2 −1 0
0 0 0 −1 1 0
0 0 −1 0 0 1


Observe the following:

(1) The adjacency matrix and the Laplacian are always symmetric, because if b is con-
nected to a, then a is also connected to b.

(2) Both, AG and LG have real numbers as entries, thus they are diagonizable (Spectral
Theorem)

(3) The sum of the Laplacian in each row and column is 0, while the sum in each row
and column of the adjacency matrix is the degree of the vertex.

Knowing that a graph can be represented as a matrix, raises the question whether the
properties of the matrix can tell us more about the properties of the graph. This is exactly
what Spectral Graph Theory focuses on.
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5. Spectral Graph Theory

Spectral Graph Theory is the application of Linear algebra to graph theory and graph
algorithms. The application to graph theory comes from associating, in a natural way, a
matrix to a graph G = (V,E) and then interpreting the above concepts and algorithms in
graph theoretic language.

Definition 5.1. Spectral Graph Theory is the study of the properties of a graph in relation-
ship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated
with the graph, such as its adjacency matrix or Laplacian matrix.

In this paper we will only work with the adjacency matrix. In the following section we
will study some of the properties of the adjacency matrix of a graph. We will introduce
some simple connections between the properties of the graph and the properties of the
corresponding adjacency matrix.

5.1. Properties of the spectrum. The spectrum of a Graph encodes a lot of information
about the graph. We will show some simple illustrations of how certain properties of a
d-regular graph are reflected in its spectrum.

Definition 5.2. Let λ1, λ2, . . . , λn be the eigenvalues of a matrix A ∈ Cn×n. The spectral
radius of A is defined as

(5.1) ρ(A) = max{|λ1|, |λ2|, . . . , |λn|}.
Now lets proof the following theorem:

Theorem 5.3. Given a graph G with adjacency matrix A(G) and maximum vertex degree
∆(G), for any eigenvalue λ of A(G), |λ| ≤ ∆(G), or in other words ρ(A) ≤ ∆(G).

Proof. First let λ be an eigenvalue of G. Let us denote with v = {c1, . . . , cn}T the eigenvector
corresponding to λ. Let the adjacency matrix of G be A = [aij]. Note that the sum of the
i-th row of A is equal to the degree of the i-th vertex of G.

Let |wj| = max(|c1|, |c2|, . . . , |cn|). It follows that

(5.2)
n∑

i=1

ajiwj = λwj =⇒ |
n∑

i=1

ajiwj| = |λ||wj| ⇐⇒ |
∑

j∈N(i)

wj| = |λ||wj|

where N(i) is the set of all i where aji = 1.
From (5.2) we have the following inequality

(5.3) |λ||wj| =
∑

j∈N(i)

|wi| ≤ ∆(G)|wj|

So we have obtained |λ||wj| ≤ ∆(G)|wj|, because wj was the biggest component of v it
cannot be 0. Thus we have shown that |λ| = ρ(A) ≤ ∆(G). ■

Note that if G is a k-regular graph, then the maximum vertex degree is k, so each of the
eigenvalues satisfies |λ| ≤ k. Since a k-regular graph has every vertex with degree k, A(G)
has every row/column sum to k. Therefore a k-regular graph, has k always as an eigenvalue
of A(G) with the associated eigenvector v = (1, 1, . . .)t.

A graph G is called bipartite if its vertices can be divided into two disjoint sets sets U and
V such that no two vertices within the same set are adjacent (connected by an edge). With
suitable labelling, we can get that the adjacency matrix of a bipartite graph has the form
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0 B
Bt 0

)
where 0 represents a suitable zero matrix and Bt is the transpose of B.

If G is bipartite one can show similarly to above that -k is an eigenvalue of A(G). Moreover,
the eigenvalues of the adjacency matrix of a bipartite graph are symmetric about the origin.

Theorem 5.4 (Perron-Forbenius Theorem). Let A be a positive square matrix. Then

(1) ρ(A) is an eigenvalue.
(2) ρ(A) has geometric multiplicity 1.
(3) ρ(A) has algebraic multiplicity 1.

From the Perron-Forbenius theorem (see proof [Cai14]) we see that for k-regular graphs
λ = k is an eigenvalue with multiplicity of 1. Now let’s order the eigenvalues of a k-regular
graph. Without loss of generality we can order them as

(5.4) k = λ0 > λ1 ≥ . . . ≥ λn−1 ≥ −k.

