
An Overview of Topics in Quantum Error Correction

Thomas Catalan

June 2022

1 Introduction

2 Classical Computing

The standard unit of information in classical computing is the bit. A bit can take the binary value
0 or 1, and is represented by a two state physical system, like a switch or a 2-level current. Bits can
be combined indefinitely into patterns like 0001100 and 01011000 to encode an arbitrary amount of
information, and as such, form the basis of letters, numbers, and strings in modern computing.
We also have classical gates, which are ways of manipulating bits to perform computations. For
example, the ”exclusive-or” gate, denoted by the symbol ⊕, performs the following operations:

0⊕ 0 = 0

1⊕ 0 = 1

1⊕ 1 = 1

However, classical computing is not perfect. Due to external noise and interference, along with
imprecise hardware, our bits can suffer from computational errors. For example, consider a situation
in which we wish to send a bit through a channel, to our friend on the other side. However, this
channel is not ideal. For every bit we send through the channel, the output is ”flipped” with
probability p, and is unchanged with probability 1-p. What this means is that if we send a bit, say,
0, through this channel, then our friend receives the bit 1 with probability p, and 0 with probability
1-p. This channel essentially renders all the information we send useless, because the person on the
other side will have no way of detecting whether an error occured or not, and thus will never know
the true value of the bit we sent. To combat this problem, we introduce the following encoding
scheme.
If, instead of sending bits as we have done previously, we send three copies for each bit we want to
send, then the following mapping arises:

0 7→ 000

1 7→ 111

which known as a repetition code. Now, with the repetition code, if a bit-flip happens on the second
bit, we have the following transformation:

000 7→ 010

1

and our friend receives the bits 010. Now, our friend can simply look at what value the majority of
the bits agree with, in this case being 0, and take that value as the intended one. This mapping is

010 7→ 0

You may note that if two or three bit-flips occur, the value our friend takes will be incorrect, but
since p(1 − p)2 < p2(1 − p) for p < 1 and the probability of a bit-flip is strictly less than one, it is
much less likely for us to have two or more bit flips than just one. As such, we can be confident
knowing that the value our friend takes will be more likely to be the correct answer.
As we mentioned before, this is a very simple error-correcting procedure, but it lays the groundwork
for more complicated schemes that we will discuss later on. Let us now introduce the language of
Dirac Notation.

3 Dirac Notation

To understand quantum computing, one first must be familiar with Dirac Notation. Dirac Notation
provides a useful way to describe quantum states and operations, and was invented by Paul Dirac
in 1939. The basis of Dirac Notation is the bra and the ket, which represent one dimensional row
and column vectors, respectively. Looking past their funky names, a ket |x⟩ belonging to a Hilbert
Space H can be described as

|x⟩ =
∑
i

vi |ϕi⟩

where the set of kets {|ϕi⟩} represents an orthogonal basis for H, and the coefficients vi are the
”amplitudes” of each basis. It’s important to note that the character inside the |⟩ is simply a label
for the ket, and is not indicative of the values the ket stores. This will be important to remember
later when representing quantum basis states. Kets can also be represented in the so called ”matrix-
formulation,” as follows:

|x⟩ =


x1
x2
...
xm

 (1)

which may provide an easier way of understanding kets to those unfamiliar with Dirac notation.
The counterpart to the ket is the bra. For every ket |x⟩ there exists a corresponding bra ⟨x|

where
|x⟩† = ⟨x| .

The operator † is known as the ”Hermitian Conjugate,” which for the ket |x⟩ from Equation 2 has
the following effect in vector notation:

|x⟩† = [x∗1 x
∗
2 . . . x∗m]

where ∗ is the complex conjugate operator.
The inner product of a bra and a ket, written ⟨x|y⟩, where ⟨x| and |y⟩ belong to the space H, is
defined as the mapping H 7→ C, where C is the set of complex numbers. The inner product is similar
to the dot product in linear algebra, and can also be written in the equation:

⟨x|y⟩ =
∑
i

x∗i yi

2

where xi and yi are the i’th elements of ⟨x| and |y⟩, respectively.
The Tensor Product, also known as the Kronecker Product, is a way of combining spaces, op-

erators, or vectors. Suppose we have two Hilbert Spaces, H1 and H2, with dimension n and m,
respectively. The tensor product H1 ⊗H2 of these spaces will be a new, larger Hilbert space with
dimension n × m. The same rules of dimensional multiplication apply to the tensor products of
vectors and operators. In matrix representation, the tensor product of two vectors can be seen as
follows: (

x1
x1

)
⊗
(
y1
y2

)
=


x1y1
x1y2
x2y1
x2y2

 (2)

When writing the tensor product of two kets |ψ⟩ and |ϕ⟩, for example, the ⊗ is often omitted, leaving
just |ψ⟩ |ϕ⟩, and most often it will be written simply as |ψϕ⟩.
Now, with a grasp on the fundamentals of Dirac Notation, we can discuss the basics of quantum
computing.

4 The Basics of Quantum Computing

In Section 1, we saw how classical states could be represented as either 1’s or 0’s. The reason
that quantum computing is so powerful is that states can be represented as not just 1’s and 0’s,
but as linear combinations of 1’s and 0’s. In fact, a general quantum state appears in the form
|ψ⟩ = α |0⟩ + β |1⟩, where α and β are known as the amplitudes of the 1 and 0 states in |ψ⟩,
respectively, and satisfy the equation

||α||2+||β||2= 1 (3)

The states |0⟩ and |1⟩, known as the computational basis states, can be represented in vector form
as:

|0⟩ =
(
1
0

)
|1⟩ =

(
0
1

)
Thus, the state from Equation 3 can be represented as:(

α
β

)
These states are encoded in qubits, which are the quantum equivalent of bits and serve the same
purpose of storing state information. These ideas lead quite nicely into the first postulate of quantum
computing.

Postulate 4.1. (State Space Postulate) The state of a quantum system is described by a unit vector
in a Hilbert Space H.

