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Abstract. Stern-Brocot tree builds by ‘childish adding’. Every
term is the Tree uses once and all rational numbers are written in
their reduced form.

Stern-Brocot Tree has a lot of properties and helps to prove
Hurwitz theorem, Dirichlet’s theorem, and others.

1. Introduction

In this paper, we will talk about the Stern-Brocot tree and how
it is aligned with fundamental mathematical theorems and constants
such as Euler’s constant, the inverse Golden Ratio, Bezout’s identity,
Dirichlet’s theorem, Hurwitz’s theorem, and continued fractions. The
Stern-Brocot tree was discovered by Stern in 1858 and Brocot in 1861.
The tree is built in a really simple way. It starts from fractions
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you just need in every step add numerators and denominator of two
fractions with ‘childish method’. This repeats infinitely many times,
and it brings us a lot of properties. The fundamental one is that every
fraction that we received after the ‘childish method’ is in between its
ancestor, so

a

b
<

(a+ c)

(b+ d)
<

c

d

If you could get one thing from the introduction, then it should be
that by inserting new terms with ‘childish method’, we receive every
positive rational number that is symmetrical with regard to reciprocals
in each row.

Every term appears exactly once in a reduced form, because of that,
each of them has a unique string of L’s and R’s that show the path
from the root of the tree to the fraction we are looking for. For this
property we will prove have two different proofs.

This string is beautiful for The Inverse-Golden Ratio, which are

LRLRLRLRLRLR . . .

And for Euler Constant is

RL0RLR2LRL4RLR6LRL8 . . .

Extended Stern-Brocot Tree build similar to Stern-Brocot Tree, later
we will talk how they connected. We will also show they way how to
build it.

Ford Circles use a little bit different way to construction than Stern-
Brocot Tree, but fractions corresponding to circles are identical to frac-
tions in Stern-Brocot Tree, we will prove this fact in paper.

It’s cool that Stern-Brocot Tree has so many properties, but where
they can be used?

Dirichlet’s Approximation Theorem is one of the tree theorem where
it can be used.

Using properties of the Extended Stern-Brocot Tree and basic alge-
bra, this theorem profs fast.

Hurwitz’s theorem which almost like Dirichlet’s Approximation The-
orem, but harder proofs the same way.

Using properties of the Extended Stern-Brocot Tree and basic alge-
bra,and that ϕ is irrational, we can also proof this.

2. Definitions

Definition 2.1. Child
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We say that fraction a
b
is child of fraction c

d
if a

b
appears below the

fraction c
d
.

Example. 3
5
is child of fraction 2

3
.

Definition 2.2. Left child
We say that fraction a

b
is Left child of fraction c

d
if a

b
appears below

to the left than another child fraction.

Example. 3
5
is left child of fraction 2

3
.

Definition 2.3. Right Child
We say that fraction a

b
is Right child of fraction c

d
if a

b
appears below

to the right than another child fraction.

Example. 3
4
is right child of fraction 2

3
.

Definition 2.4. Ancestor
We say that the fraction a

b
is ancestor of fraction c

d
if a

b
forms the

Mediant c
d
.

Example. 2
3
is ancestor of fraction 3

5
.

Definition 2.5. Consecutive
Two fractions are consecutive if one of them child and another an-

cestor.

Example. 5
3

8
5
are consecutive.

Definition 2.6. The Mediant
The Mediant of two fraction a

b
and c

d
is a+c

b+b
.

Definition 2.7. Reduced fraction
A fraction is said to be in its Reduced Form if the fraction m

n
, where

m,n ∈ Z is expressed in the lowest terms. Therefore m and n have to
be coprime.

Definition 2.8. n-th level of the Stern-Brocot Tree
The tree has level, to determine fraction’s level, we have to find

number of all ancestors till the root.

Example. Fractions that located in 3− rd level are

1

3
,
2

3
,
3

2
,
3

1
.
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Figure 1. Level in Stern-Brocot Tree

3. How to built the Stern-Brocot tree?

3.1. Stern-Brocot Tree.

1. Start with the ‘pseudo-fractions’

0

1
,
1

0

2. Insert the mediant
0

1
,
1

1
,
1

0

3. Continue adding all mediants of all neighbouring fractions:

0

1
,
1

2
,
1

1
,
2

1
,
1

0

0

1
,
1

3
,
1

2
,
2

3
,
1

1
,
3

2
,
2

1
,
3

1
,
1

0

· · ·

4. Record this numbers as we generate them one by one: below
each fraction a

b
are the two new fractions introduced to the left

and right of a
b
at the step directly after a

b
is introduced.
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As we see, it is quite easy to construct Stern-Brocot Tree but it still
have a lot of properties and related to other construction, which we
will talk now.

