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1. Abstract

In this paper, we explore some of the basic topics in group theory and their appli-
cations to the Rubik’s cube. We define concepts such as cyclic groups, generators,
homomorphisms, kernel, direct product and semi-direct product, among others. We
then talk about the Rubik’s cube, outlining some core properties and some fascinat-
ing results. We define the Illegal Rubik’s Cube Group and the Legal Rubik’s Cube
Group and find the order of both. This covers the total number of positions of the
Rubik’s cube. Finally, we delve into the 2× 2× 2 Rubik’s cube.
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2. Introduction

In 1974, Hungarian design teacher Ernö Rubik designed a 3D color puzzle he
called the Magic Cube. A few years later, a toy company began mass-producing
the puzzle, giving it the new name of the Rubik’s Cube. The puzzle was a massive
success. It only took two years to reach 100 million sales [Mus21]. The Rubik’s
Cube became a common household item. In the following decades, it became more
than just a simple puzzle. Many people began timing themselves solving the cube
and pushing for faster times. On October 18, 2004, the World Cube Association was
founded, and they began organizing and running official competitions where people
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could compete in all sorts of timed events, such as simply solving the Rubik’s cube,
to solving the 2× 2× 2 cube, the 4× 4× 4, 5× 5× 5, 6× 6× 6, 7× 7× 7, various
other non-cubic twisty puzzles such as the skewb, pyraminx, and megaminx, and
even solving the Rubik’s cube blindfolded [WCA22].

As a monolith in the puzzle solving community, the Rubik’s cube naturally solid-
ified itself in the world of mathematics. Countless mathematicians began to realize
the fascinating discoveries that can be found when math is applied to the wonder-
ful puzzle. Despite not needing math to be able to solve the Rubik’s Cube, their
symbiosis is undeniable, and one of the best ways to consider the Rubik’s cube
mathematically is through the lens of group theory.

3. Background

Group theory, as the name suggests, is the study of groups.

Definition 3.1. Groups are sets that have a binary operation (let’s call it ∗), which
maps members of the set to other members of the set. However, there are also some
additional restrictions on a set and operation for them to be defined as a group.
They must satisfy three properties:

(1) A group must have closure, which means that if a, b ∈ G, then a ∗ b ∈ G.
(2) The operation ∗ must be associative. In mathematical terms,

(g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) for all g1, g2, g3 ∈ G
(3) The group must have an element e ∈ G that maps all elements to themselves.

In mathematical terms, e ∗ g = g and g ∗ e = g for all g ∈ G. This element
is called the unit element, or the identity.

(4) Each element in the group must have an inverse. An inverse maps an element
to the unit element. In mathematical terms, g ∗ g−1 = e, and g−1 ∗ g = e.

Now that we have covered what a group is, let’s talk about more group theory
terminology. One of the most important types of groups (when it comes to the
Rubik’s cube) is a cyclic group. A cyclic group is a group where G = {gn|n ∈ Z}.
Essentially, multiplying one element with itself |G| times gives you all elements in
the group. This special element g is called a generator, as it generates the group.
A common notation to describe a cyclic group and its generator is G = ⟨g⟩.
Example 3.1. The group Z5 = {0, 1, 2, 3, 4} under addition modulo 5 is a cyclic
group that can be generated by the element 1.

The element 1 is a generator, and can of course be written as 11. The next
element, 2, can be written as 12 = 1 + 1 (mod 5) = 2 (mod 5). Note that 12

denotes the group operation ∗ rather than multiplication. The group operation is
addition modulo 5, so 12 = 1 ∗ 1 = 1 + 1 (mod 5). Similarly, the next element, 3,
can be written as 13 = 1 + 1 + 1 (mod 5) = 3 (mod 5). The rest follow a the same
pattern: 14 = 1+1+1+1 (mod 5) = 4 (mod 5), 15 = 1+1+1+1+1 (mod 5) = 0
(mod 5). As shown, every element in Z5 can be written as a power of 1, making it
a cyclic group with generator 1. Also note that 2, 3, and 4 work as generators of
this group as well.
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Example 3.2. Let H = {1, 3, 7, 9} be a group under multiplication modulo 10. The
group H is cyclic and can be generated by 3.