For our purposes, a Hilbert space can be regarded just as a special type of complex vector space.
The notion that a quantum state can exist almost in a ”limbo” between the states 1 and 0 is known
as superposition, and is one of the defining characteristics of quantum computing. We expect that
it may take a while to become fully acquainted with this idea, and this is fine. Quantum computing
itself exists in a sort of limbo between understanding and intuiting the core ideals, and being able
to handle the raw math.
Now, this notation suffices to describe static quantum states, but the quantum states we will look
at will almost always be changing. And before we look at how quantum states change, we first need

3

to look at operators.
An operator U is a mathematical object that has the following effect on a state vector |ψ⟩:

U |ψ⟩ = |ψ⟩′

In simple terms, an operator transforms a qubit from one state to another. Single-qubit operators
are really just 2×2 matrices, although they are rarely written as such. An important type of operator
for quantum computing is the family of unitary operators.

Definition 4.1. (Unitary Operator) An operator U is unitary if U† = U−1, where U−1 is the inverse
of U.

Now, with this definition, we can see how operators play a role in quantum computing, given the
following postulate:

Postulate 4.2. (Evolution Postulate) The evolution of a closed quantum system is described by a
unitary operator.

This postulate implies that for any transformation of a quantum system from a state |ψ1⟩ to the
state |ψ2⟩, there exists a unitary operator U such that:

U |ψ1⟩ = |ψ2⟩ .

which just means that we will be using operators to describe how quantum states change.
We say that two operators A and B commute if they satisfy the following relation:

A(B |ψ⟩) = B(A |ψ⟩)∀ |ψ⟩

and they anti-commute if:
AB |ψ⟩ = −BA |ψ⟩

An important set of operators is the Pauli group P, which contains the following operators:

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)

Z =

(
1 0
0 −1

)
Y =

(
0 −i
−i 0

)
These operators act on the basis states |0⟩ and |1⟩ as follows:

X |0⟩ = |1⟩ , X |1⟩ = |0⟩

Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩
One of the reasons that the Pauli operators are so special is that they span the space of 2x2 matrices.
That is, any 2x2 operator U can be written as:

U = c1I + c2X + c3Z + c4Z,

a result that will be important for error correction later on.
Another important gate is known as the Hadamard gate, H. It has the matrix representation

1√
2

(
1 1
1 −1

)

4

and acts on the basis states as follows:

H |0⟩ = 1√
2
(|0⟩+ |1⟩)

H |1⟩ = 1√
2
(|0⟩ − |1⟩)

We can see that the Hadamard Gate puts the basis states |1⟩ and |0⟩ into superpositions of them-
selves, which are known as |+⟩ and |−⟩, respectively.
So far, we have only looked at single qubit states. Let us now see how the states of larger systems
can be represented.

Postulate 4.3. (Composition of Systems Postulate) When two quantum systems in states |ψ1⟩ and
|ψ2⟩ are combined, their combined state can be represented as

|ψ1⟩ ⊗ |ψ2⟩

All that this postulate means is that the state of a multi-qubit system can be written as the
tensor product of the states of the qubits.
However, it is important to note that the state of a 2-qubit system cannot always be written as a
tensor product of each state. When this is true, the composite state is called entangled. For example,
the state

|ψ⟩ = |00⟩+ |11⟩√
2

is entangled, because there is no way to factor out either of the states of the two-qubits.
We can also have operators acting on multi-qubit systems in the following way: Suppose we have a
two-qubit system |ψ⟩ |ϕ⟩ and we want to apply the X gate to the first qubit and the Z gate to the
second qubit. This is equivalent to applying the operator

X ⊗ Z

to the entire system. In general, if we wish to transform a two-qubit system |ψ⟩ |ϕ⟩ with the operators
A and B, the transformation is described by:

(A⊗B)(|ψ⟩ ⊗ |ϕ⟩) = A |ψ⟩ ⊗B |ϕ⟩ .

An example of a two-qubit gate is the CNOT gate, which is essentially a quantum equivalent of the
classical ⊕ gate from earlier. The CNOT gate acts on basis state pairs in the following way:

CNOT |00⟩ = |00⟩ , CNOT |01⟩ = |01⟩ , CNOT |10⟩ = |11⟩ , CNOT |11⟩ = |10⟩

where we assume that the first qubit is the control qubit, and the second qubit is the target qubit.
The CNOT gate flips the value of the target qubit if the control qubit is in state |1⟩, and leaves the
target qubit unchanged if the control qubit is in state |0⟩.
Now, let us introduce the concept of measurement in quantum computing. Measurement is much
more important in quantum computing than classical computing, as it has the ability to actually
affect quantum states, which we will see. Let us know define measurement with the following
postulate:

5

Postulate 4.4. (Measurement Postulate) Given an orthonormal basis B = {|φi⟩} and a state |ψ⟩
belonging to the same state space H, we can perform a measurement on |ψ⟩ with respect to the
basis B such that measuring

|ψ⟩ =
∑
i

αi |φi⟩

outputs the label i with probability |αi|2 and leaves the system in state |φi⟩. For example, in the case
of the Hadamard-induced state |+⟩ from earlier, we can measure this state and expect to receive the
value 0 with probability (1√

2
)2 = 1

2 and the value 1 with probability also 1
2 . After our measurement,

the state will collapse into either |0⟩ or |1⟩, depending on what we measured.
From this, we can see that measuring a quantum system actually has an effect on the system itself.
The state of the system before the measurement is different from the state after measurement, which
will be a very important part of quantum computing.

5 Mixed States and the Density Matrix

Until this point we have only discussed pure states. Pure states work well when describing error-free
quantum computations, but often fail to accurately represent more complicated quantum systems.
For this, we now introduce the concept of mixed states. A mixed state, also called an ”ensemble”
of pure states, is represented by the notation below:

{(|ψ1⟩ , p1), (|ψ2⟩ , p2), . . . (|ψm⟩ , pm)} (4)

where pi is the probability of the system being in state |ψi⟩. As such, the density matrix can be
seen as a combination of classical and quantum probability, with the classical aspect stemming from
the pi probabilities and the quantum from the probabilities behind superposition. It is important
to note that a mixed state like the one above does not represent a superposition of pure states, but
a classical probability distribution of them. The motivation behind using this notation might be
unclear initially, but it will become clearer as we discuss quantum error correction.

