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Abstract

This paper discusses the world of partially ordered sets (posets) and looking at math from
their perspective. We talk about various partitioning theorems of posets and also discuss
operations on posets. The next main topic is the incidence algebra of posets. We lay down
many important functions which lead to significant results. One of these functions is the
Möbius function which leads to the very important Möbius Inversion Theorem. We then
come to the main part of the paper in which we talk about two important applications of
the Möbius Inversion Theorem.

Introduction

We start off talking about about the meaning of partial order and how Hasse diagrams
represent this seemingly complex relation easily. Hasse diagrams are named after Helmut
Hasse but they existed long before his work. They were named after him because of how
elegantly and extensively he used these diagrams.

We define chains, antichains and chain covers, which are essential to understand Dilworth’s
theorem, a major theorem frequently brought up in combinatorial analysis.

Theorem 0.1. Dilworth’s Theorem: Let S be any finite partially ordered set. The size of
any maximum antichain is equal to the number of chains in a minimal chain cover of S.

Next, we have a relatively small section on special kinds of poset called Lattices. They can
be defined individually as well with the help of fundamental laws. We now, build towards
the applications of the Möbius inversion formula by introducing incidence algebras. I think
of them to be houses in which all the magic regarding Möbius functions happens.

Definition 0.2. The incidence algebra I(S) of S is the set of all functions from Int(S)
to a field K, where Int(S) is the set of all closed intervals of a poset.

We look at the Identity function of this algebra, and then the Zeta and Möbius functions.
Next, we have:

Theorem 0.3. The Möbius Inversion Theorem: Let S be a poset with finite principal ideals.
If f and g are functions from S to a field K, and:

g(y) =
∑
x≤y

f(x), then f(y) =
∑
x≤y

g(x)µ(x, y)

Proposition 0.4. The Möbius Inversion Theorem leads to the Fundamental Theorem of
Calculus in terms of Integration being analogous to a summation function and a Derivative
being analogous to Möbius Inversion.
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Proposition 0.5. The Möbius Inversion Theorem for a poset of positive integers under
divisibility can be represented by a set of upper triangular matrices, which leads to a concise
proof of the Möbius Inversion Theorem.

1. What are Posets?

Definition 1.1. A partially ordered set or poset is a pair (S,≤) where S is simply a set and
≤ is a relation on the elements of S. ≤ represents any relation that satisfies these properties:

1) Reflexive: x ≤ x for all x ∈ S
2) Transitive: If x ≤ y and y ≤ z, then x ≤ z for x, y, z ∈ S
3) Anti-Symmetric: If x ≤ y and y ≤ x, then x = y for x, y ∈ S

You may be wondering why it’s known as a partially ordered set. This is because the
relation ≤ can be such that x ≰ y and y ≰ x for x, y ∈ S. These numbers are known as
incomparable numbers. If either of the relations are satisfied then they are known as com-
parable numbers. Looking at some examples will help us understand posets better.

Example 1.1:S is any set of positive integers and x ≤ y if x is a factor of y. The relation
satisfies all three properties. So now, 2 ≤ 6 and 3 ≤ 6, but 2 is not a factor of 3 and vice
versa making them incomparable. Think of comparable as “orderable”. This is the meaning
of partial order.

Example 1.2: Let N = {1, 2, . . . , n} be a set. Then Bn, known as the Boolean Algebra
of degree n, is the partially ordered set with S being a set containing all subsets of N and
x ≤ y if x ⊆ y, where x, y are sets in S.

Example 1.3: This last example is an unusual one. S is a set of integers and x ≤ y if y−x
is a non-negative integer (the usual meaning of ≤). In this, all elements are comparable
to each other, making it a totally ordered set. But a totally ordered set is also a partially
ordered set. This set can be represented by a sequence a1 < a2 < . . . < an.

Definition 1.2. A poset is known as a chain if all pairs of elements are comparable. You
can think of chains as sequences (like the example above).

Definition 1.3. Conversely, a poset in which no pairs of elements are comparable is known
as an antichain. In Example 1.1, if we consider the set of all primes, we get an antichain.

Like sets, posets can be infinite or finite.