The element 3 can of course be written as 31 = 3. Then 32 = 3 · 3 (mod 10) = 9
(mod 10). Similarly, 33 = 3 · 3 · 3 (mod 10) = 7 (mod 10). Finally, 34 = 3 · 3 · 3 · 3
(mod 10) = 1 (mod 10). As shown, each element in H can be written as a power of
3, meaning H is a cyclic group that can be generated by 3.

Definition 3.2 (Subgroup). Let H be a subset of a group G. Then H is a subgroup
of G if H can be a group with the same operation as G.

Definition 3.3 (Normal Subgroup). Let H be a subgroup of G. H is a normal
subgroup of G if, for each a ∈ G, a−1Ha = H.

Moving on, there are a few common groups that are important to know.

Definition 3.4 (Symmetric Group). The symmetric group, denoted Sn, is the group
of all permutations of n objects.

This concept appears in many scenarios. For example, imagine you have 10 books
on a bookshelf. The group describing all of the different ways to arrange the 10 books
is S10. An interesting property of these permutations is that they can be written as
a combination of cycles flipping only two elements. If a permutations can be written
as a combination of an odd number of these cycles, it is called an odd permutation.
Similarly, if it can be written as a combination of even number of these cycles it is
called an even permutation.

Definition 3.5 (Alternating Group). The alternating group, denoted An, is the
subgroup of Sn containing only even permutations.

Example 3.3. Let X be the set {1, 2, 3}. We can use this set to visualize S3 and
A3.

S3 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)},
A3 = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

Definition 3.6 (Homomorphism). Let ϕ be a function from a group G1 to a group
G2. We call ϕ a homomorphism if it preserves the group operation, meaning

ϕ(a ∗ b) = ϕ(a) ∗ ϕ(b)
for all a, b ∈ G1.

Definition 3.7 (Isomorphism). An isomorphism is a homomorphism that is one to
one and onto.

Definition 3.8 (Automorphism). An automorphism is a isomorphism of a group
to itself: ϕ : G → G.

Definition 3.9 (Kernel). Let G1 and G2 be groups. Additionally, let there be a
homomorphism ϕ : G1 → G2. The kernel, denoted ker(ϕ), is the set of all elements
in G1 that map to the identity element of G2.
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Definition 3.10 (Direct Product). The direct product between two groups G1 and
G2, denoted

G1 ×G2,

is the group of all ordered pairs (g1, g2), g1 ∈ G1, g2 ∈ G2 under the operation
(g1, g2) ∗ (g′1, g′2) = (g1 ∗ g′1, g2 ∗ g′2).
Definition 3.11 (Semi-Direct Product). The semi-direct product between two sub-
groups G1 and G2, denoted

G1 ⋊G2,

is the group A = G1G2 where G1 ∩G2 = eA and G1 is a normal subgroup of A.

Example 3.4. Sn = An ⋊ C2

The group An is the group of all even permutations. The group C2 is the cyclic
group of order 2. This group has many realizations of it. Let’s look at the group
generated by the swapping of the first two elements of a set. The identity of this
group is the cycle that changes nothing, and the only other element is the one that
swaps the first two elements of a set. Keep in mind this group is C2. This group
either adds another 2-swap, or doesn’t. Since An contains all even permutations,
adding another 2-swap makes the permutation odd, and not adding one keeps it
even. That covers all possible permutations of n elements, which is Sn. Thus,
Sn = An ⋊ C2.

Definition 3.12 (Wreath Product). LetG be a group,X be the finite set {1, 2, 3, . . . t},
and H be a group acting on X. Let Gt denote the direct product of G with itself t
times. Then the wreath product of G and H is

Gt ≀H := Gt ⋊H,

where H acts on Gt through its action on X.

4. The Rubik’s Cube

Let’s begin by defining a notation for the moves of the Rubik’s cube. Let F
denote a 90 degree clockwise turn of the front side of the cube. Let B denote a 90
degree clockwise turn of the back side of the cube, viewed from the back side. Let
U denote a 90 degree clockwise turn of the top side of the cube, viewed from the
top. Let R denote the same turn of the right side, L for the left side, and D for the
bottom side.

Figure 1. Standard Move Notation, image from [Wan].
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Let’s also define slice moves M , E, and S:

Figure 2. Slice Moves, image from [Wan].