Another tool that will become useful later on is the density matrix. A density matrix ρ for a
general mixed state is defined as the sum

ρ =
∑
i

pi |ψi⟩ ⟨ψi|

For example, the density matrix of the ensemble {(|0⟩ , 12), (|1⟩ ,
1
2)} is

1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1|

We also find that this density matrix is equivalent to that of the pure state 1√
2
|0⟩+ 1√

2
|1⟩ which is(

1√
2
|0⟩+ 1√

2
|1⟩
)(

1√
2
⟨0|+ 1√

2
⟨1|
)

=
1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1|

As such, it’s important to note that density matrices are not unique, and that multiple states can
have the same density matrix.

Applying an operator U to a mixed state such as the one in Equation 4 results in the state

{(U |ψ1⟩ , p1), (U |ψ2⟩ , p2), . . . (U |ψm⟩ , pm)}

6

with density matrix ∑
i

piU |ψi⟩ ⟨ψi|U† = U

(∑
i

pi |ψi⟩ ⟨ψi|

)
U† = UρU†

One of the benefits of the density matrix formulation is the ability to describe subsystems of a
larger quantum system. For example, consider a 2-qubit entangled state |ψ⟩AB ∈ HA ⊗HB . Since
this state is entangled, it is not possible to factor out and obtain the state vector for the first qubit
|ψ⟩A ∈ HA. To overcome this challenge, we can describe the first qubit as a mixed state. From
there, we can calculate the ”reduced density operator” ρA for |ψ⟩A with the operation known as the
partial trace. This can be done with the following equation:

ρA ≡ TrB(ρ
AB)

In this equation, TrB is the partial trace over B, and is defined by the equation

TrB(|a1⟩ ⟨a2| ⊗ |b1⟩ ⟨b2| ≡ |a1⟩ ⟨a2|Tr(|b1⟩ ⟨b2|) (5)

where an and bn are states in HA and HB , respectively. Remembering that

Tr(|b1⟩ ⟨b2|) = ⟨b2|b1⟩ ,

Equation 5 simplifies to

TrB(|a1⟩ ⟨a2| ⊗ |b1⟩ ⟨b2|) = ⟨b2|b1⟩ |a1⟩ ⟨a2| ,

which is a result we will use later on to discuss quantum errors.
Now that we have seen how ensembles of quantum states can be represented, we can begin to discuss
quantum error correction.

6 Quantum Error Correction

We have now covered an overview of the basics of quantum computing, and will now begin to discuss
quantum errors and how we can correct them. But first, let us briefly attempt to motivate the ideas
behind quantum error correction.
Quantum computers have the potential to be incredibly powerful. The fundamental features of
quantum systems, i. e., entanglement and superposition, give quantum computers an immense edge
over their classical counterparts. For example, Grover’s algorithm, a quantum search algorithm,
works in time complexity O(N

1
2), which is a quadratic speedup over classical sort algorithms. Shor’s

algorithm, which can factor an arbitrary number in O(log(N)3), provides almost an exponential
increase over classical factoring algorithms.
Yet while quantum computing yields great promise, many of these super-fast algorithms have yet to
be implemented. This is because of the difficulties presented by building large quantum computers.
In fact, the biggest quantum computer at the time this paper is written only contains 127 qubits.
This is because quantum computers are extremely sensitive to external interference, and thus require
incredibly demanding quantum hardware. It is also very difficult to maintain quantum states, as
they collapse in milliseconds without stabilizing procedures. As such, quantum computers are very
prone to error, and require heavy error-correcting protocols to function in any way. Thus, the
importance of quantum error correction cannot be overstated, as it holds the key to the future of
quantum computing. However, quantum error correction is far from easy. In fact, there are three
main challenges to quantum error correction that we now present:

7

1. It is impossible to clone an arbitrary quantum state. This is known as the No-Cloning Theorem,
and prevents the implementation of repetition-codes in quantum computing.

Theorem 6.1 (No-Cloning Theorem). There is no unitary operator U that performs the
following operation on an arbitrary choice of |ψ⟩

U |ψ⟩ |ϕ⟩ 7→ |ψ⟩ |ψ⟩ , (6)

where |ψ⟩ is some fixed ancilla state.

We can prove this statement using the fact that unitary operators preserve the inner products
of kets. That is, if:

A |x⟩ = |m⟩

A |y⟩ = |n⟩

for a unitary operator A, then
⟨x|y⟩ = ⟨m|n⟩ .

Now, to prove the No-Cloning theorem, we first assume that there exists a unitary operator
Uc that can perform the operation given in Equation 6. Then, for the unique, non-orthogonal
states |ψ⟩ and |ψ⟩, and the normalized ancilla state |s⟩, we have:

Uc |ψ⟩ |s⟩ = |ψ⟩ |ψ⟩

Uc |ϕ⟩ |s⟩ = |ϕ⟩ |ϕ⟩

Since Uc is a unitary operator and thus must preserve the inner product, we have

(⟨ψ| ⟨s|)(|ϕ⟩ |s⟩) = (⟨ψ| ⟨ψ|)(|ϕ⟩ |ϕ⟩)

⟨ψ|ϕ⟩ ⟨s|s⟩ = ⟨ψ|ϕ⟩ ⟨ψ|ϕ⟩

Since |s⟩ is normalized and the inner product of a normalized vector with itself is always 1, we
have:

⟨ψ|ϕ⟩ = (⟨ψ|ϕ⟩)2

which can only happen when ⟨ψ|ϕ⟩ is equal to 1 or 0. For ⟨ψ|ϕ⟩ to be 1 or 0, either |ψ⟩ and
|ψ⟩ must be orthogonal, which we said they were not, or they must be the same ket, which we
also clarified was not true. Thus, there cannot exist an operator Uc that can clone an arbitrary
state, and the No-Cloning Theorem has been proved.

2. Measuring quantum state causes them to collapse and lose the information they hold. This
means that it’s impossible to check for errors midway through a computation without disturb-
ing the computation itself.