We see that for k-regular graphs λ0 = k is always an eigenvalue and because λ0 only has
multiplicity of 1, it is strictly bigger then λ1. On the other hand, the eigenvalues can’t get
smaller then −k, however, −k is not always an eigenvalue. Only some specific graphs have
−k as an eigenvalue for example the bipartite graph. We call the eigenvalue k = λ0 the
trivial eigenvalue. Since every k-regular graph has k as an eigenvalue, the biggest eigenvalue
doesn’t tell us anything about the properties of the graph (−k is sometimes also referred
to as a trivial eigenvalue). Therefore the second biggest eigenvalue λ1 is of greater interest
because that is where graphs start to differ.

Definition 5.5 (Spectral Gap). Given a connected k-regular graph G with adjacency matrix
A(G) and associated eigenvalues k = λ0 ≥ λ1 ≥ . . . ≥ λn−1 ≥ −k, the spectral gap of G is
k − λ1.

In other words the spectral gap is the degree of every vertex minus its second biggest
eigenvalue. Let’s compute the eigenvalues and spectrum of a simple graph: the complete
graph.

Definition 5.6. A complete graph, denoted Kn is a graph with n vertices in which any two
distinct vertices are adjacent. For such a graph the adjacency matrix is given by

A =


0 1 1 . . .
1 0 1 . . .
...

. . .

1 1 . . . 0


Example. Let A be the adjacency matrix of a Graph G.

The eigenvalues are the roots of the equation

(5.5) det


−λ 1 1 . . .
1 −λ 1 . . .
...

. . .

1 1 . . . −λ

 = 0

If we add the rows 2, . . . n to the first row we get
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det


n− 1− λ n− 1− λ n− 1− λ . . .

1 −λ 1 . . .
...

. . .

1 1 . . . −λ

 = 0

Using determinant property (5) from 2 we get

<=> (n− 1− λ) det


1 1 1 . . .
1 −λ 1 . . .
...

. . .

1 1 . . . −λ

 = 0

Using determinant properties again and subtracting the first column from every other column
we get:

<=> (n− 1− λ) det


1 0 0 . . .
1 −λ− 1 0 . . .
...

. . .

1 0 . . . −λ− 1

 = 0 <=> (n− 1− λ)(−1)n−1(λ+ 1)n−1

So we get that the eigenvalues of the complete graph are (n− 1) with multiplicity of 1 and
-1 with multiplicity of n−1. Since every vertex is connected with every other vertex (except
itself) the degree of every vertex is n − 1. As we see n − 1 is indeed an eigenvalue with
multiplicity of 1. The spectral gap of the complete graph would be (n− 1)− (−1) = n.

The complete graph actually satisfies the Ramanujan property, which we will come to
later. We will see that the spectrum and spectral gap of Ramanujan graphs satisfy several
properties that make them particularly interesting and practically relevant objects of study.
Before we define what a Ramanujan graph is, however, it is helpful to look at a broader
family of spectral graphs that Ramanujan graphs belong to: expander graphs.

6. Expander Graphs

Ramanujan graphs form an important subset of a larger collection called expander graphs.
Expander graphs are sparse, regular and highly connected graphs. It is this strange com-
bination of contradictory properties that makes them so important. Expander graphs seem
to first have appeared in the 1960’s in a fundamental paper of Kolmogorov and Barzdin
( [Bar93]) who were studying the network of nerve cells in the human brain. In 1973,
Pinsker ( [Pin73]) gave the first formal definition. Since then, they have found important
applications in the design of optimal communication networks and error correcting codes. It
has even been suggested that expander graphs can be applied to study human thought and
other problems in neurobiology. So we see that the notion of expansion seems to be woven
into the fabric of the cosmos. The most important expanders are k-regular expanders, where
k ≥ 3 is a small constant. Such graphs are not easy to construct. Most of these construc-
tions are based on deep algebra facts. In this section we will look at what a good and bad
expander is and connect the expanding properties to the spectral gap.

For now we should think of a good expander as a well connected graph. We can quantita-
tively characterize how good of an expander a graph is by computing the expanding constant
(or isoperimetric constant) of a Graph G.
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Definition 6.1 ( [Tre11]). Let G be a k-regular graph on n vertices and let S be a subset G
of vertices of V (G=(V,E)). The edge boundary of S denoted by δ S is

(6.1) δS := {(u, v) ∈ E : u ∈ S, v /∈ S}.

In other words, the edge boundary of S is the number of edges connecting S to its com-
plement V − S. Let’s look at an example to illustrate the meaning of the edge boundary.

