Quantum Error Correction

Thomas Catalan

June 2022

KO K K Ø K K E K K E K V K K K K K K K K K K

Significance

Quantum computers are powerful! But are also very error-prone.

The standard unit of information is the bit, which can take the value 0 or 1. We can combine 0's and 1's to make letters, numbers, and words.

We have classical gates that act on these 0's and 1's.

$$
1\oplus 0=1,0\oplus 0=0,1\oplus 1=0
$$

 0 AND $0 = 0$, 1 AND $0 = 0$, 1 AND $1 = 1$

KORKARYKERKER POLO

Classical computing is also prone to errors!

1. Poorly calibrated gates:

 $1 \oplus 0 = 0$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

2. External noise and interference

Bit-flip channel: If we send a bit(0 or 1) through the channel, the output is flipped with probability p , and remains the same with probability 1-p.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Classical Error Correction

We can protect states from bit-flip errors with repetition.

```
0 \mapsto 000, 1 \mapsto 111
```
Now, if we want to send the 0 state, we instead send the state 000. If a bit-flip occurs on the second bit:

 $000 \mapsto 010$

We can simply look at what state the majority of our bits are in, and take that value.

KORKARYKERKER POLO

A ket $|x\rangle$ is a way of representing a column vector:

$$
|x\rangle = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Quantum Computing

Quantum computing uses qubits, not bits. The quantum equivalent of the 0 and 1 states are the vectors:

$$
|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \hspace{0.2cm} |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

States can also exist in *superpositions* of the $|0\rangle$ and $|1\rangle$ states:

$$
\left|\psi\right\rangle =\alpha\left|0\right\rangle +\beta\left|1\right\rangle =\begin{pmatrix}\alpha\\\beta\end{pmatrix}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Measurement is an important part of quantum computing. When we measure a state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, we expect the following probabilities:

$$
P(|0\rangle) = ||\alpha||^2
$$

$$
P(|1\rangle) = ||\beta||^2
$$

KELK KØLK VELKEN EL 1990

And the state "collapses" to either $|1\rangle$ or $|0\rangle$, depending on the result of the measurement.

Operators

General operator U:

$$
U\left|\psi\right\rangle =\left|\psi\right\rangle ^{\prime}
$$

An operator acts on a quantum state to transform it to another state. Single-qubit operators can be represented as 2x2 matrices. Commuting operators:

$$
AB\ket{\psi}=BA\ket{\psi}
$$

Anti-Commuting operators:

$$
CD |\psi\rangle = -DC |\psi\rangle
$$

KORKARYKERKER POLO

Named Operators

Some important operators (Pauli group P):

$$
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

$$
Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} Y = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}
$$

Act on the basis states:

$$
X |0\rangle = |1\rangle, X |1\rangle = |0\rangle
$$

$$
Z |0\rangle = |0\rangle, Z |1\rangle = - |1\rangle
$$

Quantum Errors

There are three big challenges to QEC:

1. No-Cloning Theorem:

There is no operator U_c that can perform the following mapping:

 $U_c(\ket{\psi}\ket{\phi}) \mapsto (\ket{\psi}\ket{\psi})$

KORKARYKERKER POLO

- 2. Continuous errors
- 3. Measurement collapses state information.

How can we overcome these challenges?

Encoding

The first part of quantum error correction is the encoding process. In general, an encoding process has the following effect on a state:

$$
\alpha\left\vert 0\right\rangle +\beta\left\vert 1\right\rangle \mapsto\alpha\left\vert 0\right\rangle _{L}+\beta\left\vert 1\right\rangle _{L}
$$

where $\ket{0}_L$ and $\ket{1}_L$ are called the logical(or encoded) 0 and 1 states

The 3-qubit code

Quantum bit-flip channel: applies the X gate with probability p . We can encode qubits in the following way:

> $|0\rangle \mapsto |000\rangle$ $|1\rangle \mapsto |111\rangle$

On a general superposition:

 α $|0\rangle + \beta$ $|1\rangle \mapsto \alpha$ $|000\rangle + \beta$ $|111\rangle$

Doesn't violate No-Cloning Theorem!