3. Qubits experience continuous errors. Quantum errors come not only in the form of full bit and
phase flips, but also in angular shifts of the qubit by a continuous range of values. Qubits can
also experience phase errors, which have the following mapping: |0⟩ 7→ |0⟩ and |1⟩ 7→ − |1⟩,
which adds another challenging aspect to correcting quantum errors.

8

7 Coherent and Decoherent Errors

In the last section, we discussed the main problems that quantum error correction faces. Now we
introduce a few examples of quantum errors and how they can effect a system in unique ways.

Consider a qubit initialized in state |0⟩ to which we wish to apply the identity operation N times.
If the system is error-free, then the outcome of this computation will be the state

|ψ⟩′ =
N∏
i

Ii |0⟩ = |0⟩

Upon measuring this output in the computational basis, we will receive the state |0⟩ every time.
As such, the probability of error is given by perror = 0. However, if in our quantum computer we
have designed the identity gate such that instead of leaving a state unchanged, it introduces a slight
rotation of the input, our qubit evolves to the state

|ψ⟩′ =
N∏
i

eiϵX |ψ⟩ = cos(Nϵ) |0⟩+ i sin(Nϵ) |1⟩

after the computation. When we measure this state in the computational basis, we will receive the
following states with probabilities:

P (|0⟩) = cos(nϵ)2 ≈ 1− (Nϵ)2

P (|1⟩) = sin(nϵ)2 ≈ (Nϵ)2

As such, the probability of an error appearing in this computation is (Nϵ)2. This is an example of
a coherent error. Coherent errors often arise from incorrect knowledge of how a system works, and
can be compounded through repeated applications of a faulty gate. In quantum computing, there
also exist decoherent errors, which are responsible for the collapse of superpositions. Decoherent
errors often result from unwanted interactions with a system’s environment. Consider again a qubit
initialized to the state |0⟩. Suppose we wish to apply the series of gates HIH to this qubit. In an
error-free system, this computation would result in the following:

HIH |0⟩ = H
1√
2
(|0⟩+ |1⟩)

= |0⟩
(7)

where the identity gate I represents a wait-stage in the computation. Now, consider the simple
environment |E⟩ with the following properties: First, the environment is a 2-level quantum system,
just like our qubit in state |1⟩. As such, this environment has two basis states, |E0⟩ and |E1⟩.
Second, when |E⟩ interacts with a qubit in state |1⟩, a process known as ”coupling,” the state of
the environment is flipped, while if the qubit is in state |0⟩, nothing changes. Lastly, assume that
this ”flipping” interaction only happens in the wait stage(I gate) of a computation. Now, let us
re-examine the computation from Equation 7, but with the qubit coupled to the environment in

9

state |E0⟩. The computation proceeds as follows:

HIH |0⟩ |E⟩ = HI(
1√
2
(|0⟩+ |1⟩)) |E0⟩

= H ∗ I(1√
2
(|0⟩ |E0⟩+ |1⟩ |E0⟩))

= H(
1√
2
(|0⟩ |E0⟩+ |1⟩ |E1⟩)

=
1

2
(|0⟩+ |1⟩) |E0⟩+

1

2
(|0⟩ − |1⟩) |E1⟩

(8)

We can describe this state with density matrix:

ρ = (
1

2
(|0⟩+ |1⟩) |E0⟩+

1

2
(|0⟩ − |1⟩) |E1⟩)(

1

2
(⟨0|+ ⟨1|) ⟨E0|+

1

2
(⟨0| − ⟨1|) ⟨E1|)

Expanding out, we have:

ρ =
1

4
(|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0|+ |1⟩ ⟨1|) |E0⟩ ⟨E0|

+
1

4
(|0⟩ ⟨0| − |0⟩ ⟨1| − |1⟩ ⟨0|+ |1⟩ ⟨1|) |E1⟩ ⟨E1|

+
1

4
(|0⟩ ⟨0| − |0⟩ ⟨1|+ |1⟩ ⟨0| − |1⟩ ⟨1|) |E0⟩ ⟨E1|

+
1

4
(|0⟩ ⟨0|+ |0⟩ ⟨1| − |1⟩ ⟨0| − |1⟩ ⟨1|) |E1⟩ ⟨E0|

(9)

We can trace over the environment to obtain the reduced density operator for our qubit:

ρre = TrE(ρ) = ⟨E0|E0⟩Tr(
1

4
(|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0|+ |1⟩ ⟨1|))

+ ⟨E1|E1⟩Tr(
1

4
(|0⟩ ⟨0| − |0⟩ ⟨1| − |1⟩ ⟨0|+ |1⟩ ⟨1|))

+ ⟨E1|E0⟩Tr(
1

4
(|0⟩ ⟨0| − |0⟩ ⟨1|+ |1⟩ ⟨0| − |1⟩ ⟨1|))

+ ⟨E0|E1⟩Tr(
1

4
(|0⟩ ⟨0|+ |0⟩ ⟨1| − |1⟩ ⟨0| − |1⟩ ⟨1|))

(10)

Remembering that |E0⟩ and |E1⟩ are basis states and must satisfy the following:

⟨Ei|Ej⟩ = δij ,

Equation 10 simplifies to:

ρre =
1

4
(|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0|+ |1⟩ ⟨1|

+
1

4
(|0⟩ ⟨0| − |0⟩ ⟨1| − |1⟩ ⟨0|+ |1⟩ ⟨1|

=
1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|)

(11)

Thus, the qubit will be measured in the |0⟩ state 50% of the time, and the |1⟩ state 50% of the
time. This final state is a complete classical mixture of the basis states, rather than a quantum

10

superposition. We also see that the second Hadamard gate, which we thought would transform the
state 1√

2
(|0⟩ + |1⟩) 7→ |0⟩, had no effect in the computation. Decoherent errors like these cause

quantum states to lose superposition, or the ”coherence” between the |0⟩ and |1⟩ states, and become
classical systems. This is not good, as it will interfere with many of the quantum algorithms that
use superposition to their advantage.