2. Hasse Diagrams

One interesting thing is the modeling of posets. How do we represent them? We saw that
it is easy to represent a totally ordered set but what about strictly-partially ordered sets.
This is done by Hasse diagrams. Consider the following process:
Make a graph in which all the vertices represent elements of a poset. Then make a directed

edge from x to y if x ≤ y (for distinct x, y). Consider these as“one-way roads” and “cities”.
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Let’s say I want to go from City P to City Q. For this, P has to be ≤ Q so there exists a
one-way road from P to Q. But I enjoy photography of different places so I want to pass
through as many cities as I can on my way. So if there exists another route, I delete the
“road” or edge from P to Q. Now I do this for all P and Q belonging to the poset. This
simplifies the diagram. Now, we arrange the vertices such that all the edges are directed
upwards. This would enable us the get rid of the arrows of the directed edges and our final
result is a Hasse diagram.

We can also define a Hasse diagram more formally. For a poset S and x, y ∈ S, we say
y covers x if x < y and there does not exist z ∈ S for which x < z and z < y. So a Hasse
diagram is just a graph (with the vertices representing all the elements) where we draw an
upward edge (can be diagonal but upward too) from x to y if y covers x for all x, y ∈ S.

Example 2.1: Here is an example of a Hasse diagram. We will call it N (for NIKE). I like
to call it NIKE since if rotated clockwise, it looks like a swoosh.

Let S be the union of the factors of 10 and 24: {1,2,5,10,3,4,6,8,12,24} and x ≤ y if x is
a factor of y. Then we get the following:

1

25

10

3

4 6

8 12

24

3. Dilworth’s Theorem

Definition 3.1. A chain cover of a poset is a collection of chains, whose union is the
poset itself.

Theorem 3.2. Dilworth’s Theorem: Let S be any finite partially ordered set. The size of
any maximum antichain is equal to the number of chains in a minimal chain cover of S.

Proof. First we prove that if the minimal chain cover of S has w elements, then the size of
the maximum antichain is w. For this, we just take one element from each of the w chains,
which will form an antichain. The antichain cannot have more than w elements since the
w + 1st element will be comparable to some other element in the antichain.

Now we will prove that if w is the size of a maximum antichain, then you can partition the
poset into w chains. Let the size of the poset be q. We induct on q. The base case (q = 1) is
easy to see. Now, for some q > 1, assume it is true for all positive integers till q−1. We now
prove it for q. We partition the set into 3 subsets. The first is the maximum antichain itself,
which has w elements, denoted by W . Let wi be any element belonging to the maximum
antichain. The second subset U , has all the elements b such that b > wi. Finally, the third
subset D has all the elements j such that j < wi. Note that the union of these three subsets
makes up S.
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case 1: D and U are both non-empty.

Consider, S − D = W ∪ U . This is a poset with < q elements (since D is non-empty.
This poset also has a maximum antichain with w elements so according to the inductive
hypothesis, we can partition it into w chains. Note that every wi will be“connected” to a
different chain. Now we consider S−U = W ∪D and do the exact same thing and partition
it into w chains. So now, for every wi we have two chains: one with wi being the minimal
element and the other with wi being the maximal element. We now connect or link these
two chains so that out entire poset S is now partitioned into w chains.

case 2: 1 or more of D and U are empty.

Now let f1 and f2 be the maximal element and minimal element of S respectively. Note
that one of them has to be part of the antichain according to our case condition. (In the
case that both D and U are empty, f1 = f2 = wi). Let Cf be the max length chain which
has both f1 and f2. Now S −Cf has < q elements and has a maximal antichain with w − 1
elements so by our inductive hypothesis, it can be partitioned into w − 1 chains. Our wth
chain is Cf . And we have successfully partitioned our poset into w chains. ■

4. Lattices

Before we define what a lattice is, we need some important terminology.

Definition 4.1. For a poset S, and x, y ∈ S, let j be the lowest element such that x ≤ j
and y ≤ j. This is known as the join of x and y and is the common minimum upper bound
of x and y. It is denoted by x ∨ y.

Definition 4.2. Similarly let m be the highest element such that m ≤ x and m ≤ y. This
is known as the meet of x and y and is the common maximum lower bound of x and y. It
is denoted by x ∧ y.

Definition 4.3. A lattice is a poset in which all pairs of elements have a join and a meet.

Following from the definition, we have that every finite lattice has to have a single maxi-
mum element and a single minimum element. Let 1 denote the max element and 0 denote
the minimum element.

A lattice can also be defined in a different way. Not in terms of a poset. A set S is a
lattice if with two binary operations ∨ and ∧, the following axioms are satisfied.