Now we can begin to look at the Rubik’s cube as a group. Let’s define the pieces
with three facets as corners, the pieces with two facets as edges, and the pieces with
one facet as centers. In the diagram below, the black pieces are corners, the white
pieces are edges, and the gray pieces are centers.

Figure 3. Edges, Corners, and Centers

Differentiating between the types of pieces is extremely important, as they are
never interchangeable. In other words, a corner can never be moved to the position
of an edge, and an edge can never be moved into the position of a corner. They
can be analyzed almost separately except for some constraints they must follow that
will be covered later.

Remark. The centers of the Rubik’s cube never move.

They may rotate with each move, but are never actually moved into a new posi-
tion, and their color never changes. The only moving pieces are edges and corners.
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Note that slice moves do not actually move the centers, because every slice move
can be thought of as turning two opposite sides, and then rotating the entire cube.
So, each slice move is composed of two standard moves, which do not move centers.

Now, in order to be able to reference each facet of the cube, let each corner be
referred to using three letters, and each edge referred to using two letters. To know
what each letter means, let the top face be U for up, the right face be R for right,
the left face be L for left, and back face be B for back, the bottom face be D for
down, and the front face be F for front. The first of the two or three letters is simply
the face the facet is on, and then the second letter or second two letters provide
information about where on that face the facet is. This is best understood through
examples. For these examples, refer to the diagram below, and imagine that you are
viewing the cube with the blue face on the front and the yellow face on top. Let’s
start with edges examples, then corners.

(1) The yellow facet of the blue and yellow edge can be referred to as UF
(2) The yellow facet of the red and yellow edge can be referred to as UR
(3) The red facet of the red and green edge can be referred to as RB (note that

green is opposite of blue on the standard Rubik’s cube)
(4) The blue facet of the blue and red edge can be referred to as FR

Figure 4. The Rubik’s Cube

Now that naming edges might be more understandable, here are some examples
of corners using the same diagram.

(1) The yellow facet of the yellow, red, and blue corner is UFR
(2) The blue facet of the blue, white, and red corner is FDR (note that white is

opposite of yellow, and is the bottom face here)
(3) The red facet of the yellow, red, and blue corner is RUF
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Now that you know more about how we can describe the cube, let’s move into
defining the Rubik’s cube as a group. Let’s differentiate between the Illegal Rubik’s
Cube Group and the Legal Rubik’s Cube Group.

Definition 4.1 (Illegal Rubik’s Cube Group). The Illegal Rubik’s Cube Group is
the set of all possible permutations of the corner and edge pieces of the cube given
that one is allowed to take it apart and place each piece where desired.

Remark. The Illegal Rubik’s Cube Group satisfies all of the conditions of a group,
and is therefore a group, not merely a set.

Definition 4.2 (Legal Rubik’s Cube Group). The Legal Rubik’s Cube Group is
the set of all possible permutations of the cube achieved solely through turning the
faces of the cube.

Remark. The Legal Rubik’s Cube Group also satisfies all of the conditions of a
group, and is therefore a group, not merely a set.

Remark. The Legal Rubik’s Cube Group is a subgroup of the Illegal Rubik’s Cube
Group.

Proof. Any turn on the cube can also be accomplished by taking apart the cube and
placing each piece on the turned side 90 degrees away from its original position, so
every permutation of the cube in the Legal group is also in the Illegal group. ■

To begin to delve into these groups, let’s start with the larger Illegal Group.

Proposition 4.1. The order of the Illegal Rubik’s Cube Group is 212 · 12! · 38 · 8! =
519, 024, 039, 293, 878, 272, 000.

Proof. Since there are 12 edges on the cube, there are 12! different ways to permute
them. After permutation, each edge has 2 orientations. So, the total number of
positions of the edges is 12! · 212. For corners, there are 8, so there are 8! ways
to permute them. A corner can be rotated 3 times before it returns to its original
position, so each of the 8 corners has 3 possible orientations. This means there are
a total of 8! · 38 ways to permute the corners. Thus the total possible permutations
of the Illegal Rubik’s Cube Group is 12! · 212 · 8! · 38. ■

Now that we have shown the order of this group, let’s define its group structure
using the same logic from calculating the order.

Proposition 4.2. The Illegal Rubik’s Cube is (C12
2 ≀ S12)× (C8

3 ≀ S8).

