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Euclid’s Postulates

Postulates of Euclidean Geometry

1 A straight line can be drawn between any two points.

2 A finite straight line can be extended into a straight line.

3 A circle can be drawn with any center and any radius.

4 All right angles are equal.

5 (parallel postulate) If a straight line falls on two straight lines
in such a manner that the interior angles on the same side are
together less than two right angles, then the straight lines, if
produced indefinitely, meet on that side on which are the
angles less than the two right angles.
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The Parallel Postulate

Parallel Postulate (Euclid)

Through a point outside a given infinite straight line there is only
one line parallel to the given line.

Parallel Postulate (Spherical)

Through a point outside a given infinite straight line there are no
lines parallel to the given line.

Parallel Postulate (Hyperbolic)

Through a point outside a given infinite straight line there are an
infinite number of lines parallel to the given line.
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Spherical and Hyperbolic Duality

1 The sum of the angles of a
triangle is greater than π.

2 Constant positive curvature
of 1.

1 The sum of the angles of a
triangle is less than π.

2 Constant negative curvature
of −1.
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Hyperbolic n-space
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Formal Definitions

Definition 2.1

Euclidean n-space denoted with En is an inner product space of Rn

with inner product · such that

x · y = x1y1 + · · · xnyn

where x , y ∈ R.

Definition 2.2

Spherical n-space is

Sn = {x ∈ Rn+1 : |x | = 1}

where |x | =
√
x · x .
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Lorentizan n-space

Definition 2.3

Let x , y ∈ R. The Lorentizan inner product is ◦ such that

x ◦ y = x1y1 + x2y2 + · · · − xnyn.

Now Rn equipped with this inner product is known as Lorentizan
n-space which is denoted by Rn−1,1.

Definition 2.4

The Lorentizan norm is

||x || =
√
x ◦ x .
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Hyperbolic n-space

1 If ||x ||2 = 0,

we have

x ◦ x = x2
1 + x2

2 + · · · − x2
n = 0

which is (n − 1) dimensional double cone.

2 ||x ||2 > 0 → x is outside the cone.

3 ||x ||2 < 0 → x is inside the cone.

Definition 2.5

Hyperbolic n-space is

Hn = {x ∈ Rn+1 : xn+1 > 0 and ||x ||2 = −1}.
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Hyperboloid Model

If ||x ||2 = −1,

we have

x2
1 + x2

2 + · · · − x2
n+1 = −1

which is hyperboloid of two sheets.
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Conformal Ball Model

The Map

If
Bn = {x ∈ En : |x | < 1},

then we consider the sterographic projection ζ : Bn → Hn defined
by

ζ(x) =

(
2x1

1− |x |2
, · · · , 2xn

1− |x |2
,

1 + |x |2

1− |x |2

)
which has an inverse

ζ−1(y) =

(
y1

1 + yn+1
, · · · , yn

1 + yn+1

)
.
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Conformal Ball Model (contd.)
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Conformal Ball Model (contd.)
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Projective Disk Model

The Map

If
Dn = {x ∈ Rn : |x | < 1},

we consider a gnomonic projection µ : Dn → Hn defined by

µ(x) =
x + en+1

|||x + en+1|||

with an inverse of

µ−1(x) =

(
x1

xn+1
, · · · , xn

xn+1

)
.
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Projective Disk Model (contd).
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Projective Disk Model (contd).
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Projective Disk Model (contd.)

Definition 3.1

An m-plane in Hn is the intersection of of Hn with a (m + 1)
dimensional vector subspace of Rn+1 made of vectors with
imaginary Lorentizan norms.

Theorem 3.2

A subset P ⊆ Dn has the property that µ(P) is a hyperbolic
m-plane if and only if P is the nonempty intersection of an
m-plane of Rn and Dn.
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Proof of Theorem 3.2

Proof.

1 Let Q be an m-plane of Hn and V is the (m + 1) dimensional
vector space.

2 Now notice that µ−1 is first a radial projection onto the
hyperplane L through en+1 and then a vertical translation of
−en+1.