Associativity: x ∨ (y ∨ z) = (x ∨ y) ∨ z and x ∧ (y ∧ z) = (x ∧ y) ∧ z

Commutativity: x ∨ y = y ∨ x and x ∧ y = y ∧ x

Absorbtion Law: x ∨ (x ∧ y) = x = x ∧ (x ∨ y)

A set with those binary operations and two elements 0,1 ∈ S is called a distributive lattice
if the following axioms are further satisfied.
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x ∨ 1 = 1 and x ∧ 1 = x

x ∨ 0 = x and x ∧ 0 = 0

Idempotent Law: x ∨ x = x ∧ x = x, this follows from the Absorbtion Law.

Now that we have some knowledge on lattices, let’s see some examples.

Example 2.1: The boolean algebra of degree n is a lattice. We can see this by observing
that the join of two elements would be their union and the meet would be their intersection.
Here is the Hasse diagram of the boolean algebra of degree 4.

∅

1 2 3 4

12 13 14 23 24 34

123 124 134 234

1234

5. Operations on Posets

We begin this section by defining isomorphism:

Definition 5.1. S and P are isomorphic if there is a one-one onto map f : S → P and
x ≤ y if and only if f(x) ≤ f(y). For two posets S and P , I will use S ∼= P to show
isomorphism.

I think it is a nice observation that two posets are isomorphic if and only if their Hasse
diagrams are the same. Here are some operations we can perform on posets:

Definition 5.2. If S and P are two posets, S + P is the direct sum or disjoint union of
these posets. The set is S ∪ P and ≤ is defined as such: For x, y ∈ S + P , we say x ≤ y if
x, y ∈ S (or P ) and x ≤ y in S (or P ).

A poset which cannot be broken down into the disjoint union of two non-empty posets is
called connected. Otherwise it is called disconnected.

The disjoint union of S with itself n times is denoted by nS. Notice that an antichain of
length n ∼= n1 (a one element poset).

Definition 5.3. The poset S ⊕ P is called the ordinal sum of S and P . The set is again
S ∪P and ≤ is defined as such. For x, y ∈ S ⊕P , we say x ≤ y if x, y ∈ S (or P ) and x ≤ y
in S (or P ) or, x ∈ S and y ∈ P .

Notice that a chain of length n ∼= 1 ⊕ 1 ⊕ . . . ⊕ 1 (n times). series parallel posets
are posets which can be constructed by a combination of direct sums and ordinal sums of
the one element poset.
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Definition 5.4. If S and P are posets, then SP is the direct (or Cartesian) product of P
and Q. It is defined on the set {(x, y) : x ∈ S and y ∈ Q} such that (x, y) ≤ (x2, y2) if x ≤ x2

in S and y ≤ y2 in P .

The Cartesian product of S, n times with itself is denoted by Sn.

6. Incidence Algebras of Posets

For a poset S, let x and y ∈ S. The set of all z such that x ≤ z ≤ y is known as the
closed interval between x and y, it is denoted by [x, y]. S is called locally finite if all
intervals of S are finite. S can be locally finite and infinite at the same time. Int(S) is the
set of all closed intervals of S.

Definition 6.1. The incidence algebra I(S) of S is the set of all functions from Int(S)
to a field K. If g is one such function, we use g(x, y) to mean g([x, y]). Multiplication of
functions is defined by

(f · g)(x, y) =
∑

x≤z≤z

f(x, z)g(z, y)

This is exactly the same as the multiplication of matrices, more specifically matrices which
are upper triangular, meaning all values below the main diagonal (top left to bottom right)
are 0. We will see this more clearly with an example later.

The first question is do we have an identity function? That is a function u such that
fu = uf = f for all f ∈ I(S). Consider the function:

δ(x, y) = 1 if x = y and 0 otherwise. From the definition of multiplication of functions
given above we can see how this is the identity function. In fact it corresponds to the identity
matrix. The next function is also a simple zero-one function but it is very useful.

Definition 6.2. The zeta function ∈ I(S) is defined to be ζ(x, y) = 1 if x ≤ y and 0
otherwise.

Definition 6.3. A multichain in a poset is a multiset of elements x1, x2, . . . , xm satisfying
x1 ≤ x2 ≤ . . . ≤ xm. The difference between multichains and chains is that in multichains,
elements don’t have to be distinct.

