### Combinatorial species

# Nicole Shen shennicole2004@gmail.com

Euler Circle

July 5, 2022

|  |  | hen |
|--|--|-----|
|  |  |     |
|  |  |     |

э

1/14

イロト イヨト イヨト

### Definitions

### Definition (Combinatorial Species)

A combinatorial species F is a function that sends a finite set U of labels to a finite set of structures F[U].

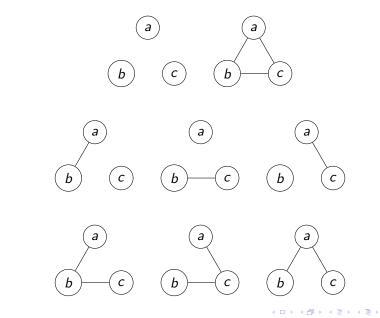
#### Example

L is the species of linear orders built from the set  $\{a, b, c\}$ :

$$\left\{ \begin{array}{ll} a < b < c, & b < c < a, & c < a < b, \\ a < c < b, & b < a < c, & c < b < a \end{array} \right\}$$

<日<br />
<</p>

Species Example



э

# Equivalence

#### Definition (Equivalence)

Two species F and G are *equivalent* (written as  $F \approx G$ ) if they are naturally isomorphic.

# Equivalence

#### Definition (Equivalence)

Two species F and G are *equivalent* (written as  $F \approx G$ ) if they are naturally isomorphic.

#### Definition (Equipotence)

Two species F and G are *equipotent* (denoted as  $F \equiv G$ ) if and only if |F[U]| = |G[U]| for all finite sets U.

- 4 同 ト 4 三 ト - 4 三 ト - -

### Generating Functions

Definition (Exponential Generating Function) For a species *F*, the associated egf is given by  $F(x) = \sum_{n=0}^{\infty} |F[n]| \frac{x^n}{n!}$ 

where |F[n]| is the number of labeled *F*-structures with size *n*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

### Generating Functions

Definition (Exponential Generating Function) For a species F, the associated egf is given by  $F(x) = \sum_{n=0}^{\infty} |F[n]| \frac{x^n}{n!}$ 

where |F[n]| is the number of labeled *F*-structures with size *n*.

#### Example

$$L(x) = \sum_{n=0}^{\infty} n! \frac{x^n}{n!} = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

|  |  | hen |
|--|--|-----|
|  |  |     |
|  |  |     |

・ロト ・ 同ト ・ ヨト ・ ヨト

### **Operations - Addition**

### Definition (Addition)

$$(F+G)[U] = F[U] \sqcup G[U],$$

the disjoint union of F[U] and G[U].

| NI:  | col |    | CI     | hen |  |
|------|-----|----|--------|-----|--|
| 1.01 | CU  | e. | ں<br>د | nen |  |

< /□ > < Ξ

э

### **Operations - Multiplication**

Definition (Multiplication)

$$(F \cdot G)[U] = \bigsqcup_{U} F[A] \cdot G[B].$$

э

÷

# **Operations - Multiplication**

Definition (Multiplication)

$$(F \cdot G)[U] = \bigsqcup_{U} F[A] \cdot G[B].$$

#### Example

Let *E* be the species of sets. The  $E \cdot E$  species partitions the set of labels into two distinguishable parts. This is equivalent to the species of subsets, *P*.

$$P(x) = (E \cdot E)(x) = E(x) \cdot E(x) = e^{2x} = \sum_{n=0}^{\infty} \frac{2^n \cdot x^n}{n!}.$$

Thus, a set with n elements has  $2^n$  subsets.