Example. Lets pick: S = {5, 7}.

1

2

3

4

5

6

7

There are 5 edges (highlighted in red) leaving the vertex Set S (the vertices of S are high-
lighted in green) that are connected to the complement of S.

=⇒ δS = {(4, 5), (5, 6), (3, 5), (2, 7), (6, 7)} =⇒ |δS| = 5.

We see that if there is a high edge boundary for every vertex set S we choose, then that’s
equivalent with the graph being very well-connected. So the graph has good connectivity if
δS is big. Since S or the complement of S, has size at most n/2 we define the edge expansion
(also Cheeger constant, or isoperimetric constant) of X, denoted h(G), as

Definition 6.2 (Edge Expansion, [DSV03]). The expanding constant of a graph G(V,E) on
n vertices is denoted by h(G) where

(6.2) h(G) := min
S⊂V :|S|≤n/2

|δS|
|S|

.

Here, |A| is the cardinal of the set A.

The expanding constant picks the smallest number we get when choosing the set S (in
relation to how many vetices S has). So if S has a low edge boundary (is badly connected)
then h(G) is small. As in the previous example, we found a good boundary by just picking
two well-connected vertices. Therefore in the best case we usually find a good boundary,
however, by taking the minimum a high expanding constant means that the whole graph is
well-connected, not only parts of it. Therefore the expanding constant h(G) says how good
of an expander a graph is.

Definition 6.3. For a fixed δ > 0, we say G is a (k, δ)-expander if h(X) ≥ δ.

Definition 6.4 ( [DSV03]). Consider a family (Gi)i≥1 of finite connected, k-regular graphs,
such that Gi = (Vi, Ei) and |Vi| → ∞ as m → ∞. Then (Gi) is a family of expanders if
there exists some δ > 0 so that Gi is a (k, δ)-expander for all i ≥ 1.

Let’s calculate the expanding constant of the previous example:
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1

2

3

4

5

6

7

For our previous choice of S = {5, 7} (|δS| = 5) we would get |δS|
|S| = 5

2
. However, for

S = {1, 2, 3} we have |δS| = |{(2, 4), (2, 7), (3, 5)}| = 3, so |δS|
|S| = 3

3
= 1. It turns out that

the second case is the minimum, thus h(G) = 1.

Note the following 3 important takeaways:

(1) A disconnected graph is not an expander since the expanding constant would be 0.
(Pick S to be the unconnected vertex to obtain that)

(2) The lowest value of h(G) appeared when we picked the vertex 1, because it only was
adjacent to the vertex 2. Therefore d-regular graphs are better expanders since every
vertex has the same degree, they avoid this situation.

(3) A regular graph with a high degree is very likely to have a good expansion property.
So we don’t want it to have a big degree because it’s uninteresting to look at such
graphs. A lower degree with a strong connectivity is of bigger importance in the ap-
plication. A good expander, therefore, has to have a low degree but a high expanding
constant. The challenge in the application is to construct infinite families of fixed
degree, i.e. having a fixed degree k, we want to raise the number of vertices to a big
number (ideally to ∞) and still want the good connectivity to remain. That’s why
these families are called expanders, because we can expand the number of vertices
but the good properties remain.

The expanding constant of a graph G is closely tied to the eigenvalues of the adjacency
matrix A(G), enabling us to assess the effectiveness of G as an expander in terms of its
eigenvalues. We present some bound on the expanding constant h(G). One bound comes
from the famous theorem of Dodziuk. It is known as the Cheeger inequality and is relevant
for constructing explicit expanders. Furthermore it is also used in graph based algorithms
in Computer Science.

Theorem 6.5 (Cheeger’s Inequality, [DSV03]). Given a connected k-regular graph G=(V,E)
with eigenvalues of A(G) k = λ0 > λ1 ≥ . . . ≥ λn−1 ≥ −k then the following inequalities

(6.3)
k − λ1

2
≤ h(X) ≤

√
2k(k − λ1)

are true.

Proof. We will only proof the first inequality

(6.4) h(G) ≥ 1

2
(k − λ1).
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The basic idea of the proof is the following theorem:

Theorem 6.6 (Courant-Fischer Theorem). Let A ∈ Rn×n be a symmetric matrix with eigen-
values λ0 > λ1 ≥ . . . ≥ λn−1 then

min
w1,...,wk∈Rn

max
x⊥w1,...,wk

xtAx

||x||2
= λk

max
w1,...,wn−k∈Rn

min
x⊥w1,...wn−k

xtAx

||x||2
= λk.