Proposition 6.4. From [Bóna, 2006] Let S be a locally finite poset and x ≤ y be two
elements. Then the number of multichains x = x0 ≤ x1 ≤ . . . ≤ xk = y is equal to ζk(x, y)

Proof. We induct on k. For the base case we have k = 1 ⇒ ζ1(x, y) = 1 if and only if x ≤ y.
(This also works for k = 0 but the ≤ changes to =). Now we assume the proposition is true
for all positive integers till k − 1 and now prove it for k.

A multichain x = x0 ≤ x1 ≤ . . . ≤ xk = y can be decomposed to two multichains:
1) x = x0 ≤ x1 ≤ . . . ≤ xk−1 = z
2) z ≤ y
Our induction hypothesis tells us that the number of multichains of type 1) is ζk−1(x, z)

and of type 2) is simply ζ(z, y)
If we sum over all possible z ∈ [x, y], we get that the total number of multichains

x = x0 ≤ x1 ≤ . . . ≤ xk = y is equal to:
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z∈[x,y]

ζk−1(x, z) · ζ(z, y) = ζk(x, y)

■

This basically tells us that a better definition of the length of a chain or multichain is the
number of times ≤ occurs, which is equal to the number of elements minus one.

A justification is that when we walk up the Hasse diagram of a poset, we make “the
length” number of steps.

Proposition 6.5. Let [x, y] ∈ Int(S). Then the number of chains of length k that start at
x and end in y is (ζ − δ)k(x, y).

The proof of this is analogous to the proof of the previous Proposition.

The next question we ask is: is there an inverse of the Zeta function? Well, the Zeta
function can also be represented by matrix, which is also upper triangular and ζ(x, x) = 1
so the determinant of this matrix = product of main diagonal = 1. Hence, its inverse exists.
This brings us to a very important function: the Möbius function.

Definition 6.6. The Möbius function is the inverse of the Zeta function. On a poset S,
it is denoted by (µ or) µS = ζ−1. We can also see it as µ · ζ = δ. We notice this recursive
definition as well. For a locally finite poset S and [x, y] ∈ Int(S),

µ(x, x) = 1 and µ(x, y) = −
∑

x≤z<y

µ(x, z)

This brings us to the Möbius Inversion Theorem

Theorem 6.7. The Möbius Inversion Theorem: Let S be a poset with finite principal ideals.
If f and g are functions from S to a field K, and:

g(y) =
∑
x≤y

f(x), then f(y) =
∑
x≤y

g(x)µ(x, y)

Proof. We see the following proof from [Stanley, 2011]∑
x≤y

g(x)µ(x, y) ⇐⇒∑
x≤y

µ(x, y)(
∑
z≤x

f(z)) ⇐⇒∑
z≤y

f(z)
∑

z≤x≤y

µ(x, y) ⇐⇒∑
z≤y

f(z)δ(z, y) ⇐⇒

f(y)

■

Notice the following critical steps: g(x) =
∑
z≤x

f(z) (from our if statement) and
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z≤x≤y

µ(x, y) = δ(z, y) (from the recursive definition of the Möbius function)

7. Applications of the Möbius Inversion Theorem

We will see that for posets in which the Möbius function is easy to compute, the Möbius
inversion theorem helps us gain a lot of insight into the partial order relation. For example,
in IEP, the inclusion - exclusion theorem, the coefficient of the subsets to add or substract
are decided by the Möbius function.

Let’s take a look at a fundamental example.

Let S be the chain of Natural Numbers under the regular meaning of ≤. Then,

µ(x, x) = 1.

Now from the recursive definition of the Möbius function, we see that:

µ(x, x+ 1) = −µ(x, x) = −1 and µ(x, x+ k) = 0 for k > 1

Recall from calculus
∫ b

a
f(x)dx is the area under the curve of f(x), and this area can be

represented by taking the summation of the area of the rectangles formed along the function.
Now, imagine for some f(x), you take the sum of rectangles with base length 1. This would
correspond to integers or in our case, the natural numbers. So then,∫ b

0
f(x)dx =

b∑
k=0

f(k)

If we let g(x) =
∫ b

0
f(x)dx then we get our initial conditions for the Möbius inversion

theorem!

f(x) =
b∑

k=0

g(k)µ(k, b) =

b−2∑
k=0

g(k)µ(k, b) + g(b− 1)µ(b− 1, b) + g(b)µ(b, b) =

0 + · · ·+ 0− g(b− 1) + g(b)
⇒

f(x) = g(b)−g(b−1)
b−(b−1)

This is like a derivative, in the sense that we are undoing integration and we have sort of
derived the fundamental theorem of calculus from the world of posets. Instead of Nat-
ural Numbers, we could always take some infinitesimally small value ∆ and create a chain
· · · < x−∆ < x < x+∆ < . . . to be more accurate.