<日<br />
<</p>

### **Operations - Composition**

### Definition (Composition (aka substitution))

$$(F \circ G)[U] = \bigsqcup_{U = \sqcup_{i \leq n} B_i} F[n] \cdot \prod_{i \leq n} G[B_i].$$

|  |  | nen |
|--|--|-----|
|  |  |     |
|  |  |     |
|  |  |     |

Image: A match a ma

э

### **Operations - Composition**

### Definition (Composition (aka substitution))

$$(F \circ G)[U] = \bigsqcup_{U = \sqcup_{i \leq n} B_i} F[n] \cdot \prod_{i \leq n} G[B_i].$$

#### Example

The EGF of the species of cyclic orderings C is  $\sum_{n=0}^{\infty} \frac{x^n}{n}$ . A permutation is a set of cycles, so

$$S(x) = E(C(x)) = e^{C(x)} = \frac{1}{1-x}.$$

This means

$$C(x) = \ln\left(\frac{1}{1-x}\right) = -\ln(1-x).$$

$$\rightarrow -\ln(1-x) = \sum_{n=0}^{\infty} \frac{x^n}{n}$$

Nicole Shen

Combinatorial species

# **Operations** - Differentiation

### Definition (Differentiation)

The derivative of the species F is given by

```
F'[U] = F[U \sqcup \{*\}]
```

where  $\{*\}$  is a distinguished point.

Why? |F'[n]| = |F[n+1]|!

э

9/14

# **Operations** - Differentiation

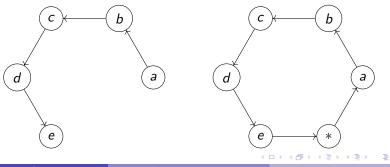
### Definition (Differentiation)

The derivative of the species F is given by

```
F'[U] = F[U \sqcup \{*\}]
```

where  $\{*\}$  is a distinguished point.

Why? |F'[n]| = |F[n+1]|!



# **Operations** - Pointing

### Definition (Pointing)

Let F be a species. Pointing is used to select one of the n elements of the underlying set U as "special."

 $F^{\bullet}[U] = F[U] \times U.$ 

10/14

< A > <

# **Operations** - Pointing

### Definition (Pointing)

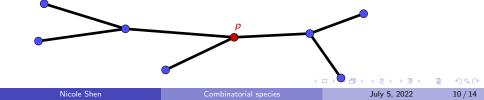
Let F be a species. Pointing is used to select one of the n elements of the underlying set U as "special."

$$F^{\bullet}[U] = F[U] \times U.$$

#### Example

Let a be the species of trees and A be the species of rooted trees.

$$\rightarrow A = a^{\bullet}$$



# Cayley's Theorem

#### Lemma

Vertebrates can be seen as linear orders of rooted trees.

### Proof.

A vertebrate is a tree bipointed by two vertices: the tail vertex  $(p_0)$  and the head vertex  $(p_1)$ . Along the spine, each vertex is the root of a rooted tree.

$$V(x) = L(A(x)) = \frac{1}{1 - A(x)}.$$

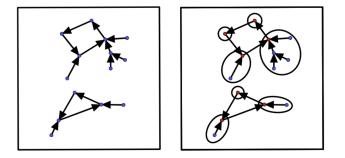


11/14

# Cayley's Theorem

### Definition (Endofunction)

An endofunction is a function whose codomain is equal to its domain.



$$End(x) = S(A(x)) = \frac{1}{1 - A(x)}$$

# Cayley's Theorem

#### Theorem

There are  $n^{n-2}$  labeled trees on n labeled vertices.

#### Proof.

$$V = a^{\bullet \bullet}, \text{ so } |V[n]| = n^2 \cdot |a[n]|.$$

$$V(x) = End(x) = \frac{1}{1 - A(x)}.$$
Since  $|End[n]| = n^n$ ,
$$n^2 \cdot |a[n]| = n^n.$$
Thus,
$$|a[n]| = n^{n-2}.$$

2

イロト 不得 トイヨト イヨト

# Other Applications

- proving the Lagrange Inversion Theorem!
- providing the foundations of Polya's Enumeration Theory
- and more!

| Ni   | col |    | C | ha |  |
|------|-----|----|---|----|--|
| 1.01 | CO  | e. | 2 | ne |  |