In the proof we will use the results from the above theorem only for λ1 (in our case λ0 = k).
Now we can prove inequality (6.4). Let F be a subset of V(G) with |F | = m. We define a
vector v = (a1, . . . , an)

t such that

v = (n−m)vF −mvV F

where the entries of vV F is 1 in position i if vi ∈ V − F and 0 otherwise, and vF is 1 in
position i if vi ∈ V − F and 0 otherwise.
Let S be a subset of V, and let us denote by e(S) the number of edges in E(G) that only

contain vertices in S. We have
ai = n−m

if vi ∈ F and ai = −m if vi ∈ V − F . With these remarks we obtain

vtv = (n−m)2m+m2(n−m) = mn(a−m)

vtA(G)v = 2
∑

(vi,vj)∈E

aiaj = 2(n−m)2e(F )− 2m(n−m)|δF |+ 2m2e(V − F ).

So

vtv = mn(n−m) and vtAGv = 2(n−m)2e(F )− 2m(n−m)|δF |+ 2m2e(V − F )

. Because G is k-regular, the degree of each vertex is equal to k and so km = 2e(F ) + δ(F )
Similarly k(n−m) = 2e(V − F ) + |δF |. Therefore we get

(6.5) e(F ) =
1

2
(km− |δF |) and e(V − F ) =

1

2
(k(n−m)− |δF |).

The last two equalities imply the following equality

(6.6) vtAGv = knm(n−m)− n2|δF |.
Let w ∈ Rn be the vector given by w = (1, . . . , 1)t. Since w · v = 0 from Courant-Fischer for
the eigenvalue λ1 we get

(6.7) λ1 ≥
vtA(G)v

||v||2
=

kmn(n−m)− n2|δF |
mn(n−m)

= k − n|δF |
m(n−m)

(6.8) =⇒ k − λ1 ≤
n|δF |

m(n−m)
=

|δF |
|F |

n

n−m
≤ 2

|δF |
|F |

because (
n

n−m
≤ 2)

(6.9) =⇒ |δF |
|F |

≥ k − λ1

2
=⇒ h(G) ≤ 1

2
(k − λ1).

■
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This theorem shows that k− λ1 (the spectral gap) provides an estimate on the expansion
of a graph. In particular, it says that if the spectral gap of G is large then the expanding
constant is high, which means G is a good expander. In other words, G is a good expander
if all the non-trivial eigenvalues are small. Remember k is fixed and k − λ1 has to be big,
which means that we want λ1 to be small.

The following theorem, the Expander mixing lemma, shows that a small second eigenvalue
in a graph implies that its edges are “spread out” (i.e. distributed well for good connectivity).

Theorem 6.7 (Expander Mixing Lemma, [HLW06]). Given a connected k-regular graph G
= (V,E) on n vertices v1, . . . , vn and disjoint vertex subsets S,T ⊂ V (G), S ∩ T = ∅. Then
the following

(6.10) ||E(S, T )| − k|S||T |
n

| ≤ λ1

√
|S||T |.

is true.

Let’s elaborate here a little more. Let G = (V,E) be a graph and S, T ⊂ V (G). We
denote by E(S,T) the set of edges of G connecting vertices in S to vertices in T. The left-
hand side measures the deviation between two quantities: one is |E(S, T )|, the number of
edges between the two sets; the other is the expected number of edges between S and T
in a random graph of edge density k/n, namely k|S||T |/n. A small λ1 (or large spectral
gap) implies that this deviation is small, so the graph is nearly random in this sense. The
expander mixing lemma gives a bound for how far away from the expected value of E(S,T)
a graph can deviate.

Proof. Let J ∈ Rn×n be the all 1s matrix. We define v(s) to be the vectors with length n
where the ith entry is 1 if vi ∈ S and 0 otherwise. We define the vector v(T ) similarly. Let
A(G) be again the adjacency matrix of G, then we have

(6.11) |E(S, T )| = (v(S))tA(G)(v(T ))

(6.12) |S||T | = (v(S))t · v(T )

(6.13)

=⇒

∣∣∣∣∣|E(S, T )| − k

n
|S||T |

∣∣∣∣∣ =
∣∣∣∣∣v(S)tA(G)vT − k

n
(v(S))tv(T )

∣∣∣∣∣ =
∣∣∣∣∣(v(S))t

(
(A(G))− k

n
J

)
v(T )

