Stern-Brocot Tree

Euler Circle

July 10, 2022

Tomiris Kurmanlina Euler Circle July 10, 2022 1 / 2

- Introduction
- Definitions
- 3 How to built Stern-Brocot Tree Extended Stern-Brocot Tree
- 4 Properties
- 6 Application

Bezout's identity Dirichlet's Approximation Theorem Hurwiz thorem

6 Binary string and Continued fractions

Definitions

- The Mediant The Mediant of two fraction $\frac{a}{b}$ and $\frac{c}{d}$ is $\frac{a+c}{b+d}$.
- Reduced fraction A fraction is said to be in its Reduced Form if the fraction $\frac{m}{n}$, where $m, n \in \mathbb{Z}$ is expressed in the lowest terms. Therefore m and n have to be coprime.
- 3 Ancestor We say that the fraction $\frac{a}{b}$ is ancestor of fraction $\frac{c}{d}$ if $\frac{a}{b}$ forms the Mediant $\frac{c}{d}$.

How to built Stern-Brocot Tree

1 Start with the 'pseudo-fractions'

$$\frac{0}{1},\frac{1}{0}$$

2 Insert the mediant.

$$\frac{0}{1}, \frac{1}{1}, \frac{1}{0}$$

3 Continue adding all mediants of all neighbouring fractions:

$$\frac{0}{1}, \frac{1}{2}, \frac{1}{1}, \frac{2}{1}, \frac{1}{0}$$

$$\frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1}, \frac{3}{2}, \frac{2}{1}, \frac{3}{1}, \frac{1}{0}$$

Figure: Stern Brocot Tree

Extended Stern-Brocot Tree

Extended Stern-Brocot Tree starts with

$$(0,1,\frac{1}{0}).$$

2 Every triple $(\frac{m}{n}, \frac{m'}{n'}, \frac{m''}{n''})$ has two child. In every triple, fraction in the middle is Mediant of left and right fraction

$$\textit{left triple} - (\frac{m}{n}, \frac{m+m'}{n+n'}, \frac{m'}{n'}) \qquad \textit{right triple} - (\frac{m'}{n'}, \frac{m'+m''}{n'+n''}, \frac{m''}{n''})$$

Extended Stern-Brocot Tree

Figure: Extended Stern Brocot Tree

Relation between Stern-Brocot Tree and Extended Stern-Brocot Tree

Lemma

To get Stern-Brocot Tree from the Extended Stern-Brocot Tree, we need to delete left and right fraction in every triple and keep Mediants from the Extended Stern-Brocot Tree.

Proof.

Notice that in the Stern-Brocot Tree $\frac{m}{n}$ and $\frac{m'}{n'}$ are ancestors of fraction $\frac{m+m'}{n+n'}$, for every triple in the Extended Stern-Brocot Tree.

So if we delete right and left fraction in triple, we will leave only Mediants.

Properties

Lemma

For a, c integer and b, d nonzero integer such that $\frac{a}{b} < \frac{c}{d}$. Then their mediant lies between them, $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$.

Property

<u>L</u>emma

If two fractions $r = \frac{a}{b}$ and $q = \frac{c}{d}$ in reduced form are consecutive, then

$$ad - bc = \pm 1 \tag{1}$$

Tomiris Kurmanlina Euler Circle July 10, 2022

stern-brocot tree

Figure: exmaple

Application

Theorem

For nonzero numbers $a, b \in Z$ there exist $x, y \in Z$, such that ax + by = gcd(a, b).

Proof.

Consecutive fractions are solutions for Bezout's identity.

And every rational number appears in the tree.

< ロ > 4 回

Dirichlet's Approximation Theorem

Theorem

If α is a positive irrational number, there are infinitely many reduced fractions $\frac{m}{n}$ with $|\alpha - \frac{m}{n}| \leq \frac{1}{n^2}$

proof

Proof.

We will prove that for triple (a, b, c) in the Extended Stern-Brocot Tree corresponding to α , then we say that either a or c is fraction we are looking for.

Every rational number appears only finitely many Stern-Brocot triples. Suppose that $a = \frac{m}{n}$ and $\alpha \in (a, b)$; then $|\alpha - a| \le |a - b| \le \frac{1}{n^2}$. By lemma, for

$$a = \frac{m}{n}, b = \frac{m'}{n'}, c = \frac{m''}{n''}$$

 $mn' - nm' = 1.$

And n' is at least as large as n. Similarly we proof for $\alpha \in (b, c)$.

Hurwiz thorem

Theorem

If α is a positive irrational number, there are infinitely many reduced fractions $\frac{m}{n}$ with $|\alpha - \frac{m}{n}| \leq \frac{1}{\sqrt{5}n^2}$

Binary string

Theorem

Every real positive number a can be uniquely represented as string of L's and R's (maybe empty, maybe infinite).

It helps a lot to computers represent number.

Tomiris Kurmanlina Euler Circle July 10, 2022

Example

Example

String for The Inverse-Golden Ratio

As we know The Inverse-Golden Ratio equal to $\frac{1}{\phi} = \frac{(-1+\sqrt{5})}{2}$. The sting for The Inverse-Golden Ratio is infinite string LRLRLRLRLRL ...

Theorem

For every rational number

$$f(R^{a_0}\cdots L^{a_{n-1}})=a_o+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{\cdots+\frac{1}{a_{n-1}+\frac{1}{2}}}}}$$

Continued fraction and Binary string

Theorem

For every irrational number
$$f(R^{a_0}L^{a_1}\cdots)=a_o+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{a_3+\frac{1}{a_3+\dots}}}}$$

The Inverse-Golden Ratio

Example

Example
$$LRLRLRLR = 0 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}}$$

Thank you for your attention!

Tomiris Kurmanlina Euler Circle J