8 The Error Model

In the last section, we saw two examples of quantum errors. Let us now formulate a general way of
describing quantum errors. Suppose that a qubit is in state |ψ⟩, and its environment is in state |E⟩.
When a general error operator Uerr acts on this system, it results in the state Uerr |ψ⟩ |E⟩, described
by the density matrix

ρ = Uerr |ψ⟩ |E⟩ ⟨E| ⟨ψ|U†
err

The state of the environment isn’t important to us, so we trace it out to obtain:

Tr(ρ) = Tr(Uerr |ψ⟩ |E⟩ ⟨E| ⟨ψ|U†
err) =

∑
i

Ei |ψ⟩ ⟨ψ| E†
i

where the coefficients Ei are error operators acting on the system. An intuitive way to understand
this equation is by thinking of the terms Ei |ψ⟩ ⟨ψ| E†

i as the different outcomes of possible errors
acting on |ψ⟩. When these terms are summed together, they represent a classical distribution of the
errors that can occur on |ψ⟩.

Now let’s examine the case of the classical bit-flip channel from before. By replacing the bits
with qubits and the bit-flips with applications of the X gate, we can obtain a quantum equivalent
of the bit-flip channel. If we wish to transmit a state |ψ⟩ through the channel, it will be received
in state X|ψ⟩ with probability p and remain in the state |ψ⟩ with probability 1-p. Thus, we can
describe the state of the qubit after transmission with the density matrix

ρ = (1− p) |ψ⟩ ⟨ψ|+ pX |ψ⟩ ⟨ψ|X

with corresponding error operators
E0 =

√
1− p I

E1 =
√
pX

Now that we have discussed a general formalism of quantum error models, we can begin to find
ways of correcting these errors.

9 Encoding and Recovery Operators

One of, if not the most important step to quantum error correction is the process of encoding.
Encoding is a way of protecting quantum information so that errors can be detected and fixed later
on in the computation. An encoding operator Uenc acts on a register of qubits |ψ⟩ |000...0⟩ as follows:

Uenc |ψ⟩ |000...0⟩ = |ψenc⟩

thereby taking an initial quantum state and a set of ancilla qubits and producing the encoded state
|ψenc⟩. This operation can be thought of as embedding the state |ψ⟩ into a higher dimensional
Hilbert space, or equivalently as spreading the knowledge contained on a single qubit onto many

11

highly entangled ancilla qubits. A central task of quantum error correction is finding the best Uenc

for a desired error model, which we will see more of later in the section.
Suppose we have a state |ψ⟩ that we encode and subject to general error Uerr. The outcome of

this operation will be a state with density matrix∑
i

Ei |ψenc⟩ ⟨ψenc| E†
i

In general, we will not always be able to retrieve the original state of the qubit by simply decoding
it with U†

enc(the inverse of Uenc). That is, in most cases,

Tranc

[
U†
enc

(∑
i

Ei |ψenc⟩ ⟨ψenc| E†
i

)
Uenc)

]
̸= |ψ⟩ ⟨ψ|

To correct the errors on the encoded qubit |ψenc⟩, we will need the help of recovery operators. An
operator R is said to correct an error Uerr if it satisfies the following:

Tranc

∑
j

Rj

(
U†
enc

(∑
i

Ei |ψenc⟩ ⟨ψenc| E†
i

)
Uenc

)
R†

j

 = |ψ⟩ ⟨ψ| (12)

That is, it reverses the effect Uerr has on the affected qubit.
Applying an encoding operator Uenc to the basis states |0⟩ and |1⟩ produces the ”codewords”

|0enc⟩ and |1enc⟩. For a code to be helpful, a recovery operator R must exist that satisfies Equation
12 for the codewords |0enc⟩ and |1enc⟩. For such an R to exist, the error operators must satisfy the
equation

⟨ϕh| E†
i Ej |ϕk⟩ = cijδhk (13)

where ϕh and ϕk belong to the set of codewords C. Equation 13 dictates when errors can be corrected,
and when they cannot. It implies that the codewords must remain orthogonal after undergoing error,
and that the error must scale them by the same amount. Together, these conditions ensure that the
relative coefficients of qubits are not disturbed, and that the codeword a corrupted state resulted
from can be determined easily. Another important aspect of Equation 13 is that if it is satisfied by
a set of correctable errors Ei, then it is also satisfied by any linear combination of errors from Ei.
This means that linear combinations of correctable errors are also correctable! And as we mentioned
in Section 4, any unitary operator can be written as a combination of the Pauli operators I, X, Y,
and Z. So, if we can create an error correcting code that corrects on I, X, Y, and Z errors, we will
be able to correct any arbitrary single qubit error. This result makes quantum error correction as
a whole much less daunting, as it means that it suffices to only look at a finite set of errors, even
when trying to correct continuous errors.

10 The 3 Bit Code

Now we are ready to look at our first quantum error correcting code, the 3 Bit Code. The 3 Bit Code
was first proposed in 1985 by Asher Peres, an Israeli physicist who worked at the Israel Institute
of Technology. This code can correct single bit-flip errors, and, while not the most powerful code,
provides a robust introduction to the broad field of quantum error correcting codes.

To begin, recall the quantum bit-flip channel from Section 8. It is important to remember that
the effect of the channel was to leave the transmitted state |ψ⟩ unchanged with probability 1-p, and

12

Figure 1: A circuit for encoding a state with the 3-qubit code from researchgate.net, Todd A. Brun,
Quantum Error Correction.

to transform it to the state X|ψ⟩ with probability p. If we try to send an arbitrary state through the
channel with no encoding process, there is no way to tell if an error occurred without measuring the
qubit and thus collapsing the information it contains. Let us now encode the state |ψ⟩ before sending
it through the channel. The encoding operation acts on the basis states |0⟩ and |1⟩ to produce the
states

|0L⟩ = |000⟩
|1L⟩ = |111⟩

Due to the linearity of quantum physics, this encoding operator acts on some arbitrary superposition
|ψ⟩ = α |0⟩+β |1⟩to produce the state |ψenc⟩ = α |000⟩+β |111⟩. This can be accomplished through
the use of two CNOT gates, as shown in Figure 1.

