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Significance

Quantum computers are powerful!
But are also very error-prone.



Classical Computing

The standard unit of information is the bit, which can take the
value 0 or 1. We can combine 0’s and 1’s to make letters,
numbers, and words.
We have classical gates that act on these 0’s and 1’s.

1⊕ 0 = 1, 0⊕ 0 = 0, 1⊕ 1 = 0

0 AND 0 = 0, 1 AND 0 = 0, 1 AND 1 = 1



Classical Errors

Classical computing is also prone to errors!

1. Poorly calibrated gates:

1⊕ 0 = 0

2. External noise and interference



Bit-Flip Channel

Bit-flip channel: If we send a bit(0 or 1) through the channel, the
output is flipped with probability p, and remains the same with
probability 1-p.



Classical Error Correction

We can protect states from bit-flip errors with repetition.

0 7→ 000, 1 7→ 111

Now, if we want to send the 0 state, we instead send the state
000. If a bit-flip occurs on the second bit:

000 7→ 010

We can simply look at what state the majority of our bits are in,
and take that value.



Dirac Notation

A ket |x⟩ is a way of representing a column vector:

|x⟩ =


x1
x2
...
xn





Quantum Computing

Quantum computing uses qubits, not bits. The quantum
equivalent of the 0 and 1 states are the vectors:

|0⟩ =
(
1
0

)
|1⟩ =

(
0
1

)
States can also exist in superpositions of the |0⟩ and |1⟩ states:

|ψ⟩ = α |0⟩+ β |1⟩ =
(
α
β

)



Measurement

Measurement is an important part of quantum computing. When
we measure a state |ψ⟩ = α |0⟩+ β |1⟩, we expect the following
probabilities:

P(|0⟩) = ||α||2

P(|1⟩) = ||β||2

And the state ”collapses” to either |1⟩ or |0⟩, depending on the
result of the measurement.



Operators

General operator U:
U |ψ⟩ = |ψ⟩′

An operator acts on a quantum state to transform it to another
state. Single-qubit operators can be represented as 2x2 matrices.
Commuting operators:

AB |ψ⟩ = BA |ψ⟩

Anti-Commuting operators:

CD |ψ⟩ = −DC |ψ⟩



Named Operators

Some important operators (Pauli group P):

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)

Z =

(
1 0
0 −1

)
Y =

(
0 −i
−i 0

)
Act on the basis states:

X |0⟩ = |1⟩ ,X |1⟩ = |0⟩

Z |0⟩ = |0⟩ ,Z |1⟩ = − |1⟩



Quantum Errors

There are three big challenges to QEC:

1. No-Cloning Theorem:
There is no operator Uc that can perform the following
mapping:

Uc(|ψ⟩ |ϕ⟩) 7→ (|ψ⟩ |ψ⟩)

2. Continuous errors

3. Measurement collapses state information.

How can we overcome these challenges?



Encoding

The first part of quantum error correction is the encoding process.
In general, an encoding process has the following effect on a state:

α |0⟩+ β |1⟩ 7→ α |0⟩L + β |1⟩L

where |0⟩L and |1⟩L are called the logical(or encoded) 0 and 1
states



The 3-qubit code

Quantum bit-flip channel: applies the X gate with probability p.
We can encode qubits in the following way:

|0⟩ 7→ |000⟩

|1⟩ 7→ |111⟩

On a general superposition:

α |0⟩+ β |1⟩ 7→ α |000⟩+ β |111⟩

Doesn’t violate No-Cloning Theorem!

α |000⟩+ β |111⟩ ≠ (α |0⟩+ β |1⟩)⊗3



Recovery

Our state |ψenc⟩ = α |000⟩+ β |111⟩ is subject to error Uerr . Uerr

randomly flips at most one qubit, e.g.

α |000⟩+ β |111⟩ 7→ α |010⟩+ β |101⟩

How can we correct these errors?



Parity Measurements

Parity measurements can give us information on the error without
actually measuring the state. For the 3-qubit code, we can
measure which qubits agree/disagree with each other.

α |010⟩+ β |101⟩

We compare the values of the first and second qubit, and the first
and third qubit:

0⊕ 1 = 1, 0⊕ 0 = 0



More Parity Measurements

Final State Parity Measurements Recovery Operation

α |000⟩+ β |111⟩ 00 None
α |100⟩+ β |011⟩ 11 X on Qubit 1
α |010⟩+ β |101⟩ 10 X on Qubit 2
α |001⟩+ β |110⟩ 01 X on Qubit 3



Stabilizer States

An operator A stabilizes |ψ⟩ if:

A |ψ⟩ = |ψ⟩

|ψ⟩ is an eigenstate of A with eigenvalue +1.



More Stabilizer States

Definition (Stabilizer State)

An N-qubit state |ψ⟩N is known as a stabilizer state if there exists
a subgroup S of the N-manifold Pauli group PN such that

A |ψ⟩ = |ψ⟩ ∀ A ∈ S



Generators of Stabilizer States

Stabilizer states can also be defined by their generators. For
example, the state

|ψ⟩ = |000⟩+ |111⟩√
2

is a stabilizer state defined by the generators

K1 = X ⊗ X ⊗ X ,

K2 = Z ⊗ Z ⊗ I ,

K3 = I ⊗ Z ⊗ Z



Encoding with Stabilizer States

The example 7-qubit code has the following encoded |0⟩ and |1⟩
states:

|0⟩L = |0000000⟩+ |1010101⟩+ |0110011⟩+ |1100110⟩
+ |0001111⟩+ |1011010⟩+ |0111100⟩+ |1101001⟩
|1⟩L = |1111111⟩

(1)

With stabilizers:

K1 = IIIXXXX ,K2 = XIXIXIX ,

K3 = IXXIIXX , K4 = IIIZZZZ

K5 = ZIZIZIZ , K6 = IZZIIZZ .

(2)

To encode an arbitrary state with the 7-qubit code we project the
state into a +1 eigenstate of the stabilizer group.



Error Correction with Stabilizer Codes

If we wish to encode an arbitrary state with the 7-qubit code we
have:

α |0⟩+ α |1⟩ 7→ α |0⟩L + α |1⟩L
which is also a +1 eigenstate of our generator group.
Now, if we have an error E ∈ P acting on our encoded state, we
will be able to tell what type of error it is and where it occurs.
But how??



Detecting and Correcting Errors

If E commutes with one of our stabilizers, it will leave the state
unchanged. If it anti-commutes with a stabilizer, it will turn the
state into a -1 eigenstate of the stabilizer.

E will commute and anti-commute with a unique set of generators.
Once we find which generators E commutes with, we can determine
what type of error E is and where it occured on our qubits.

For example, if our error is an X gate acting on the first qubit,
then the error will commute with K5, and anti-commute with K4

and K6. Similarly, an X error on the second qubit will commute
with K6 and anti-commute with K4 and K5



Code Concatenation

If we can encode a qubit one time... why not twice?

If the probability of error on the lowest level is p, then after k

encoding levels, the probability of error occurring is (cp)2
k

c



Threshold Theorem

Theorem (Quantum Threshold Theorem)

A quantum circuit of S gates can be built with a probability of
error below ϵ with

O

(
S

(
logm

(
S

ϵ

)))
gates on hardware that each introduce error with probability p less
than a constant threshold, and given reasonable information about
the noise in the hardware.