Proof. Since there are 12 edges, on the cube, we can write the ways to position
them as the set S12. There are two ways to orient each edge, which can be written
mathematically as the set C2, or, for all 12 edges, C

12
2 . To factor in both, we can write

C12
2 ≀S12. Similarly, for the 8 corners, we can write the ways to position them as S8.

There are 3 unique orientations of each corner, which can be represented by C3, or
C8

3 for all 8 corners. We know that we must describe all of the permutations of both
the edges and corners in the Illegal group, so we can write this as a direct product
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of the group containing all of the edge permutations and the group containing all of
the corner permutations, which is (C12

2 ≀ S12)× (C8
3 ≀ S8). ■

Now, in order to move from this definition to a definition of the Legal Rubik’s
Cube Group, we must find a way to filter out all of the positions unreachable by
regular turns. There are many different examples of such positions. For example,
if a cube is reassembled so that all pieces are solved except a single edge is flipped,
shown in Figure 5, there is no way to solve this through regular turns. Also, if one
corner is twisted while the rest of the cube is solved, shown in figure 6, there is no
way to solve this through regular turns either. But how do we know?

Figure 5. One Edge Flip

Figure 6. One Corner Twist
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In order to mathematically delineate between solvable and unsolvable positions,
a fundamental theorem is needed. Before getting to this theorem, we must prove
three important lemmas.

Lemma 4.3. It is possible to swap any two corners and two edges solely through
turns.

Proof. Let g ∈ G be the sequence of movesRUR−1F−1RUR−1U−1R−1FR2U−1R−1U−1.
This sequence of moves swaps the UR and UF edge as well as the UFR and UBR
corners, as shown in the diagram below.

Figure 7. UF and UR swapped, and UFR and UBR swapped

In order to swap any two edges and two corners, one can use a sequence of moves
to set up the cube into the position where the two edges that need to be flipped
are in the UF and UR position, and the two corners are in the UFR and UBR
position, then execute the sequence of moves above, then undo the sequence of
setup moves. ■

Lemma 4.4. Any two edges on the cube can be flipped solely through turns.

Proof. Let g ∈ G be a sequence of moves that flips two edges, UF and UR. The
move sequence g = R−1FRU−1M−1U2MU−1SR−1F−1RS−1 accomplishes this job,
resulting in this position:
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Figure 8. UF and UR flipped

Now, in order to flip any two edges, simply hold the cube so that one flipped
edge is in the UF position. There are countless ways to flip this edge and one other
around the cube, but the easiest way to comprehend is to simply move the other
flipped edge to the UR position in a way that does not effect the UF edge, then
execute the sequence of moves g, then undo the moves used to get the second flipped
edge to UR. This flips any two edges on the cube. ■

Lemma 4.5. It is possible (solely through turns) to rotate any two corners such
that one is rotated clockwise and the other counterclockwise.

Proof. Let g ∈ G be the set of movesR−1DRD−1R−1DRU−1R−1D−1RDR−1D−1RU .
This move set rotates the UFR corner clockwise and the UFL corner counterclock-
wise. In other words, it solves this position of the cube:

Figure 9. UFR and UFL Corner Twist
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Knowing that this position is solvable, it follows that any two opposite direction
corner twists can be solved. Simply hold the cube so that the corner that needs
to be twisted clockwise is in the UFR position, then turn the sides of the cube to
move the second corner into the UFL position, then execute the sequence of moves
to twist UFR clockwise and UFL counterclockwise, and then undo the moves used
to place the second corner in the UFL position. ■

Now that these lemmas have been proven, let’s move on to the theorem.

Theorem 1 (First Fundamental Theorem of Cube Theory [Dan14]). Let v ∈ C8
3 ,

r ∈ S8, w ∈ C12
2 , and s ∈ S12 be the four variables that describe a position of the

cube. The position is achievable solely through turns if and only if:

(1) sgn(s) = sgn(r)
(2) w1 + w2 + w3 + . . .+ w12 = 0 (mod 2)
(3) v1 + v2 + v3 + . . .+ v8 = 0 (mod 3)

Proof. To start, we need to show that conditions 1, 2, and 3 are satisfied by each
turn of the Rubik’s Cube.

