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Introduction

Definition

Integral Geometry: Random variables, geometric quantities, invariant
measures, and their connection.
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History

Buffon: Buffon’s Needle Problem, probability used to study geometry

Crofton: expected value could be used to calculate geometric
quantities

Bertrand: Bertrand’s Paradox, critiqued Crofton’s definition of
randomness

Poincaré: randomness could be invariant measures, ”kinematic
density”

Blaschke: published many papers, progressed Integral Geometry far
along
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Buffon’s Needle Problem

Theorem (Buffon’s Needle Problem)

If we had a wooden floor made up of parallel planks of 1 unit of width,
and we dropped a needle of shorter length than this width, the probability
that the needle lands on a crack would be 2l

π .
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Buffon’s Needle Problem (Solution)

l = length of needle (0 < l < 1)
α = vertical distance between center of needle and crack
θ = angle between needle and vertical distance
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Buffon’s Needle Problem (Solution)

As the definition of random needs to be precise, we can say that both α
and θ follow a uniform distribution:

α ∼ Unif [0,
1

2
] and θ ∼ Unif [0,

π

2
]

The joint probability density function of (α, θ) is:{
4
π 0 ≤ α ≤ 1

2 and 0 ≤ θ ≤ π
2

0 otherwise

By a geometric analysis, the needle crosses the crack if and only if

α ≤ l

2
(cos θ).

Thus, the probability the above is true is:∫ π
2

0

∫ lcosθ
2

0

4

π
da dθ =

2l

π

and we have finished the solution.
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Buffon’s Needle Problem (Solution)

X = the number of intersections between needle and cracks

X = 0 or 1

E [X ] =
2l

π

l is made up of shorter needles l1, l2, · · · , ln, where 0 < li < 1, and
l1 + l2 + · · ·+ ln = 1

Xi = the number of intersections between needle piece li and the cracks

X1 + X2 + · · ·+ Xn = X

E [X ] = E [
n∑

i=1

Xi ] =
n∑

i=1

E [Xi ] =
n∑

i=1

2li
π

=
2l

π
.
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Some Notation... The Equation of a Line

We can define a line L by its distance from the origin, p, and the angle it
forms, θ, where 0 ≤ p and 0 ≤ θ < 2π.
The equation of this line L, expressed as L(p, θ), can be written as:

p = cos(θ)x + sin(θ)y .
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Rigid Motion

Definition

Rigid Motion: Transformations, translations, and rotations of a set where
the distance between points does not change.

M: rigid motion of a set of points; rotation of angle α and a translation by
the vector (x0, y0):

x ′ = M(x) = x0 + (cos(α)x − sin(α)y)

y ′ = M(y) = y0 + (sin(α)x + cos(α)y)

From this, we can write the inverse motion as:

x = M−1(x ′) = cos(α)(x ′ − x0) + sin(α)(y ′ − y0)

y = M−1(y ′) = − sin(α)(x ′ − x0) + cos(α)(y ′ − y0)
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Invariant Measure

Lemma

Kinematic measure is invariant under rigid motions of a set of lines. For a
line defined by the coordinates (p, θ), its kinematic measure is given by:

dK = dp ∧ dθ.
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Invariant Measure (Proof)

p = cos(θ)x + sin(θ)y

x = cos(α)(x ′ − x0) + sin(α)(y ′ − y0)

y = − sin(α)(x ′ − x0) + cos(α)(y ′ − y0)

We can express the coordinates (p′, θ′) as:

p′ = p + cos(θ + α)x0 + sin(θ + α)y0

θ′ = θ + α

dp′ ∧ dθ′ = |J|dp ∧ dθ

.
Therefore, kinematic measure is invariant under rigid motions.
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Poincare Formula of Lines

Theorem

Poincaré’s Formula for Lines (1896). Let C be a piecewise C 1 curve in the
plane. Then the (kinematic) measure of lines meeting C is given by

2L(C ) =

∫
{L:L∩C ̸=∅}

n(C ∩ L) dK (L).
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Convex Sets

Definition

Convex Sets: A set Ω ⊂ R2 is convex if for each pair of points A,B ∈ Ω,
the line segment AB ⊂ Ω.

Shivaani Venkatachalam Integral Geometry July 8, 2022 13 / 18



Sylvester’s Problem

Theorem (Sylvester’s Problem)

Let ω ⊂ Ω be two bounded convex sets in the plane. Then the probability
that a random line meets ω given that it meets Ω is

P =
L(∂ω)

L(∂Ω)
.
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Bertrand’s Paradox

Theorem (Bertrand Paradox)

What is the average length of a random chord of a unit circle?
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Bertrand’s Paradox (Solution)

If we assume uniform angle and uniform distance from the origin,

E (σ1) =

∫
{L:L∩∂Ω̸=∅} σ1dK∫
{L:L∩∂Ω̸=∅} dK

=
πA(Ω)

L(∂Ω)
,

which equals πR
2 when Ω is a circle.

If we assume uniform angle and uniform point on boundary,

E (σ1) =
1

πL(∂Ω)

∫ L(∂Ω

0

∫ π

0
σ1 dθ ds,

which equals 4R
π when Ω is a circle.

If we assume two uniform random points on the boundary,

E (σ1) =
1

(L(∂Ω))2

∫ L(∂Ω

0

∫ L(∂Ω

0
σ1 ds1 ds2,

which equals 4R
π when Ω is a circle.

Shivaani Venkatachalam Integral Geometry July 8, 2022 16 / 18



Bertrand’s Paradox (Solution)

If we assume uniform angle and uniform distance from the origin,

E (σ1) =

∫
{L:L∩∂Ω̸=∅} σ1dK∫
{L:L∩∂Ω̸=∅} dK

=
πA(Ω)

L(∂Ω)
,

which equals πR
2 when Ω is a circle.

If we assume uniform angle and uniform point on boundary,

E (σ1) =
1

πL(∂Ω)

∫ L(∂Ω

0

∫ π

0
σ1 dθ ds,

which equals 4R
π when Ω is a circle.

If we assume two uniform random points on the boundary,

E (σ1) =
1

(L(∂Ω))2

∫ L(∂Ω

0

∫ L(∂Ω

0
σ1 ds1 ds2,

which equals 4R
π when Ω is a circle.

Shivaani Venkatachalam Integral Geometry July 8, 2022 16 / 18



Bertrand’s Paradox (Solution)

If we assume uniform angle and uniform distance from the origin,

E (σ1) =

∫
{L:L∩∂Ω̸=∅} σ1dK∫
{L:L∩∂Ω̸=∅} dK

=
πA(Ω)

L(∂Ω)
,

which equals πR
2 when Ω is a circle.

If we assume uniform angle and uniform point on boundary,

E (σ1) =
1

πL(∂Ω)

∫ L(∂Ω

0

∫ π

0
σ1 dθ ds,

which equals 4R
π when Ω is a circle.

If we assume two uniform random points on the boundary,

E (σ1) =
1

(L(∂Ω))2

∫ L(∂Ω

0

∫ L(∂Ω

0
σ1 ds1 ds2,

which equals 4R
π when Ω is a circle.

Shivaani Venkatachalam Integral Geometry July 8, 2022 16 / 18



Further Reading

Integral Geometry & Geometric Probability by Andrejs Treibergs

Integral Geometry and Geometric Probability by Luis Santaló
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Thank you

Thanks to Simon and my TA, Rajiv, for holding this opportunity and
helping me with my paper.
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