 $\alpha\ket{000}+\beta\ket{111}\neq(\alpha\ket{0}+\beta\ket{1})^{\otimes 3}$

KORKAR KERKER SAGA

Recovery

Our state $|\psi_{\text{enc}}\rangle = \alpha |000\rangle + \beta |111\rangle$ is subject to error U_{err} . U_{err} randomly flips at most one qubit, e.g.

 α |000 $\rangle + \beta$ |111 $\rangle \mapsto \alpha$ |010 $\rangle + \beta$ |101 \rangle

How can we correct these errors?

Parity measurements can give us information on the error without actually measuring the state. For the 3-qubit code, we can measure which qubits agree/disagree with each other.

 α |010 $\rangle + \beta$ |101 \rangle

We compare the values of the first and second qubit, and the first and third qubit:

 $0 \oplus 1 = 1, 0 \oplus 0 = 0$

More Parity Measurements

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

An operator A stabilizes $|\psi\rangle$ if:

 $A |\psi\rangle = |\psi\rangle$

 $|\psi\rangle$ is an eigenstate of A with eigenvalue +1.

Definition (Stabilizer State)

An N-qubit state $\ket{\psi}_N$ is known as a stabilizer state if there exists a subgroup S of the N-manifold Pauli group $\mathcal{P}^{\bm{\mathcal{N}}}$ such that

$$
A|\psi\rangle = |\psi\rangle \,\,\forall \,A \in \mathcal{S}
$$

Generators of Stabilizer States

Stabilizer states can also be defined by their generators. For example, the state

$$
|\psi\rangle=\frac{|000\rangle+|111\rangle}{\sqrt{2}}
$$

is a stabilizer state defined by the generators

$$
K_1 = X \otimes X \otimes X,
$$

\n
$$
K_2 = Z \otimes Z \otimes I,
$$

\n
$$
K_3 = I \otimes Z \otimes Z
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Encoding with Stabilizer States

The example 7-qubit code has the following encoded $|0\rangle$ and $|1\rangle$ states:

$$
|0\rangle_L = |0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle
$$
 (1)

$$
|1\rangle_L = |1111111\rangle
$$

With stabilizers:

$$
K_1 = \text{IIIXXXX}, K_2 = \text{XIXIX},
$$

\n
$$
K_3 = \text{IXXIXX}, K_4 = \text{IIIZZZZ}
$$

\n
$$
K_5 = \text{ZIZIZIZ}, K_6 = \text{IZZIZZ}.
$$

\n(2)

To encode an arbitrary state with the 7-qubit code we project the state into a $+1$ eigenstate of the stabilizer group.

If we wish to encode an arbitrary state with the 7-qubit code we have:

$$
\alpha\left\vert 0\right\rangle +\alpha\left\vert 1\right\rangle \mapsto\alpha\left\vert 0\right\rangle _{L}+\alpha\left\vert 1\right\rangle _{L}
$$

which is also a $+1$ eigenstate of our generator group. Now, if we have an error $E \in \mathcal{P}$ acting on our encoded state, we will be able to tell what type of error it is and where it occurs. But how??

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Detecting and Correcting Errors

If E commutes with one of our stabilizers, it will leave the state unchanged. If it anti-commutes with a stabilizer, it will turn the state into a -1 eigenstate of the stabilizer.

E will commute and anti-commute with a unique set of generators. Once we find which generators E commutes with, we can determine what type of error E is and where it occured on our qubits.

For example, if our error is an X gate acting on the first qubit, then the error will commute with K_5 , and anti-commute with K_4 and $K₆$. Similarly, an X error on the second qubit will commute with K_6 and anti-commute with K_4 and K_5

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Code Concatenation

If we can encode a qubit one time... why not twice?

If the probability of error on the lowest level is p , then after k encoding levels, the probability of error occurring is $\frac{(cp)^{2^k}}{c}$ c

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 \Rightarrow

 $2Q$

Theorem (Quantum Threshold Theorem)

A quantum circuit of S gates can be built with a probability of error below ϵ with

$$
O\left(S\left(\log^m\left(\frac{S}{\epsilon}\right)\right)\right)
$$

gates on hardware that each introduce error with probability p less than a constant threshold, and given reasonable information about the noise in the hardware.

KORKARYKERKER POLO