3 The radial projection maps Q onto V ∩ L so Q maps onto

(U ∩ Cn) ∩ L = U ∩ (L ∩ Cn) = U ∩ (Dn + en+1)

where U ⊇ V is an (m + 1)-plane in Rn+1 and Cn is the n
dimensional cone.

4 We translate down and we are done. This process can easily
be reversed to convert P into a hyperbolic m-plane.

�



Euclidean, Spherical and Hyperbolic Geometry Hyperbolic n-space Different Models (X , G)-Manifolds Gluing Convex Polyhedra

Proof of Theorem 3.2

Proof.

1 Let Q be an m-plane of Hn and V is the (m + 1) dimensional
vector space.

2 Now notice that µ−1 is first a radial projection onto the
hyperplane L through en+1 and then a vertical translation of
−en+1.

3 The radial projection maps Q onto V ∩ L so Q maps onto

(U ∩ Cn) ∩ L = U ∩ (L ∩ Cn) = U ∩ (Dn + en+1)

where U ⊇ V is an (m + 1)-plane in Rn+1 and Cn is the n
dimensional cone.

4 We translate down and we are done. This process can easily
be reversed to convert P into a hyperbolic m-plane.

�



Euclidean, Spherical and Hyperbolic Geometry Hyperbolic n-space Different Models (X , G)-Manifolds Gluing Convex Polyhedra

Proof of Theorem 3.2

Proof.

1 Let Q be an m-plane of Hn and V is the (m + 1) dimensional
vector space.

2 Now notice that µ−1 is first a radial projection onto the
hyperplane L through en+1 and then a vertical translation of
−en+1.

3 The radial projection maps Q onto V ∩ L so Q maps onto

(U ∩ Cn) ∩ L = U ∩ (L ∩ Cn) = U ∩ (Dn + en+1)

where U ⊇ V is an (m + 1)-plane in Rn+1 and Cn is the n
dimensional cone.

4 We translate down and we are done. This process can easily
be reversed to convert P into a hyperbolic m-plane.

�



Euclidean, Spherical and Hyperbolic Geometry Hyperbolic n-space Different Models (X , G)-Manifolds Gluing Convex Polyhedra

Proof of Theorem 3.2

Proof.

1 Let Q be an m-plane of Hn and V is the (m + 1) dimensional
vector space.

2 Now notice that µ−1 is first a radial projection onto the
hyperplane L through en+1 and then a vertical translation of
−en+1.

3 The radial projection maps Q onto V ∩ L so Q maps onto

(U ∩ Cn) ∩ L = U ∩ (L ∩ Cn) = U ∩ (Dn + en+1)

where U ⊇ V is an (m + 1)-plane in Rn+1 and Cn is the n
dimensional cone.

4 We translate down and we are done. This process can easily
be reversed to convert P into a hyperbolic m-plane.

�



Euclidean, Spherical and Hyperbolic Geometry Hyperbolic n-space Different Models (X , G)-Manifolds Gluing Convex Polyhedra

(X ,G )-Manifolds



Euclidean, Spherical and Hyperbolic Geometry Hyperbolic n-space Different Models (X , G)-Manifolds Gluing Convex Polyhedra

Manifolds

Definition 4.1

An n-manifold is a Hausdorff space M such that for each point
x ∈ M, there exists an open neighborhood U of x such that U is
homeomorphic to an open set in En.

Circle

(Wikipedia)
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Geometric Spaces

Definition 4.2

For a metric space X , a geodesic arc is a distance preserving
function γ : [a, b]→ X . That is,

d1(x , y) = d2(γ(x), γ(y))

for all x , y ∈ [a, b] where d1 and d2 are metrics of R and X ,
respectively.

A geodesic line is a locally distance preserving function λ : R→ X .
That is, for each point a ∈ R, there is an r > 0 such that
x , y ∈ Br (a) implies that

d1(x , y) = d2(γ(x), γ(y))

where d1 and d2 are metrics of R and X , respectively.
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Geometric Spaces (contd.)