If we assume that the bit-flip channel acts on at most one qubit at a time, we can send the
encoded state |ψenc⟩ through the channel to receive one of four distinct outcomes, summarized by
the table below:

Flipped Qubit Final State
None α |000⟩+ β |111⟩

Qubit 1 α |100⟩+ β |011⟩
Qubit 2 α |010⟩+ β |101⟩
Qubit 3 α |001⟩+ β |110⟩

At this point, we can see that the task of correcting a single bit-flip reduces to finding where the
error occurred and applying an X gate to the affected qubit. We can accomplish this through
the use of syndrome measurements. A syndrome measurement is a way of extracting information
about an error without directly measuring the effected qubits. In the case of the 3 Bit Code, we
can introduce two ancilla bits which will store the computed parities of the three-qubit block. The
parity measurements tell whether each qubit agrees with one another by comparing the arrangement
of 1’s, and can be computed with two sets of two CNOT gates, as seen in diagram . For example,
The parity of the state when no error occurs is calculated by adding the first 0 in the qubit with the
second 0(modulo 2), and the first 0 with the third. In both cases, the result is 0, so the ancilla bits
are left in the joint state |00⟩. When a bit-flip error occurs on the second qubit and the parities are
computed, the 0 in the first qubit is added to the 1 in the second qubit to produce 1, and the 0 in
the first qubit is added to the 0 in the third qubit to produce the value 0. In this case, the the ancilla
register is left in state |10⟩ These parity measurements give us information about where the bit-flip
occurred, and the full list of outcomes, along with the corrective protocol needed, is displayed in the
table below.

13

Figure 2: A circuit for computing the parities of the 3-qubit code and applying a classically controlled
error recovery gate from arXiv.org, Simon J Devitt, Quantum Error Correction for Beginners.

Final State Ancilla Values Recovery Operation
α |000⟩+ β |111⟩ 00 None
α |100⟩+ β |011⟩ 11 X on Qubit 1
α |010⟩+ β |101⟩ 10 X on Qubit 2
α |001⟩+ β |110⟩ 01 X on Qubit 3

Thus, we can use these parity measurements to determine where an error occurred, and apply the
X gate to correct it. This is known as a classical controlled recovery operation, and the diagram for
the whole circuit is shown below.
An important part of quantum error correction to consider is the existence of phase errors. While
phase errors do not have a classical counterpart, they are still relatively easy to correct on qubits.
We now turn to the phase-flip channel, which is much like the bit-flip channel, but with applications
of the Z gate instead of the X gate. As such, a qubit in state |ψ⟩ that is subjected to the phase-
flip channel remains in state |ψ⟩ with probability 1-p, and is transformed to the state Z|ψ⟩ with
probability p. This state of the qubit after being transmitted is represented by the density matrix

ρ = (1− p) |ψ⟩ ⟨ψ|+ pZ |ψ⟩ ⟨ψ|Z

This density matrix looks very similar to the one for the bit-flip channel. As such, we can adapt the
encoding scheme for the bit-flip channel as follows. First, consider the Hadamard Basis states

|+⟩ = 1√
2
(|0⟩+ |1⟩)

|−⟩ = 1√
2
(|0⟩ − |1⟩)

The effect of the Z gate on the |+⟩ state is to transform it into |−⟩, and vice versa. We can see that
the Z gate has the same effect on the Hadamard basis states as the X gate does on the computational
basis states, namely, flipping each state to the other. Thus, for the phase-flip channel we encode |0⟩
as |+++⟩ and |1⟩ as |− − −⟩. A general superposition for this scheme is encoded as:

α |0⟩+ β |1⟩ 7→ α |+++⟩+ β |− − −⟩

14

Now, the operators for error detection and recovery are performed exactly as they were for the bit-flip
channel, but with respect to the Hadamard basis instead of the computational basis. This involves
changing every CNOT gate to a controlled-Z gate, and implementing a three qubit Hadamard gate
after the encoding for the bit-flip code. It will also be useful to consider the idea of the ”phase
parity” of a product of the |+⟩ and |1⟩ states. Phase parity can be defined as whether the number
of |−⟩’s in the product is even or odd.

11 Stabilizer Formalism

So far, we have been describing codes through the state vector representation of qubits. This method
tends to become very inefficient as codes grow in complexity, as circuits and state representations
differ with each code. As such, we desire a concise formalism for error correction and code construc-
tion that doesn’t depend on the particular code we are using. We will now introduce the idea of
stabilizer states and codes.
An operator P is said to stabilize a state |ψ⟩ if the state |ψ⟩ is an eigenstate of P with eigenvalue
+1. This definition can be seen mathematically through the equation:

P |ψ⟩ = |ψ⟩

In other words, applying the stabiliser P to |ψ⟩ leave the state unchanged. For example, the Pauli
operator Z stabilises the state |0⟩, as

Z |0⟩ = |0⟩

Now, let us revisit the Pauli group P, which is defined as the set of single-qubit operators

P = {X,Y, Z, I}

The Pauli group establishes a basis of 2-dimensional operators. P also forms a group under mul-
tiplication. The Pauli group can be extended to N-qubits by considering the N-fold tensor of the
Pauli group, denoted

PN = P⊗N = P ⊗ P ⊗ . . .P︸ ︷︷ ︸
N times

As a reminder, the tensor product of two operators A and B is defined as the mapping

(A⊗B)(|ψ⟩ |ϕ⟩) 7→ A |ψ⟩ ⊗B |ϕ⟩

for the states |ψ⟩ and |ψ⟩.

Definition 11.1 (Stabilizer State). An N-qubit state |ψ⟩N is known as a stabilizer state if there
exists a subgroup S of the N-manifold Pauli group PN such that

A |ψ⟩ = |ψ⟩ ∀A ∈ S

Alternatively, a stabilizer state |ψ⟩ can be specified by the set of ”generators” G where

G = {Ki : Ki |ψ⟩ = |ψ⟩ ,∀(i, j)} (14)

Another important property of the generators of a stabilizer state is that every operator commutes
with each other. In other words:

[Ki,Kj] = 0 : ∀ (i, j)

15

Figure 3: A circuit for projecting a state |ψ⟩ into a +1 eigenstate of operator U from arXiv.org,
Simon J Devitt, Quantum Error Correction for Beginners..