∣∣∣∣∣.
Using the Cauchy-Schwartz inequality we obtain: xTy ≤ ||x||||y|| for any two vectors x and

y ,and that ||M || = max
x ̸=0

||Mx||
||x|| is the largest eigenvalue of M, for any matrix M. In our case,

M = A(G)− k
n
J with the largest eigenvalue of λ1. Then, We get that
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∣∣∣∣|E(s, T )| − k

n
|S||T |

∣∣∣∣ = ∣∣∣∣(v(S))t((A(G))− k

n
J

)
v(T )

∣∣∣∣
≤ ||(v(S))t||

∣∣∣∣∣∣∣∣A(G)− k

n
J

∣∣∣∣∣∣∣∣||vT ||
= ||v(S)||

∣∣∣∣∣∣∣∣A(G)− k

n
J

∣∣∣∣∣∣∣∣||vT ||
=
√
|S|
∣∣∣∣∣∣∣∣A(G)− k

n
J

∣∣∣∣∣∣∣∣√|T |

= λ1

√
|S||T |.

(6.14)

■

We concluded above that when the spectral gap of G is large then G is a good expander.
So it is in our interest right now to determine graphs that are the “best” possible expanders
meaning that λ1 will be as small as possible. We can visualize this in the following graphic:

−k −λi 0 λi−λi λi k

where we want all the non trivial eigenvalues to be as close to zero as possible.
However, there are bounds on how small the highest non trivial eigenvalue λ1 can be. We

will introduce these in the next section. We will see then that Ramanujan graphs exactly
meet the tightest bound which makes them the best possible expander.

7. Ramanujan Graphs

In this section we will finally introduce Ramanujan graphs. First we will look at an
example of why the search for expander families, and best possible expanders (Ramanujan
graphs) are necessary. Then we will introduce Ramanujan graphs. To conclude this section
we will give some insights in how to construct families of Ramanujan graphs.

7.1. Motivation for Ramanujan Graphs. In computer science or brain research people
often search for the fastest path through a Graph. We will show that the fastest path has a
connection to λ1. In order to understand the connections we first have to become familiar
with the term of a metric space.

Definition 7.1 ( [Tre13]). A metric space is an ordered pair (M,d) where M is a set and d is
a metric on M, i.e. a function d : M ×M → R, such that for any x, y, z ∈ M , the following
holds:

(1) d(x,y) = 0 <=> x = y
(2) d(x,y) = d(y,x)
(3) d(x,y) ≤ d(x, y) + d(y, z)
(4) d(x, y) ≥ 0 for any x,y ∈ M.

For a finite connected graph G, we can define a metric on G as follows. Given two vertices
u, v ∈ X, we let d(u, v) be the length of the shortest path from u to v. The diameter of
G is then defined as the maximum value of this distance function. Thus, the diameter is a
measure of how fast one can go from one vertex in a graph to another. There is a significant
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theorem of Chung ( [Chu89]) which gives a bound for the diameter of a k-regular graph in
terms of λ1. A refinement due to van Dam and Haemers is presented next.

Theorem 7.2 ( [VDH95]). If G is a connected k-regular graph with n vertices, the diameter
of G is bounded by

(7.1) 1 +
log 2n

log(
k+
√

k2−λ2
1

λ1
)

if G is not bipartite and by

(7.2) 2 +
log 2n

log(
k+
√

k2−λ2
1

λ1
)

if G is bipartite.

One should notice that the above shows that to minimize the diameter, we need to min-
imize λ1 and this explains our interest in Ramanujan graphs for the application. Now lets
prove some bounds for the spectral gap.

7.2. Bounds for expanders. Note that a loopless graph has entries of 0 on the diagonal.
Now, let G = (V,E) be a k-regular loopless graph with vertices 1, 2, . . . , n and the adjacency
matrix A. We note the (i,j)-th entry of Ar as the number of path of length r in the graph.
Let vi be the eigenvector corresponding to λi <=> Avi = λivi. Then Arvi = Ar−1(Avi) =
λiA

r−1vi = λiA
r−2Avi = λ2

iA
r−2vi = . . . = λr

ivi. So λr
1, λ

r
2, . . . , λ

r
n are the eigenvalues of the

matrix Ar. Furthermore, the trace of Ar is

(7.3) tr(Ar) = λr
1 + λr

2 + . . .+ λr
n(it follows from Schur’s theorem for example).

Lets prove now the following Theorem:

Theorem 7.3. Any k-regular, connected graph G on n vertices has some eigenvalue λ1 ̸= k
such that |λ1| ≥

√
k.