Figure 2. Stern Brocot Tree

3.2. Extended Stern-Brocot Tree.

1. Extended Stern-Brocot Tree starts with

(0, 1,
1

0
).

2. Every triple (m
n
, m

′

n′ ,
m′′

n′′ ) has two child. In every triple, fraction
in the middle is Mediant of left and right fraction

left triple− (
m

n
,
m+m′

n+ n′ ,
m′

n′ ) right triple− (
m′

n′ ,
m′ +m′′

n′ + n′′ ,
m′′

n′′ )

3. Example of the left part of the Extended Stern-Brocot Tree:



6 TOMIRIS KURMANALINA

Figure 3. Extended Stern Brocot Tree

Lemma 3.1. To get Stern-Brocot Tree from the Extended Stern-Brocot
Tree, we need to delete left and right fraction in every triple and keep
Mediants from the Extended Stern-Brocot Tree.

Proof. We see that every triple in the Extended Stern-Brocot Tree has
form (m

n
, m+m′

n+n′ ,
m′

n′ ). But in the Stern-Brocot Tree every rational frac-

tion is used once by theorem 4.4, so we can find fractions m
n
, m+m′

n+n′ ,
m′

n′

in the Tree.
We notice that m+m′

n+n′ is Mediant of left and right fraction by 3.2.

Therefore in the Stern-Brocot Tree m
n
and m′

n′ are ancestors of fraction
m+m′

n+n′ .
So the left and right fraction in every triple of the Extended Stern-

Brocot Tree are ancestors, in Stern-Brocot Tree.
Therefore, from the Extended Stern-Brocot Tree we need to delete

all non Mediant fraction, which are left and right fraction in every
triple. ■

Even if it seems that Extended Stern-Brocot Tree is useless if we
have Stern-Brocot Tree, with Extended Stern-Brocot Tree we can prove
Hurwitz’s theorem 5.3, Dirichlet’s approximation theorem 5.2.

3.3. Ford circles. For the pictorial presentation of Ford Circles, we
begin with a straight line that can be considered the x − axis in the
plane. For any rational number a

b
, a circle tangent to that point with

a diameter 1
b2

can be drawn. Some circles are tangent and others are
not.
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Figure 4. Ford Circles

Theorem 3.2. The two circles corresponding to a
b
and c

d
touch if and

only if ad− bc = ±1.

Proof. Suppose b < d and a
b
< c

d
, other cases are identical,

Figure 5. Touching Ford Circles

To use Pythagorean theorem, we need to determine values ofAB,BC,CD,
so

2AB =
1

b2
− 1

d2
.

2BC =
1

b2
+

1

d2
.

AC =
c

d
− a

b
.

Then plugging this values into Pythagoream theorem, we get bc−ad =
1.
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Therefore two circles are touching each other.
Similarly in reverse, if bc− ad = 1 then circles are touching.

Theorem 3.3. If two circle touch each other then the circle is tangent
to them both locates at fraction a+c

b+d
.

Figure 6. Circle corresponding to the mediant fraction

If we will prove circle, that has diameter a+c
b+d

, tangent to circle corre-
sponding to a

b
, analogically that circle tangent to c

d
, then it is tangent

to both of them.
From bc − ad = 1, theorem 3.2, we get that (b + d)c − (a + c)d = 1

and (a+ c)b− (b+ d)a = 1.
From first equation we get, that a

b
and a+c

b+d
are touching.

And from the second equation, we get c
d
and a+c

b+d
are touching.

We proved theorem. ■

Lemma 3.4. Diameters of all touching circles are form the terms of
the Stern-Brocot Tree.

Proof. We will prove by induction that n− th step of drawing tangent
circles to already written, we get terms corresponding to the n − th
level of the tree.

For n = 1, for a
b
= 0

1
c
d
= 1

0
, statement is true.

