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Question : Each of you gets a hat to wear, which is either red or blue. You can see
everyone in front of you, including the colors of their hats; you can’t see your own
hat, nor can you see anyone behind you. Starting at the back of the line, the host
will ask each person to guess whether their own hat is black or white. You’ll be
able to hear the guesses, and whether they’re right or wrong.
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Number of red hats : 5 (odd)
So they say “Red”.
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Xi said “Red”
Number of red hats : 5 (still odd)

So they say “Blue”.
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Xi said “Red”
Number of red hats : 5 (still odd)
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Question : There is an infinite line of people. All of them are wearing hats, the
hats have random real numbers on them. Assume there is a first person in the line,
so the line is infinite only in one direction, and one cannot hear the answers of the
people preceding them.
What should you do to get as many correct guesses as possible?
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• Let A be the set of people wearing the hat, S be the set of all possible
numbers sequences on said hats (in our case RN), ≺ be a binary, transitive
relation on A, and X be the set of all A → S.

• For agents s and a, s ≺ a means that a can see the number on agent s’s hat,
and f ∼ g means that scenarios f and g are indistinguishable to agent a.
Given a scenario f for the numbers on the hats, [f ]a is the set of scenarios
consistent with what a can see.

• An equivalence relation for this problem would look like N ∼ RN such that
they’re different in only finitely many places.
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• Now let O = {[α]a | α ∈ X and a ∈ A}.
• A well-ordering ⪯ on X such that µ : O → X and µ([f ]a) is the ⪯ least

element of [f ]a.1

• We would fix an element α ∈ X which we consider to be the true scenario.

1This strategy may be viewed as a formalization of Occam’s Razor if we interpret f ≺ g as f is
“simpler” than g in some sense.
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Those “finitely many places” wherein the equivalence relations differed are the
number of people who may get the answer wrong; the other infinitely many are
sure to get it right.
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If A is a collection of nonempty mutually disjoint sets, then we can find a set C
that has exactly one element in common with every set from A.
It is may also be defined as: for any indexed collection of sets, there exists a choice
function.

f : X →
⋃

i∈X
Si

such that f(i) ∈ Si for all i ∈ X.



Consequences
The Axiom of Choice

1. Let C = (∀x)(∀y)([x, y] ∈ R+) such that each interval has a finite length. Then
we can define the choice function f(C) to be the midpoint of the interval [x, y].

2. In Bertrand Russell’s words “To choose one sock from each of infinitely many
pairs of socks requires the Axiom of Choice, but for shoes the Axiom is not
needed.”
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Equivalent Statements to AC
The Well-Ordering Theorem & Zorn’s Lemma

Theorem (Well-Ordering Theorem)
Given any set S, there exists a well-order ≺ on S.

Theorem (Zorn’s Lemma)
Every non-empty partially ordered set in which every totally ordered subset has an upper bound contains
at least one maximal element.
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Consequences of AC

Theorem (Banach-Tarski Paradox)
The unit ball B3 is equidecomposable with two copies of itself.

Simply, it states that one can take a 3-dimensional ball, cut it into a finite number
of disjoint sets consisting of infinitesimally small pieces (points), perform simple
rotations on said sets, and then put them back together to yield two copies of the
original ball.
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• Equidecomposibility : An An analogue of polygonal dissections.
• Equidecomposability as action of a group G on a set X.

Definition
If G acts on X, we say that A, B ⊆ X are G-equidecomposable if they can be partitioned into the same
finite number of pieces, which can be matched such that each pair of corresponding pieces Ai, Bi are
related by the action of some gi ∈ G | Bi = giAi = {gia|a ∈ Ai}.

• Free group with two generators can be realized as a group of rotations of our
sphere.

• B3 is equidecomposable with B3 \ {β} where β is the center of the ball. S2 \ D
can be partitioned into two sets, both being equidecomposable with S2 \ D.

• {β} can be duplicated using a simple circle trick.
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Consider a circle that passes through β and is contained within B3. Let ρ be a 1
rad rotation of the circle, then the points β, ρβ, ρ2β, ρ3β, . . . are distinct and we get
the same set except β upon applying ρ on them.
This yields an analogous to the 2-piece decomposition of the B3 with B3 \ β: one
piece being {ρβ, ρ2β, ρ3β, . . .},2 and the being the rest of the ball to itself.

2from {β, ρβ, ρ2β, ρ3β, . . .} under ρ
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Examples
Consequences of AC

The proof made use of a lot of group theory, and might’ve been hard to follow. So
here are some examples to help you understand what is happening a little better.
Example 1:

N = {1, 2, 3, 4, 5, . . .}

Upon subtracting 1 from each of the elements we get

N − 1 = {0, 1, 2, 3, 4, 5, . . .}
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Example 2:
Let C be the unit circle in R2, r = (0, 1), a line segment on the x-axis, be a radius
of C, ρ be a counterclockwise rotation by 1

5 rads around the origin, so p(r) is
another radius of C.
So

D =
∞⋃

n=0
= ρn(r).

We now rotate D clockwise by 1
5 rads. And because ρn(r) ̸= r for any n,

ρn−1(r) ̸= ρ−1(r)
C

⋃
ρ−1(D) = C

⋂
D

⋂
ρ−1(r)
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By extension of the Banach-Tarski Theorem it can be shown that one can start
with any bounded set with a nonempty interior and reassemble it into any other
such set of any volume, so that one could, in principle, begin with a pea and end
up with a ball as large as the Sun.
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Because the pieces are infinitesimally
small their volume is degenerate. Or, to
be more precise they are not Lebesgue measurable.
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Consequences of AC

Theorem (De Bruijn–Erdős Theorem)
If the chromatic numbers of the finite subgraphs of a graph G have a finite maximum value c, then the
chromatic number of G itself is exactly c. On the other hand, if there is no finite upper bound on the
chromatic numbers of the finite subgraphs of G, then the chromatic number of G itself must be infinite.
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What would be the chromatic number of the unit distance graph?

Seven. Well, not exactly. We know it cannot be four, so the answer is somewhere
between five and seven.
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What would be the chromatic number of the unit distance graph?
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between five and seven.
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Figure: This 826-vertex unit distance graph requires at least five colors to ensure its proper
coloring.
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Looking at the world without Choice
Negation of AC

The Cartesian product of two non-empty sets is empty. Let X be a collection of
non-empty sets, and P be a set in X. Intuitively, we know that

∀X[ϕ /∈ X ⇒ ∃f : X →
⋃

X ∀P ∈ X(f(P )) ∈ P )]

But if we consider the negation of AC, there exists no choice function such as f .
Because of which a Cartesian product cannot be constructed, and is empty.
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Some other consequences of ZF¬C include :
• In some model, the real numbers are a countable union of countable sets. 3

• In all models of ZF¬C there is a vector space with no basis.
• In all models of ZF¬C, the generalized continuum hypothesis does not hold.

3This does not imply that the real numbers are countable: To show that a countable union of
countable sets is itself countable requires the Axiom of countable choice.
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