This property is necessary for the stabilizers to be measured simultaneously, which we will see later
on. An example stabilizer state is the three qubit state

|ψ⟩ = |000⟩+ |111⟩√
2

which is also known as the GreenbergerHorne-Zeilinger (GHZ) state. This state can be defined by
the following generators:

K1 = X ⊗X ⊗X,

K2 = Z ⊗ Z ⊗ I,

K3 = I ⊗ Z ⊗ Z

as they all leave the GHZ state unchanged.
The use of stabilizer states will become evident in the next section as we discuss stabilizer codes

and how they can be used for correcting quantum errors.

12 Error Correction with Stabilizer Codes

To begin correcting quantum errors with stabilizer codes, we first need to know how to prepare
an arbitrary state. This preparation involves projecting the state into a +1 eigenstate of all the
generators, which we need to do so that we can identify and correct errors later on in the procedure.

The procedure for projecting an arbitrary state into a +1 eigenstate of a desired operator U is
shown in Figure 3.

As we can see from the diagram, our state |ψ⟩ that we want to prepare is first initialized, along
with an ancilla qubit in state |0⟩. Then, a Hadamard Gate is applied to our ancilla qubit, which is
then used for a controlled-U operation on |ψ⟩. At this point in the circuit, the state of our system is

|ψnext⟩ =
1√
2
(|0⟩ |ψ⟩+ |1⟩U |ψ⟩)

Then, we apply another Hadamard gate to the ancilla qubit. After this gate, the state of the entire
system is

|ψenc⟩ =
1

2
(|ψ⟩+ U |ψ⟩) |0⟩+ 1

2
(|ψ⟩ − U |ψ⟩) |1⟩

16

Now, we measure the ancilla qubit in the computational basis. If the qubit is in state |0⟩, the output
of our circuit becomes

|ψenc⟩ = |ψ⟩+ U |ψ⟩

We can show that this is a +1 eigenstate of U by calculating U|ψenc⟩:

U |ψenc⟩ = U(|ψ⟩+ U |ψ⟩) = U |ψ⟩+ UU |ψ⟩ . (15)

Since U is unitary and Hermitian, we have that UU = 1 and Equation 15 simplifies to

U |ψenc⟩ = U |ψ⟩+ |ψ⟩ = |ψenc⟩

Thus, our encoded state is a +1 eigenstate of U. If the result of measuring our ancilla qubit is |1⟩,
then our system becomes the state

|ψenc⟩ = |ψ⟩ − U |ψ⟩ ,

a -1 eigenstate of U which we can show in the same way as before. As such, we have shown that the
circuit projects an arbitrary state into a ±1 eigenstate of U, which we can turn into all +1 states
with classically controlled Pauli gates. Now, consider an error E acting on an arbitrary encoded
state |ψenc⟩. If E is a combination of Z and/or X errors(and thus an element of the Pauli group)
then the erred state E |ψenc⟩ satisfies the following:

KiE |ψenc⟩ = (−1)mEKi |ψenc⟩ = (−1)mE |ψenc⟩ (16)

where Ki is an element of the stabilizer group and m is a variable such that m=0 if E and Ki

commute and m=1 if E and Ki anti-commute. We know that those are the only two options for E
and Ki because they are both members of the Pauli group and all Pauli operators either commute
or anti-commute. The implications from Equation 16 are that if E and Ki commute, then the state
remains in a +1 eigenstate of Ki, but if E and Ki anti-commute, then the state is flipped to a -1
eigenstate of Ki. Furthermore, E will commute and anti-commute with a unique set of stabilizers.
To see this property in action, let us now examine the 7-qubit code.

The 7-qubit code was discovered in 1996 by Andrew Steane, and corrects for any single qubit
error. The generators of the 7-qubit code are:

K1 = IIIXXXX, K2 = XIXIXIX,

K3 = IXXIIXX, K4 = IIIZZZZ

K5 = ZIZIZIZ, K6 = IZZIIZZ.

(17)

If we encode a state with the 7-qubit code and an X error occurs on the first qubit, then the error will
commute with the generator K5, and anti-commute with K4 and K6. Similarly, an X error on the
second qubit will commute with K6 and anti-commute with K4 and K5, and an X error on the third
qubit will commute with K4 and anti-commute with K5 and K6. For X errors on qubits 4-7 there
also exists a unique set of commuting and anti-commuting stabilizers, and if no error occurs then the
state will commute with all generators(remember that any valid codestate is a +1 eigenstate of all
stabilizers.) If a Z error were to occur on any of the qubits, then a unique combination of stabilizers
K1, K2 and K3 would be able to identify the position of the error. Also, remember that a Y error
corresponds to a Z and an X error on the same qubit, which could be computed sequentially. As
such, after determining where and what type of error has occurred on our state, we can implement
a classically controlled recovery operation to fix it. It is important to note that the 7-qubit code is

17

Figure 4: An implementation of error correction with the 7-qubit stabilizer code. The first block
corrects for Z errors, while the second block corrects for X errors. From arXiv.org, Simon J Devitt,
Quantum Error Correction for Beginners.

not the most compact code to protect against arbitrary single qubit errors. There exists a 5-qubit
code defined by the following set of stabilizers:

X ⊗ Z ⊗ Z ⊗X ⊗ I

I ⊗X ⊗ Z ⊗ Z ⊗X

X ⊗ I ⊗X ⊗ Z ⊗ Z

Z ⊗X ⊗ I ⊗X ⊗ Z

However, no code that uses less than 5 qubits can protect against a general single qubit error.
We have now shown an example of how stabilizer codes can be used to correct arbitrary quantum

errors. The importance of the commuting and anti-commuting relations of operators cannot be
overstated, as it is key to detecting and fixing errors of any type. As we have now addressed the
procedures for correcting single qubit gate-induced errors, We will now move on to the idea of ”fault
tolerant” quantum computing.