Suppose for some n is true, then we will proof for n+ 1− th raw.
From the theorem 3.3 we know that, for two circles corresponding to

fractions a
b
, c

d
, at n+ 1− th step we get a new circle corresponding to

fraction a+c
b+d

.
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And in the Stern-Brocot Tree at n− th level for two fractions a
b
, c

d
,

their mediant at n+ 1− th raw is a+c
b+d

.
Therefore, we proved our lemma.

■

4. Properties

In this paragraph we will talk about definitions in the Stern-Brocot
tree and properties that tree has.

Lemma 4.1. For a, c integer and b, d nonzero integer such that a
b
< c

d
.

Then their mediant lies between them, a
b
< a+c

b+b
< c

d
.

Proof. We know that a
b
< c

d
, then we have

ad < bc.

And we know ad < bc mean

bad < b2c,

so

bad+ bcd < b2c+ bcd.

However,

ad2 < bcd,

then

bad+ ad2 < bad+ bcd.

Therefore,

bad+ ad2 < bad+ bcd < b2c+ bcd.

So,

(b+ d)ad < (a+ c)bd < (b+ d)bc,

then

ad <
bd(a+ c)

(b+ d)
,

and we get
ad

bd
<

bd(a+ c)

bd(b+ d)
<

bc

bd,
or

a

b
<

a+ c

b+ d
<

c

d
.

■

Corollary 4.2. The order is respected by horizontal position i.e. larger
fractions appear to the right of smaller ones.
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Lemma 4.3. If two fractions r = a
b
and r = c

d
in reduced form 2.7 are

consecutive, then

(1) ad− bc = ±1

Proof. Let’s prove by using induction. For r = 0
1
and s = 1

1
0∗1−1∗1 =

1.
Suggest that for some r and s it is true, then for their mediant is

also true, because

(2) a(c+ d)− (a+ b)c = 1

(3) d(a+ b)− (c+ d)b = 1

are equivalent to our assumption by assumption 1.
For 2: a(c+ d)− (a+ b)c = ac+ ad− ac− cb = da− ab = 1
For 3: d(a+ b)− (c+ d)b = ad+ bd− bc− db = da− ab = 1

■

Theorem 4.4. Every rational number m
n
in the Stern-Brocot Tree ap-

pears in its reduced form and appears exactly once.

Proof. We will prove in this section, that every fraction are not used
more than twice.

Let a
b
and c

d
be consecutive. Using lemma 4.3 we know that,

ad− bc = ±1

Also if a
b
< c

d
then

a

b
<

(a+ c)

(b+ d)
<

c

d
because of lemma 4.1.
Therefore Tree is ordered, so no fraction is used more than twice.
Let a

b
be a fraction where a, b > 0 and (a, b) = 1.

In this section we will prove that every fraction will appear in the
tree. Until, we will not meet fraction, we are looking for, then we have

m1

n1

<
a

b
<

m2

n2

where m1

n1
and m2

n2
are consecutive.

It easy to see that

m1b < n1a and n2a < m2b,

n1a−m1b > 0 and m2b− n2a > 0,

n1a−m1b ≥ 1 and m2b− n2a ≥ 1.
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because of that,

(m2 + n2)(n1a−m1b) + (m1 + n1)(m2b− n2a) ≥ m1 + n1 +m2 + n2.

Simplifying, we get

m2n1a− n2m1b−m2m1a+ n1m2b ≥ m1 + n1 +m2 + n2.

n1m2(a+ b)−m1n2(a+ b) ≥ m1 + n1 +m2 + n2.

(a+ b)(n1m2 −m1n2) ≥ m1 + n1 +m2 + n2

a+ b ≥ m1 + n1 +m2 + n2

This shows that there would be at most (a + b) steps of mediants
before a

b
appears in the Stern-Brocot Tree.

■

This properties properties are essential to proof theorems and other
lemmas, so even if they look simple they are very usable.

Lemma 4.5. Each row of the tree is symmetrical with regard to recip-
rocals.

1

4
,
2

5
,
3

5
,
3

4
,
4

3
,
5

3
,
5

2
,
4

1

5. Application

5.1. Bezout’s identity.

Theorem 5.1. For nonzero numbers a, b ∈ Z there exist x, y ∈ Z, such
that ax+ by = gcd(a, b).