Proof. First lets consider A2, then each diagonal entry of A2 is k. Therefore, Tr(A2) = kn.
On the other hand

(7.4) Tr(A2) = λ2
0 +

n−1∑
i=1

λ2
i = k2 +

n−1∑
i=1

λ2
i .

From the definition of λ(X) we get

(7.5) λ2
i ≤ λ(G)2, i = 1, . . . n− 1.

From (7.4) and (7.5) it follows that

(7.6) Tr(A2) ≤ k2 + (n− 1)λ2(G).

From plugging in Tr(A2) = kn in (7.6) we obtain the equation

(7.7) |λ(G)| ≥ (
n− k

n− 1
)1/2

√
k ≥ (

n− k

n
)1/2

√
k =⇒ lim

n→∞
inf λ(G) ≥

√
k.

■
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The presented bound above limits how big the spectral gap can be. There has to be one
eigenvalue outside of the interval ]−

√
k,
√
k[. In the best case, where λ(G) =

√
k (lowest

possible spectral radius), we obtain a spectral gap k − λ1 = k −
√
k which is more than

√
k

for the degree k ≥ 3.

−k −λi 0 λi−λi λi k
√
k−

√
k

So we have a lower bound for the highest eigenvalue meaning that there is a limit for a
“good” expander. Noga Alon and Ravi Boppana proved an even higher bound for the
eigenvalues, limiting the spectral gap even more. Furthermore, they proved that you can’t
set a bound higher than this. This is the highest bound that exists to limit the highest
non-trvial eigenvalue.

Theorem 7.4 (Alon-Boppana). Consider a k-regular, connected finite graph G on n vertices
with eigenvalues k = λ0 > λ1 ≥ . . . ≥ λn−1 ≥ −k where without loss of generality, λ1 is the
eigenvalue with the largest magnitude not equal to k. Then, λ1 ≥ 2

√
k − 1− ε where ε → 0

as n → ∞.

This theorem gives an even tighter bound for the spectral gap: there exists an eigenvalue
outside the interval ]−2

√
k − 1, 2

√
k − 1[

−k −λi 0 λi−
√
k

√
k k2

√
k − 1−2

√
k − 1

The intuition for the number 2
√
k − 1 came from the considering the infinite d-regular tree.

A tree is an acyclic (i.e. a graph with no cycles) connected graph. If T is is a tree a vertex
of T is called a leaf if it has degree of one. Now we can proof the following theorem

Theorem 7.5. If T is a tree with maximum degree k, then all the eigenvalues λ of T satisfy

(7.8) |λ| ≤ 2
√
k − 1 for k ≥ 2.

Proof. Let us fix a root r of the tree and let A be the adjacency matrix of T. Then B =
DAD−1 has the same eigenvalues as A for every invertible diagonal matrix D. Let δ > 0 (to
be chosen later) and D = diag{δl(1), δl(2), . . . , δl(n)} where l(i) is the length of the path from
r to i. If the entries of the matrix B is bi,j then

(7.9) bi,j = ai,jδ
l(i)−l(j)

Let λ be a non-zero eigenvalue of B and x = (x1, x2, . . . , xn)
t an eigenvector corresponding

to the eigenvalue λ. We have

(7.10) λxi =
∑
j

ai,jδ
l(i)−(l(j))xj.

Let us choose i such that
|xi| = max{|x1|, |x2|, . . . , |xn|}.

If i corresponds to the root vertex n then l(i) = 0 and every vertex j adjacent to i has length
1.

(7.11) =⇒ |λi|xi| ≤ |xi| ·
k

δ
=⇒ |λ| ≤ k

δ
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If i is not a root then it has one neighbour occuring in the unique path from the root to i
with length l(i)− 1. Any other neighbor of i (if it is not a leaf) has length l(i) + 1. As the
degree of i is at most k, we have

(7.12) |λxi| ≤ |xi|(δ +
k − 1

δ
) =⇒ |λ| ≤ δ +

k − 1

δ
.

Finally, if i is a leaf then it only has neighbors with the length l(i)−1. In this case we obtain

|λxi| ≤ |xi|δ =⇒ |λ| ≤ δ.

The middle case suggest that we choose δ =
√
k − 1. To optimize our estimates, and plugging

this in in the middle case we ultimately obtain

|λ| ≤ 2
√
k − 1.

