van Der Waerden's Theorem

Samvar Harshil Shah shah.samvar@gmail.com

Euler Circle

July 4, 2022

<u><u></u></u>				CI	
Samvar	н	ars	hil	Sł	ıah
ounivar				• ••	

van Der Waerden's Theorem

∃ ⇒

э

A B A B
A B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Definition (Arithmetic Progression)

Arithmetic Progression - A group of n + 1 numbers which are in the form $a, a + d, a + 2d, a + 3d \cdots a + (n - 1)d, a + n(d)$ are said to be n + 1 numbers in arithmetic progression.

Definition (Length and Step of Arithmetic Progression)

Using the above notation, the length of the arithmetic progression is n + 1 and the step is d.

Game to explain the concept

- As seen we have nine marbles.
- We have 2 colors, red and blue.
- Please give me a coloring combination of these 9 marbles with red and blue.
- Your goal is to avoid an arithmetic progression of length 3 which is monochromatic (of the same color).

- Arbitrary values k and l are chosen.
- *k* is the number of colors.
- *I* is the length of arithmetic progression requires.
- van Der Waerden Theorem guarantees there is a large enough number of marbles *n*.

van Der Waerden's Theorem and van Der Waerden's Number

Theorem (van Der Waerden's Theorem)

Given any k and l we can always find a n such that if all the natural numbers from 1 to n were to be coloured with k colors, we can always find a group of l values which are in arithmetic progression and are monochromatic.

Definition (van Der Waerden's Number)

The smallest value n for which this is true, is the van der Waerden number W(k, l).

Samvar	Н	ars	hil	SI	nah

Determining the van Der Waerden number W(k, l) is unknown for all but 7 pairs of k and l.

van Der Waerden's Theorem							
k / I	2 Colors	3 Colors	4 Colors				
3	9	27	76				
4	35	293	\geq 1,048				
5	178	≥ 2173	$\geq 17,705$				
6	1,132	\geq 11,191	$\geq 157,209$				
7	≥ 3,703	\geq 48,811	\geq 2,284,751				
8	\geq 11,495	\geq 238,400	\geq 12,288,155				

Does this have any bounds? The answer is yes.

イロト イヨト イヨト ・

æ

For any k and l the upper bound which was found by Gowers is: -

$$W(k, l) \le 2^{2^{l^{2^{(k+9)}}}}$$

For just the case of W(2, 3) we see that the upper bound will give us

$$W(2,3) \le 2^{2^{2^{2^{4096}}}}$$

while the actual value is 9.

Image: A matrix and a matrix

э

Other Related Theorems

Some other related theorems are

- Hales–Jewett Theorem
- Rado's Theorem
- Szemerédi's Theorem
- Polynomial van Der Waerden Theorem
- Multidimensional van Der Waerden Theorem

They are all connected to

- Ramsey Theory "Complete disorder is impossible!"
- 2 Coloring
- Additive Combinatorics

Definition (Pigeon Hole Principle)

If we have n + 1 pigeons and n pigeon holes, then if we arrange them in any way, at least one of the pigeon holes must contain 2 pigeons.

Definition (Pigeon Hole Principle Generalisation)

If in the pigeon hole principle there are *n* pigeons and *k* pigeon holes then at least 1 of the *k* pigeon holes has more than $\lceil n/k \rceil$ pigeons. The way in which we arrange the pigeons into pigeon holes does not matter.

< □ > < □ > < □ > < □ > < □ > < □ >

The key ideas of the proof of van Der Waerden's Theorem are as follows:

- Finding van Der Waerden's number for smaller cases like W(2,3), W(3,3) and W(2,4).
- Constructing lemmas and understaningd the key ideas needed for the entire proof.
- Suilding 3 equivalent blocks using Pigeon Hole Principle.
- Understanding good blocks (example on next slide).

Proof of W(2, 3)

- Proof is extremely complex.
- We will just give a general idea of the case W(2, 3)
- Please read the expository paper I have written which goes through this in detail

イロト 不得 トイヨト イヨト

The Good Blocks for 2 colors

<u> </u>				<u> </u>		
S D DD V D F	_	DEC	D • 1		a a k	•
Janiyan					L d L	

van Der Waerden's Theorem

July 4, 2022

イロト イヨト イヨト

æ

Different coloring and the Pigeon Hole Principle

- Implies Block W of length 5 which has a coloring u.
- 2 Each number has 2 coloring choices.
- Total colorings u can be 32 (2⁵).
- Pigeon Hole Principle implies that in 33 blocks there must be 2 that are colored the same.

13/15

Key Idea and Lemma

¹Van der Waerden's Theorem: Variants and "Applications" William Gasarch, Clyde Kruskal, Andy Parrish March 9, 2018

Samvar Harshil Shah

van Der Waerden's Theorem

July 4, 2022

14 / 15

Q/A and Thank You

Seeing that I don't have enough time to answer questions during the presentation, please message on discord in the presentation-questions in Euler Circle server or direct message me on Samvar Shah#5307 regarding any questions, comments or suggestions.