The first constraint is satisfied because each turn of a face is a 4-cycle of the corners
and of the edges, which is an odd permutation. So, each turn is a permutation of
the corners and edges of the same parity, meaning the parities are always equal.

The second constraint ensures that there’s always an even number of flipped edges.
To prove that this is always true, let the facets of each edge be labeled arbitrarily
with a 0 and a 1, such that one facet of the edge is labeled 1 and the other is labeled
0. If a turn of the cube moves a 0 onto a 1 or a 1 onto a 0, we can consider that
edge as being flipped. If a 1 moves to a 1 or a 0 moves to a 0, we can consider the
edge as not getting flipped. With every move, since there are 4 edges being cycled,
there will be a total of 0, 2, or 4 edge flips. Thus, with any sequence of moves,
w1 + w2 + w3 + . . .+ w12 = 0 (mod 2).

The third constraint serves a similar purpose, but for the corners. We have three
possible orientations of the corners. Let’s label each facet of the corners with a 0, 1,
or 2, so that each corner has one facet with each labeling. With each move of the
cube, if a number increases by 1 (mod 3), we can consider it a clockwise twist, and
if it increases by 2 (mod 3), we can consider it a counterclockwise twist, and if it
increases by 0 (mod 3), it doesn’t change orientation. Imagine one turn of the cube.
Let a1, a2, a3, and a4 be the numbers on the facets of the corners that are on the
face being turned. With each corner being moved to the position adjacent to it, the
total change in the numbers would be

(a4 − a3) + (a3 − a2) + (a2 − a1) + (a1 − a4) = 0 (mod 3).

This gives the third constraint in this theorem.
Since this theorem is an if and only if statement, the converse must also be proven.

The converse is that, if all three conditions of the theorem are true for a position,
that position is solvable. Through lemmas 4.3, 4.4, and 4.5, we know that we can
flip any two edges, twist any two corners in opposite directions, and swap any two
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edges with each other as long as we also swap two corners. These three operations
of the cube are enough to solve any position. In other words, the Legal Rubik’s
Cube Group is generated by these three operations. ■

Moving on, we have the Second Fundamental Theorem of Cube Theory, which
outlines criteria for determining if a specific permutation is achievable through turns.

Theorem 2 (The Second Fundamental Theorem of Cube Theory [Dan14]). A change
in the pieces position is achievable through turns if and only if:

(1) The total number of even edge and corner cycles is even.
(2) There is an equal number of corners rotated clockwise and corners rotated

counterclockwise.
(3) The number of reorienting edge cycles is even.

A proof can be found in [Dan14].
Now that we have outlined the most fundamental theorems, we have conditions to

describe the Legal Rubik’s Cube Group by viewing the Illegal Group and applying
our restrictions.

By the second condition in the First Fundamental Theorem, the parity of the
edges must be even. In other words, if we know the position of 11 edges, then there
is only one possibility for the last one. So, instead of using C12

2 to represent the edge
positioning, we can use C11

2 . This is because the orientations of the corners can be
expressed with only 11 data values as the 12th becomes obsolete. Similarly, due to
the third condition of the First Fundamental Theorem, if there are 7 corners with a
known position, there is only one option for the placement of the last corner. Thus,
we can reduce the C8

3 to C7
3 . So, we are now at an intermediate step, let’s call it

G0 = (C11
2 ⋊S12)× (C7

3 ⋊S8). This only factors in the second two constraints of the
first fundamental theorem, but does not factor in the first, so it is incomplete. That
is why this group is an intermediate step; we must first factor in the first constraint
before reaching the Legal group. This first constraint tells us sgn(s) = sgn(r).
In other words, the parity of the edge permutation must be equal to the parity of
the corner permutation. This means that if we know that a certain position’s edge
parity, we also know its corner parity. This further reduces the group by a factor of
C2. However, we cannot simply write G = (C10

2 ⋊ S12) × (C7
3 ⋊ S8). The factor of

C2 needs to be removed from the corners and edges equally, not just the edges. So,
we must deal with this condition in another way:

Proposition 4.6. Let (v, r, w, s), v ∈ C8
3 , r ∈ S8, w ∈ C12

2 , and s ∈ S12 be four vari-
ables that define a position of the cube. Additionally, let’s define a homomorphism
ϕ : G0 → {−1, 1}, where

ϕ(v, r, w, s) = sgn(r)sgn(s).