It’s not always this easy to find the Möbius function for Posets, but the following result
allows us to get the Möbius functions for complex posets from simpler posets.

Theorem 7.1. The Product Theorem. Let P and Q be locally finite posets, and let P × Q
be their direct (or cartesian) product. If (s, t) ≤ (s′, t′) in P ×Q, then:

µP×Q((s, t), (s
′, t′)) = µP (s, s

′)µQ(t, t
′)

Proof.
∑

(s,t)≤(u,v)≤(s′,t′)

µP (s, u)µQ(t, v) = (
∑

s≤u≤s′

µP (s, u))(
∑

t≤v≤t′

µQ(t, v)) = δ(s,s′)δ(t,t′) = δ(s,t),(s′,t′)
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Therefore, the function µP (s, s
′)µQ(t, t

′) is the unique function defined on Int(P ×Q) that
sums to 0 for non trivial intervals and 1 for trivial intervals of P × Q. It is the Möbius
Function. ■

Let’s now look at the poset N from Example 2.1. We make the following transformation
from N to N ′.

1

25

10

3

4 6

8 12

24

Let xi ∈ N and yi ∈ N ′. Then I choose an arbitrary ordering x1 = 1, x2 = 2, x3 = 5, x4 =
10, x5 = 3, x6 = 4, x7 = 6, x8 = 8, x9 = 12, x10 = 24. As long as I am consistent with the
ordering whenever representing this poset, I can pick any ordering.

Each yi is the sum of all xj for which xj ≤ xi. This is analogous to g(y) =
∑
x≤y

f(x).

We get the following:

1

36

18

4

7 12

15 28

60

So formally, X is the row vector with xi or f(x) and we use the same ordering to represent
the rows and columns of the transformation matrix, which turns out to be the Zeta Matrix.
We use the Zeta function to input 1’s or 0’s into the matrix. ζ(x, y) = 1 if x is a divisor of
y and 0 otherwise. 

1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 1 1 1 1
0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1
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Let this matrix be represented by Z, then, XZ = Y where,

X: [1,2,5,10,3,4,6,8,12,24] and Y : [1,3,6,18,4,7,12,15,28,60].

So for example if we want y10, we multiply the 10th column with X: 1(1) + 2(1) + 5(0)
+ 10(0) + 3(1) + 4(1) + 6(1) + 8(1) + 12(1) + 24(1) = 60.

Now we find the matrix M so that YM = X(ZM) = X. For this, we use the Möbius
function to input 1’s, 0’s or -1’s into the matrix. For this poset, it is defined as:

µ(y, x) = (−1)k if y/x is a product of k distinct primes and 0 otherwise. This is the
classical Möbius function which comes from Number Theory and can be derived by
using the Product Theorem on the partition of the set into chains of powers of primes:
p01 < p11 < p21 < . . ., p02 < p12 < p22 < . . . and so on and lattices combining the primes. You
can see this here [Bender and Goldman, 1975]. Therefore we get our desired inverse matrix.

1 −1 −1 1 −1 0 1 0 0 0
0 1 0 −1 0 −1 −1 0 1 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 −1 0 0 0
0 0 0 0 0 1 0 −1 −1 1
0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 1


So for example if we want x10, we multiply the 10th column with Y : 1(0) + 3(0) + 6(0)

+ 18(0) + 4(0) + 7(1) + 12(0) + 15(-1) + 28(-1) + 60(1) = 24.
So in conclusion, if we treat the functions g, f as vectors G,F , then the Möbius Inversion

Theorem says:

G = FZ ⇒ GM = F , where Z and M are the Zeta and Möbius Matrices of the poset
respectively.

And the proof of this is simply stating that ZM = I (the identity matrix)!

8. Conclusion

In this expository paper, we talk about posets, build up to the Mobius inversion theorem,
and then talk about its applications. We see how this theorem when applied to the right
poset is able to reveal important results such as the fundamental theorem of calculus. There
are many instances in which it gets tricky to calculate the Mobius function, such as in Convex
Polytopes, Map colouring and more. I hope this paper peaked your interest enough to learn
more about related topics.
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