Proof. Let’s simplify and delete both sides to gcd(a, b), we get that
for nonzero coprime numbers a, b ∈ Z there exist x, y ∈ Z, such that
ax+ by = 1.

Using 2.7 we know that every fraction a
b
is reduced and by theorem

4.4 we know that every fraction is used once, so we can now proof that
for every fraction in the Stern-Brocot Tree exist x, y ∈ Z, such that
ax+ by = 1.

Using property that for every fraction a
b
by lemma 4.3 its consecutive

fraction c
d
, such that ad− bc = 1, where a, b, c, d ∈ N.

Since, we choose x, y, so we can make a sum or difference, just chang-
ing sign before x or y.

Summarizing, in Stern-Brocot Tree we can find any pair of a, b co-
prime, and for any fraction a

b
, its consecutive fraction in module are x

and y we are searching. ■

In this theorem were useful properties 4.4, and 4.3 and how we de-
fined what consecutive fraction in 2.5.
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5.2. Dirichlet’s Approximation Theorem.

Theorem 5.2. If α is a positive irrational number, there are infinitely
many reduced fractions m

n
with |α− m

n
| ≤ 1

n2 .

Proof. We will prove that for triple (a, b, c) in the Extended Stern-
Brocot Tree corresponding to α, then we say that either a or c is
fraction we are looking for.

Every rational number appears in only finitely many Stern-Brocot
triples.

Suppose that a = m
n
and α ∈ (a, b); then |α− a| ≤ |a− b| ≤ 1

n2 .
By lemma 4.3, for

a =
m

n
, b =

m′

n′ , c =
m′′

n′′

mn′ − nm′ = 1.

And n′ is at least as large as n.
Similarly we proof for α ∈ (b, c). ■

Nest theorem, looks similar to Dirichlet’s Approximation Theorem,
but more general case, of what we proved before.

5.3. Hurwitz theorem.

Theorem 5.3. If α is a positive irrational number, there are infinitely
many reduced fractions m

n
with |α− m

n
| ≤ 1√

5n2 .

Proof. We want prove that in any triple (a, b, c) corresponding to α in
the Extended Stern-Brocot Tree, either a, b, c, satisfy.

We will show the case if α > b, because if α < b, we replace α by
1 − α, a by 1 − c, c by 1 − a, and this case become identical to first
case.

In the Extended Stern-Brocot Tree any triple (a, b, c) corresponding
to α, to Hurwitz conclusion must satisfy either a, b, c. We will prove for
case α > b, if α < b we can replace α = 1− α, a = 1− c, c = 1− a.

Then we can say, that α ∈ (a, b). Suppose that a, b, c do not satisfy
to the theorem and we will prove that our assumption is wrong.

a =
m

n
, b =

m′

n′ , c =
m′′

n′′
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then

α− m

n
≥ 1√

5
n2(1)

α− m′

n′ ≥ 1√
5
(n′)2(2)

α− m′′

n′′ ≥ 1√
5
(n′′)2(3)

Using lemma 4.3, and adding 1 and 2, we get
√
5nn′ ≤ n2 + (n′)2.

Doing similarly, adding 2 and 3, we have

√
5n′n′′ ≤ (n′)2 + (n′′)2.

Adding two inequalities that we received , we get,

√
5n′(n+ n′′) ≤ n2 + 2(n′)2 + (n′′)2.

Using the definition of mediant 2.6, we know that n′′ = n+ n′,
simplifying, it is equal to

2(n− n′

ϕ
)2 ≤ 0,

where ϕ is the golden mean.
It is possible only if n = n′

ϕ
, as we know ϕ is irrational, which is

impossible.
■

As we noticed knowing properties of some constant, and unique num-
bers in mathematics can be used in the Stern-Brocot Tree, and later
we also will use them.

6. Binary string

Definition 6.1. Moves to left and to right in the algorithm
To find path we move to Left or Right branch. We move left, if the

left triple (m,n, k) such that a ∈ (m,n), analogously for right move,
where a is real positive number for which we want to find string.

When we build Extended Stern-Brocot tree, every triple (m,n, k)
such that n is the Mediant of m, k by lemma 3.1.