■

The infinite d-regular tree is an excellent expander, because it can always guarantee the
biggest possible spectral gap, as it lies exactly on the bound set by Alon-Bopanna. They are
graphs where the eigenvalues exactly meet the bound that we know is impossible to do any
better. This motivates us to find more graphs that maximize the spectral gap. Lubotzky-
Philips-Sarnak showed that there exist graphs that are exactly on the bound, proving that
there are infinetly many of these graphs. Their proof used the Ramanujan conjecture and
that’s (partially) the reason why we term them Ramanujan graphs.

Definition 7.6 (Ramanujan Graphs). A finite, connected, k-regular graph G = (V,E) with
adjacency matrix A(G) is a Ramanujan graph if for all eigenvalues λ ∈ AG, |λ| ≠ k we have
|λ| ≤ 2

√
k − 1.

Due to achieving the tight bound on λ1 the expander mixing lemma gives excellent bound
on the uniformity of the distribution of the edges in Ramanujan graphs, and any random
walks on the graphs has a logarithmic mixing time (in terms of the number of vertices):
in other words, the random walk converges to the (uniform) stationary distribution very
quickly. Refinements, of the Alon-Bopanna bound have been obtained by Jean-Pierre Serre,
who showed the following

Theorem 7.7. For any ϵ > 0, there is a constant c = c(ϵ, k) such that for every k-regular
graph G on n vertices, the number of eigenvalues λi of G such that λi > (2− ϵ)

√
k − 1 is at

least cn.

Confirming a conjecture of Alon, Friedman showed that many families of random graphs
are almost Ramanujan.

Remark 7.8. A random graph is obtained by starting with a set of n vertices and adding
successive edges between them at random (the aim of the study in this field is to determine
at what stage a particular property of the graph is likely to arise).

Definition 7.9 ( [Fri08]). Given a random k-regular graph G on k vertices with eigenvalues
k = λ0 > λ1 ≥ . . . ≥ λn−1, then with high probability, λ1 ≤ 2

√
k − 1 + ε.

It is conjecture that random graphs are Ramanujan with substantial probability (roughly
52%). This raised the question of why the search of families of Ramanujan graphs is still
important since we could approximate it with a random graph. It turned out that Ramanujan
graphs can be constructed quickly, explicitly and we never fail to generate one.
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7.3. Constructing Ramanujan Graphs. When constructing Ramanujan graphs it is of
great interest to search for the existence of an infinite collection of k-regular Ramanujan
graphs for all k. As mentioned in the beginning of this paper, constructing families of Ra-
manujan graphs is very difficult and uses incredibly deep developments in algebra, algebraic
geometry and number theory. That’s why we will give here only a brief overview of how to
construct Ramanujan graphs.

One way of constructing families of k-regular graphs is using group theory. Several explicit
constructions of Ramanujan graphs arise as Cayley graphs and are algebraic in nature. It
is shown that a connected Cayley graph is Ramanujan if it satisfies some deep algebraic
properties. This enables us to classify certain families of Cayley Graphs as Ramanujan.

Nearly all Ramanujan graphs can be constructed explicitly using results about gasps be-
tween consecutive prime numbers. The first constructions of Ramanujan graphs occurred
by Lubotzky, Philips and Sarnak, and independently by Margulius. They showed how to
construct an infinite family of (p+1)-regular Ramanujan graphs, whenever p is a prime num-
ber and p ≡ 1 (mod 4). No explicit construction of infinite families of Ramanujan graphs
for other degrees is known. A short description of the explicit construction of Ramanujan
graphs of degree p+ 1 for every prime p is the following (after M. Ram Murphy).

Example. Let p and q, p ̸= q, be two prime numbers such that p, q ≡ 1 mod 4. By number
theory the congruence u2 = −1 (mod q) has an integer solution. By theorems of Lagrange
and Jacobi the equation p = a2 + b2 + c2 + d2 has exactly 8(p+ 1) integer solutions. Among
these, there are exactly p + 1 solution were a ∈ N∗ and b, c, d even. To each such solution
we associate the matrix (

a+ ub c+ ud
−c+ ud aub

)
which gives p + 1 matrices in the group PGL2(Fq). Let S be the set of these matrices

and G = PGL2(Fq) the group of cosets invertible 2 × 2 matrices, where matrices that are
the same up to a scalar transformation are considered the same. Then, the Cayley graphs
X(G,S) are (p+1)-regular Ramanujan graphs, and as q is varied, an infinite family of such
graphs can be obtained.