Then the Legal Rubik’s Cube Group is G = ker(ϕ). [Dan14]

Proof. Think of this as splitting G0 in half, as half of the group G0 maps to 1 and
half to −1. To define the legal group, we want to keep the half of G0 with equal
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parity. The kernel of ϕ is the group of all elements of G0 that map to the identity
element of {−1, 1}, and the identity element of {−1, 1} is 1. Note that if the parity
of the corners is equal to the parity of the edges, ϕ(v, r, w, s) = 1, meaning that
ker(ϕ) is the group of all elements of G0 that have equal parity of edge and corner
permutations, which now takes into account all 3 constraints of the first fundamental
theorem. Thus, we now have a group G that consists of all elements in the illegal
group that are achievable through turns of the faces of the cube. In other words,
we have our legal group. ■

Proposition 4.7. The order of the Legal Rubik’s Cube Group is |G| = 1
2
· |G0| =

210 · 12! · 37 · 8! = 43, 252, 003, 274, 489, 856, 000.

Proof. Given G = H1 ×H2, we know that |G| = |H1| · |H2|. ■

That massive number is the total number of positions of the Rubik’s cube. This
number is exactly 1

12
of the order of the Illegal Rubik’s Cube Group, which means:

Corollary 4.8. If one took apart and reassembled the cube, there is a 1
12

chance of
it being solvable solely through turns.

Proof. Taking apart and reassembling the cube is equivalent to choosing a random
element in the the Illegal Rubik’s Cube Group. Since the Legal group is a subgroup
of the illegal group, and the order of the legal group is 1

12
that of the illegal group,

there is a 1
12

chance that a random element in the illegal group is also in the legal
group. ■

One can observe that the Legal Rubik’s Cube Group is non-abelian. Imagine a
cube in the solved state, with white on the top and green on the front. Performing
the moves RU leaves the position in Figure 10, whereas the moves UR leave the
position in Figure 11, which are clearly not the same. Thus, this group is non-
abelian.

Figure 10. RU
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Figure 11. UR

4.1. Commutators. A commutator is an important part of group theory that mea-
sures commutativity. While commutators have many applications, they are partic-
ularly relevant to the Rubik’s cube, as they were how people first figured out how
to solve the cube when it was released. On the cube, the commutator can cycle
3 pieces without affecting any other pieces. The immediate benefit of this is that,
once a piece is solved, it can be left in its solved state while other pieces are being
solved, thus making the entire cube solvable. Commutators’ ability to affect only 3
pieces at a time make them particularly useful in the world of solving a cube blind-
folded. Trying to do so by memorizing the colors of the cube and attempting to
solve it as one would without a blindfold is nearly impossible. Instead, top blindfold
solvers encode the solution of the cube in letters and solve it using commutators.
To uncover this powerful tool, let’s look at what a commutator is in group theory.

Definition 4.3 (Commutator). Let a, b ∈ G where G is a group. A commutator is
the product a ∗ b ∗ a−1 ∗ b−1.

To begin to dissect this, notice that if the last two elements in the product were
reversed, we would get the identity element for every a and b. However, the change
in order means that we only get the identity in special cases of a and b. This also
means we can have a sense of how commutative a group G is by how close or far we
are from the identity element.

In terms of the Legal Rubik’s Cube Group, a, b ∈ G denote sequences of moves.
For a commutator on the cube, first the sequence of moves a is executed, then the
sequence of moves b, then the inverse of a is executed, and then the inverse of b.

Example 4.1. Take the simple commutator that cycles the three edges UF, FR,
and LF. Let G be the Legal Rubik’s Cube group, and a, b ∈ G. We can define
a = RUR−1 and b = E. Note that this means a−1 = RU−1R−1 and b−1 = E−1. So,
the commutator aba−1b−1 = RUR−1ERU−1R−1E−1. This sequence of moves cycles
the three edges UF, FR, and LF.
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Example 4.2. Let’s look at the commutator that cycles the three corners UFR,
UFL, and RDF. Take a, b ∈ G such that a = R−1D−1R, b = U−1. So, the commu-
tator aba−1b−1 = R−1D−1RU−1R−1DRU , which cycles three corners.