By lemma 4.1 we know, that Mediant of two fractions locates in
between. Hence we move left or right until a is equal to Mediant of
two fractions or infinitely many times if α is rational.
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Theorem 6.2. Every real positive number a can be written as string
of L’s and R’s (maybe empty, maybe infinite).

Theorem 6.3. Every rational number a has unique representation of
L’s and R’s, when we are looking for a, we look only such a that placed
at the Mediant of every triple.

Proof. By theorem 4.4 every fraction appears exactly once, then in the
tree do not exist equal fraction in the Stern-Brocot Tree, what means
there do not exist equal fraction in the Mediant place in every triple
of the Extended Stern-Brocot Tree. Therefore every rational positive
number a has no more than one path.

Let’s prove that different rational numbers a, b do not have same
string.

We will prove by induction.
We will do induction by n, where n is the length of the string, since

string of a, b are equal, then their length are also equal.
For n = 1, it means that from Mediant of the first triple of the

Extended Stern-Brocot Tree we moved to left or to right, and a, b are
ended their path at the same fraction. What means they are equal.

Suppose for n the statement is true.
Then for n+1, we now that at n′s step they are equal, from n′s letter

they both move or left or right. Where they again are equivalent. ■

Theorem 6.4. Every irrational number α has a unique representation
of L’s and R’s, when we are looking for a, we look only such a that
placed at the Mediant of every triple.

Proof. By theorem 6.2, we know that any irrational number has a
string.

Let’s suppose that for some irrational number α exist two different
strings.

Then we know this both strings at some point will have different
letter, suppose that first string has at n − th place L and the second
letter R at n− th place.

We know that tree is order by corollary 4.2. Therefore, fraction
corresponding to first string anyway is going to be smaller than the
second string.

So this strings correspond to different numbers.
■

Definition 6.5. Fraction corresponding to string S, we define as

f(S)
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Theorem 6.6. If we have string of L’s and R’s, what fraction has this
string?

Proof. If m
n
and m′

n′ are the closest fraction to preceding and following

terms in the tree, for the string f(S). Then f(S) = m+m′

n+n′ .
Let’s look at a 2 ∗ 2 matrix

A(S) =

(
n n′

m m′

)
Is we move from this position to the left, then

A(SL) =

(
n n+ n′

m m+m′

)
equavalent to

A(SL) =

(
n n′

m m′

)
∗
(
1 1
0 1

)
= A(S)

(
1 1
0 1

)
Simlarly for Right move,

A(SR) =

(
n+ n′ n′

m+m′ m′

)
= A(S)

(
1 0
1 1

)
So, eft and Right 2 ∗ 2 matrix are

L =

(
1 1
0 1

)
R =

(
1 0
1 1

)
So we got formula by induction. Therefore this construction gives

answer for the question, and each fraction has unique string. ■

Corollary 6.7. Each node in that tree can be represented as a sequence
of L’s and R’s, say

Ra0La1Ra2La4 · · ·Ran−2Lan−1 ,

where a0, a1, a2 · · · , an−2 ≥ 1 and an−1 ≥ 0.

Definition 6.8. The fraction 1
1
corresponds to the empty string.

Definition 6.9. Irrational numbers
Irrational numbers do not appear in Stern-Brocot tree, but all the

rational numbers that are “close” to irrational number to them do.
Therefore string is infinite for irrational numbers.

Example. String for The Inverse-Golden Ratio

As we know The Inverse-Golden Ratio equal to 1
ϕ
= (−1+

√
5)

2
. The

sting for The Inverse-Golden Ratio is infinite string LRLRLRLRLRLR
. . .
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Example. String for Euler’s constant.
The string for Euler’s Constant is infinite stringRL0RLR2LRL4RLR6LRL8. . .

Definition 6.10. Semiconvergents
The mediants of these triples, that built path from the root to α we

are looking for, are called the semiconvergents of α.

Example. For α = 5
7
, triples are

(0, 1,∞), (1,
1

2
, 1), (

1

2
,
2

3
, 1), (

2

3
,
3

4
, 1), (

2

3
,
5

7
,
3

4
).

Semiconvergents

1,
1

2
,
3

4
,
5

7
.

Example. For α = 1/ϕ

1,
1

2
,
2

3
,
3

5
,
5

8
, ...

We see Fibonacci’s sequence.
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