Adam Marcus, Daniel Spielman and Nikhil Srivastava proved the existence of infinitely
many k-regular bipartite Ramanujan graphs for any k ≥ 3. Later they proved that there
exist bipartite Ramanujan graphs of every degree and every number of vertices. Michel B.
Cohen showed how to construct these graphs in polynomial time. The initial work followed
an approach of Bilu and Linial. They considered an operation called a 2-lift that takes a
k-regular graph G with n vertices and a sign on each edge, and produces a new k-regular
graph G′ on 2n vertices. Bilu and Linial conjectured that there always exists a signing so that
every new eigenvalue of G′ has magnitude at most 2

√
k − 1. This conjecture guarantees the

existence of Ramanujan graphs with degree k and 2k(k+1) vertices for any k-simply start with
the complete graph Kk+1, and iteratively take 2-lifts that retain the Ramanujan property.
Using the method of interlacing polynomials, Marcus, Spielman, and Srivastava ( [MSS13])
proved Bilu and Linial’s conjecture holds when G is already a bipartite Ramanujan graph,
which is enough to conclude the existence result. The sequel proved the stronger statement
that a sum of k random bipartite matchings is Ramanujan with non-vanishing probability.
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8. Example of Ramanujan Graphs

Lastly, lets look at some examples of Ramanujan graphs. Ramanujan can take any possible
form and look very complex. Ramanujan graphs with a lot of vertices and “unpredictabl”
structure are of big interest in research. Here, however, we will only discuss some simple,
well known graphs.

Recall that earlier we computed the eigenvalues of a complete graphKn. We had computed
for the characteristical polynomial (chk)

(8.1) chk(λ) = (λ− n− 1)(λ+ 1)n−1.

Let’s see if this graph satisfies the Ramanujan Graph property. We have λ(G) = |λ1| =
| − 1| = 1 plugging it in the Ramanujan property we get:

(8.2) 1 ≤ 2
√

(n− 1)− 1 ≤ 2
√
n− 2.

This inequality is always true for (n−1) ≥ 2, therefore the complete graphKn is a Ramanujan
graph.

Next we will show that the complete bipartite graph Km,n is Ramanujan as well. We can
compute the characteristical polynomial of the complete graph similar to how we did it for
the complete graph and we get chK(λ) = (λ2 −mn)λm+n+2. In the d-regular graph Kn,n we
have m = n so we obtain

(8.3) chK(λ) = (+(n− 1))(λ− (n− 1))λ2n+2.

Recall that the adjacency matrix of a k-regular bipartite graph has eigenvalues k and -k.
Again, a confirmation for our proofs above. Now it is trivial that the complete bipartite
graph is Ramanujan as all the non-trivial eigenvalues are zero (0 ≤ 2

√
n− 2 for n− 1 ≥ 2).

Note that although the complete bipartite graph and complete graph both satisfy the
Ramanujan property, they are bad expanders and not of interest in application, because
their degree k is dependent on the number of vertices and thus raises with the number of
vertices.

Figure 1. The Petersen graph is a 3-regular graph on 10 vertices and is a
Ramanujan graph

As the 3rd example we will show that the well-known Petersen Graph is also a Ramanujan
Graph. It’s characteristic polynomial is the following:

(8.4) chP (λ) = (λ− 3)(λ+ 2)4(λ− 1)5.
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Therefore we have |λ1| = | − 2| = 2 since λ0 = k = 3. This satisfies the Ramanujan property

(8.5) 2 ≤ 2
√
k − 1 = 2

√
k − 1 = 2

√
3− 1 = 2

√
2.

So every non-trivial eigenvalue of G have magnitude less than 2
√
2, meaning that the Petersen

Graph is a Ramanujan graph.

9. Concluding Remarks

We have presented a brief presentation of Ramanujan Graphs, aimed for the other students
who have attended the Euler Circle independent research and paper writing class in the
summer of 2022. We have not given a full encyclopedic account of the topic and for this, the
reader may look at the surveys such as ( [HLW06], [Val97]) as well as the book by Lubotzky
( [Lub94]) and the recent book by Kowalski ( [Kow19]). I chose this topic because it sounded
very interesting and challenging and it connects Linear Algebra (which I studied in my AT
math class of 21/22) as well as graph theory which I love. I really enjoyed taking this
class and learned a lot about how to become a better mathematician especially in writing a
paper and holding talks. Special thanks to Nitya Mani, who helped me answer my questions
and provided me with material, and to Simon Rubinstein Salzedo who succesfully organized
this great class. Also thanks to Zipeng who reviewed my first draft of this paper and thus
contributed to the end result. The theory of Ramanujan graphs is a new world to explore
that is fascinating from many perspectives . . .
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