5. The 2× 2× 2 Rubik’s Cube

After learning some of the fascinating results that can be found from analyzing
the 3 × 3 × 3 Legal Rubik’s Cube Group, one might wonder how these concepts
apply to other Rubik’s puzzles. To begin, let’s take a look at the 2× 2× 2 Rubik’s
cube. To approach representing it as a group, we must consider that the 2× 2× 2
Rubik’s cube only has corners. Unlike on a 3 × 3 × 3 Rubik’s cube, there are no
pieces that do not move. There are no centers. Thus, we will have to worry about
overcounting. Imagine a certain permutation of the cube. If you then rotate the
entire cube without turning any of the sides, you get a permutation that is not any
different from the first one. So, in counting, we must avoid this.

Remark. For every permutation, there are 6 · 4 = 24 different appearances of that
permutation in the group of all 2× 2× 2 permutations.

This means, if we want to only count unique 2 × 2 × 2 permutations, we must
divide the total number by 24. Another way to deal with this is to fix a corner in
place, and not allow it to move at all, including any re-orientations (twistings) of it.
We keep it completely fixed, and that way we are able to view the permutations of
the other 7 corners relative to that fixed corner. Now this corner takes the place of
centers on a 3 × 3 × 3 cube, in that it acts as a reference for the position of other
pieces. This is the same as saying we look at the subgroup of the cube generated
by turning 3 adjacent sides, as turning 3 adjacent sides leaves exactly one corner
unaffected.

Proposition 5.1. The Illegal 2× 2× 2 Group is C7
3 × S7.

Proof. The setup outlined above gives 7 corners to permute, as the 8th is fixed. Each
of the 7 corners then has 3 different orientations. Mathematically, this can be written
as C7

3 × S7, where the S7 describes the position of corners disregarding orientation,
and the C7

3 represents the 3 possible orientations of the 7 moving corners. ■

Proposition 5.2. The order of the 2 × 2 × 2 illegal group is |C7
3 × S7| = 37 · 7! =

11, 022, 480.

Proof. This follows from the previous proposition and the fact that |G1 × G2| =
|G1| · |G2| for any two groups G1, G2. ■

To move from the 2× 2× 2 illegal group to the legal group, we can consider the
First Fundamental Theorem of Cube Theory. However, this theorem applies to the
3× 3× 3 Rubik’s cube, so we must change our scope to make it compatible. Since
we fix one corner of the 2 × 2 × 2 in place, the overall cube will also have a fixed
orientation like the 3 × 3 × 3 with its centers. Additionally, the 2 × 2 × 2 can be
visualized as a 3× 3× 3 with irrelevant edges. In other words, the rules pertaining
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to the corners still apply to the 2 × 2 × 2 cube, but the rules of edges need not be
considered.

Proposition 5.3. The 2× 2× 2 legal group can be defined as C6
3 × S7.

Proof. By constraint 3 in Theorem 1, the sum of the orientations of each corner must
end in the original position, or in mathematical terms, v1 + v2 + v3 + . . . + v8 = 0
(mod 3). This means that if we were given the position and orientation of 6 corners
(and that of the fixed corner), we know the position and orientation of the last one,
and thus it is no longer new information, and we can reduce the illegal group by a
factor of C2 in order to achieve the legal group of C6

3 × S7. ■

Proposition 5.4. The order of the 2 × 2 × 2 legal group is |C6
3 × S7| = 36 · 7! =

3, 674, 160.

Proof. This follows from the previous proposition and the fact that |G1 × G2| =
|G1| · |G2| for any two groups G1, G2. ■

This means there are 3, 674, 160 possible positions of the 2× 2× 2 cube.

5.1. The two-generator group. The two-generator group of the 2× 2× 2 is the
subgroup of the legal group that is generated through turning only two adjacent
sides. This leaves two corners unchanged, instead of one. For example, if you
turned only the right face with R moves or R−1 moves and the up face with U and
U−1 moves, the bottom left two corners stay in the same position. This subgroup
can be written as G = ⟨R,U⟩ as it is generated by these two moves. Now, let’s look
at a subgroup H of this group, where H looks at all of the positions in G that only
change the orientation of the corners, but not their actual position. In other words,
we look at all of the possible ways to rotate some corners using R,R−1, U and U−1.

Lemma 5.5. H is an abelian, normal subgroup of G of order 35.