13 Quantum Fault Tolerance

So far, we have looked mostly at error correcting schemes for resting quantum states(i. e., no gates
are being applied). Let us now look at how error works in a general circuit. For a circuit with
S gates, where the probability of each gate introducing an error is given by p, the probability of
at least one error occurring in the circuit is at most Sp, and the expected number of errors in the
output is Sp. If an error happens in the first part of a circuit, this error can propagate through the
circuit, leading to unrecoverable errors by the end of the circuit. By unrecoverable errors, we mean
errors that don’t satisfy the restraints given by Equation 13. Now, suppose that we want to design
a quantum error-correcting procedure to protect our states from these propagated, unrecoverable
errors. We might try encoding the qubits before the circuit, and then, once we need to apply a
gate, we could decode the qubits, apply the gate, and then re-encode the qubits. However, this
sort of procedure only protects qubits from errors in between gates, not from errors that the gates
themselves can introduce. As such, we can ditch this type of error-correction protocol and instead

18

design gates that can act directly on encoded states. In fact, we want to design a series of gates
fault-tolerantly, meaning that error is not allowed to propagate, and if an error happens on one gate,
it doesn’t completely ruin the rest of the computation.

Definition 13.1. Suppose we have a quantum gate that introduces an error in the output with
probability p. A fault-tolerant implementation of this gate introduces an unrecoverable error with
probability cp2 for some constant c.

It is important to note that our fault-tolerant upper bound cp2 is only an improvement over the
non fault-tolerant gate provided that p < 1

c . This condition is known as the threshold condition and
1
c is called the threshold error probability.
In summary, to achieve our goal of fault-tolerant quantum computing, we first choose a suitable
quantum code, and then design implementations for:

1. fault tolerant universal set of gates. We would like to design gates that can act directly on
encoded states, where the probability of an unrecoverable error in the output is less than cp2

for a constant c.

2. fault tolerant measurements. We would also like to design measurement procedures that intro-
duce errors with a probability less than cp2.

For a circuit with S gates, we can devise a fault-tolerant implementation of this circuit using an
encoding procedure and fault tolerant gates and measurements such that the probability of an error
in the output of the circuit is at most Scp2 for a constant c. This is an improvement over Sp as long
as p < 1

c , which we have seen earlier.
We will now look at how codes can be concatenated to achieve even further reduced error probabil-
ities.

14 Code Concatenation and the Threshold Theorem

Using the techniques from the previous section, we can design a circuit of size S(the number of gates)
whose overall probability of error is less than or equal to cSp2, where c is a constant. In this section,
we will show how codes can be combined for even further improvement. We will use this idea to
obtain a bound on the number of gates required to implement a circuit with error probability error
less than a desired threshold.

The idea of concatenating quantum codes is quite simple. In first-level encoding, which includes
all the codes we have discussed so far, we encode each qubit with a code of our choice. Then, for
second-level encoding, we simply encode each qubit in the codeword with the same code as before.
Thus, we see that after two levels of encoding with an n-qubit code, every qubit in the initial
register is ultimately encoded by n2 qubits. This process of encoding multiple times is known as
concatenation, and it works well as long as the error model at each level of encoding is of the same
form.

Suppose we have a circuit that is prone to error with probability p. We have shown that we can
encode this circuit fault-tolerantly such that the error is reduced to cp2. Now, if we simply encode
this circuit again with the same code, the error is further reduced to c(cp2)2 = c3p4. After k levels

of encoding, the probability of error is reduced to (cp)2
k

c , which is an improvement as long as p < 1
c .

The number of gates required to implement each fault-tolerant gate(after k levels of concatenation)
is dk for some constant d.

19

If we can obtain a bound on dk, we can show that the error rate decreases faster than the size of
the circuit grows, which would effectively justify the use of quantum error correction. Suppose we
wish to create a fault-tolerant implementation of a quantum circuit with S gates, and we want the
total error probability for the circuit to be less than ϵ. For us to do this successfully, each gate must
have an error probability under ϵ

S . As such, we must concatenate our codes k times such that

(cp)2
k

c
≤ ϵ

S

There exists such a k as long as p is below the threshold 1
c . We now can multiply by c, take the

logarithm of both sides and rearrange to obtain

2k ≤
log(S

cϵ)

log(1
cp)

Substituting 2 = d1/ log2 d, we get:

dk ≤

(
log(S

cϵ)

log(1
cp)

)log2 d

∈ O

(
logm

(
S

ϵ

))
,

(18)

where m is a constant greater than or equal to 1. Therefore, a fault-tolerant circuit with S gates
concatenated to k levels is bounded by the number of gates

Sdk = O

(
S

(
logm

(
S

ϵ

)))
As such, we have the following threshold theorem for quantum computing.

Theorem 14.1 (Quantum Threshold Theorem). A quantum circuit of S gates can be built with a
probability of error below ϵ with

O

(
S

(
logm

(
S

ϵ

)))
gates on hardware that each introduce error with probability p less than a constant threshold, and
given reasonable information about the noise in the hardware.

This theorem essentially tells us that if we can build quantum hardware such that the error per
gate is below a fixed value, we will be able to perform arbitrarily long quantum computations using
a polynomial amount of resources. In other words, the theorem says that noise and imprecision of
physical devices will not prevent the creation of a quantum computer. It shows that the quantum
model of computing is robust, and backs the notion that quantum computers will be stronger than
their classical counterparts. Although the type of hardware that the Threshold Theorem requires is
quite demanding at this time in quantum history, the Threshold Theorem gives us confidence that a
working, full-sized quantum computer can be built. As better error-correcting codes are found and
scientists continue to improve quantum hardware, a future where quantum computers can solve the
world’s greatest problems draws near.

20

References

[DMN13] Simon J Devitt, William J Munro, and Kae Nemoto. Quantum error correction for be-
ginners. Reports on Progress in Physics, 76(7):076001, jun 2013.

[KLM06] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An introduction to quantum com-
puting. OUP Oxford, 2006.

[KLM06] [DMN13]

21