Proof. First, think of a corner’s orientation as the group Z3 under addition. Let’s
say a corner’s solved state is the number 0, then if it gets rotated clockwise its
number increases by 1 (mod 3), and if it gets rotated counterclockwise its number
decreases by 1 (mod 3). This way, using a simple integer, we can represent the
corner’s orientation. Since addition modulo 3 is commutative, then H is abelian.
To prove normality of the H, let h ∈ H and g ∈ G. Note that g is some sequence
of moves that scrambles the cube, and g−1 then solves it from that scrambled state.
Also, note that h is some sequence of moves that only affects the orientation of
the corners, as it is part of H. So, the overall effect of the moves ghg−1 would
scramble the cube, then change the orientation of some corners, then resolve it but
with some corners’ orientations being off. Thus, the only change in the end was
with the orientations, meaning ghg−1 ∈ H. Therefore, H is a normal subgroup of
G. To look at the order, we must consider that there are 6 corners that could have
any of 3 orientations. Now, as mentioned earlier, the rules of the first fundamental
theorem pertaining to the corners still apply for the 2×2×2 cube. So, by constraint
3, v1 + v2 + v3 + . . .+ v6 = 0 (mod 3). This means that, if we know the orientation
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of 5 corners, the last is already determined from that information. Therefore, the
orientation of 5 of the corners is enough information to fully describe each h ∈ H,
meaning the order of H is |H| = 35. ■

The subgroup H also has some other more interesting properties. Delving into
them requires knowledge of not only groups, but fields, and other mathematical
concepts not discussed in this paper. Further discussion of the subgroup H can be
found at [Ben].

6. A Final Note on the 3× 3× 3 Rubik’s Cube

Another fascinating result that I would like to end on is that of the minimum
number of moves needed to solve any position of the Rubik’s cube. This was proven
by [RKDD13] to be 20 moves in the half turn metric which is 26 moves in the quarter
turn metric. Both of these metrics count 90 degree turns of a face as one move, but
the half turn metric counts a 180 degree turn of a face as one move whereas the
quarter turn metric counts it as two moves. Most use the half turn metric and I
would encourage the reader to do the same, as it simply measures any turn of one
face as one move.

While I will not go through the full proof of this fascinating result, I will both
encourage the reader to read its proof at [RKDD13] and provide an overview of
their method. The general idea is that they wanted to put every position of the
Rubik’s cube in the computer and let the computer calculate the minimum number
of moves to solve each position. However, the total of 43, 252, 003, 274, 489, 856, 000
positions of the cube is simply too large for the computer. The way to fit the entire
cube into the computer involves defining a subgroup H of the Legal Rubik’s Cube
Group, H = ⟨U,D,R2, F2, L2, B2⟩. The 2, 217, 093, 120 cosets of this subset, all
of order 19, 508, 428, 800, cover the entire legal group. Note that the product of
these two numbers is the total number of positions of the cube, so this does cover
all positions. They then removed repeated positions and were able to cut down
the subgroups enough to the point where the computer was enough to prove this
amazing result of 20 moves.

7. Further Questions

Although the 3×3×3 Rubik’s cube has been explored in depth, many other types
of Rubik’s cubes have not. Other n×n×n Rubik’s cubes for n ∈ Z, n > 3 are much
less explored, and there is a lot more to be found out about them. Additionally,
non cube-shaped Rubik’s cubes such as the pyraminx, megaminx, square-1, clock,
skewb, ivy cube, Redi cube, the 3 × 3 × 2 cube, the 3 × 3 × 1 cube, and so on,
provide interesting grounds for exploration. For example, what are the illegal and
legal groups of these puzzles? What is the minimum number of moves to return
these puzzles to the solved state from any position? What is the order of the illegal
and legal groups of these puzzles? What is the element of highest order in these
groups? There is a lot to discover.
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Additionally, even the original 3 × 3 × 3 Rubik’s cube has more to offer. A
fascinating unanswered question pertaining to this cube is that of the minimum
number of moves between two different positions of the cube. While many have
pondered on the question of the minimum number of moves needed to take a cube
from a scrambled state to the solved state, it is not yet known how to calculate the
minimum number of moves between two arbitrary permutations of the cube in the
legal group. It is left to the reader to explore.
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