Definition 4.3

An n-dimensional geometric space is a metric space X such that

1 there exists a geodesic segment between any two points in X ,

2 every geodesic arc γ : [a, b]→ X can be extended into a
geodesic line λ : R→ X ,

3 there exists a continuous function ε : En → X and real r > 0
such that ε maps Br (0) homeomorphically to Br (ε(0)), and

4 X is homogeneous.

Examples

Hn is a geometric space where ε(0) = en+1 and

ε(x) = (cosh |x |)en+1 + (sinh |x |) x

|x |
for x 6= 0.
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4 X is homogeneous.

Examples

Hn is a geometric space where ε(0) = en+1 and

ε(x) = (cosh |x |)en+1 + (sinh |x |) x

|x |
for x 6= 0.
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(X ,G )-manifolds

Definition 4.4

Let X be a geometric space, let G be a group of similarities, and
let M be an n-manifold. An (X ,G )-atlas is set of homeomorphisms
from open connected subsets of M to open subsets of X

Φ = {φi : Ui → X}

such that

1 The {Ui} is an open cover of M and

2 If Ui and Uj overlap, then

φj ◦ φ−1
i : φi (Ui ∩ Uj)→ φj(Ui ∩ Uj)

agrees in neighborhood of each point with an element of G .
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(X ,G )-manifolds (contd.)

Definition 4.5

An (X ,G )-manifold M is an n-manifold M equipped with the
maximal (X ,G )-atlas for M.

Example

1 A Euclidean n-manifold is a (En, I(En))-manifold

2 A spherical n-manifold is (Sn, I(Sn))-manifold, and

3 A hyperbolic n-manifold is a (Hn, I(Hn))-manifold.
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Gluing Convex Polyhedra



Euclidean, Spherical and Hyperbolic Geometry Hyperbolic n-space Different Models (X , G)-Manifolds Gluing Convex Polyhedra

Convex Polyhedra

For this section, X = E 3, S3, or H3.

Definition 5.1

A subset C ⊆ X is called convex if for each pair of points x , y ∈ C
such that x and y are distinct and not antipodal when X = S3

there exists a geodesic segment between x and y contained in C .

Definition 5.2

A side of a convex set P is a nonempty, maximal, convex subset of
∂P. If P is nonempty, closed and for each x ∈ X , there is an open
neighborhood of x intersecting a finite number of sides of P (or P
is locally finite), we call P a convex polyhedron.
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Convex Polyhedra (contd.)

We can also define angles:

Definition 5.3

Let P be a polyhedron in X and let x ∈ P. The solid angle
subtended by P at x , is

ω(P, x) = 4π
Vol(P ∩ Br (x))

Vol(Br (x))

where r is less than the distance from x to some side not
containing P.
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Gluing

Definition 5.4

Let P be a finite collection of disjoint convex polyhedra in X and
let G be a group of isometries of X . A G-side-pairing for P is a
subset of G indexed by the set of all sides S of P

Φ = {gS : S ∈ S}

such that

1 there is a side S ′ ∈ S such that gS(S ′) = S ,

2 the isometries gS and gS ′ have the property that gS ′ = g−1
S ,

and

3 if S is a side of P ∈ P and S ′ is a side of P ′ ∈ P, then

P ∩ gS(P ′) = S .
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Gluing (contd.)

Definition 5.5

Let Φ be a G -side-pairing and let Π =
⋃

P∈P P. Two points x and
x ′ in Π are said to be paired, notated by ', if and only if there is a
side S containing x , and x ′ is in S ′, and gS(x ′) = x .

Two points x and y in Π are said to be related, notated by ∼, if
and only if x = y or there is a sequence x1, x2, ...xm such that

x = x1 ' x2 ' · · · ' xm = y .
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Gluing (contd.)

Definition 5.6

The quotient space Π/∼ is said to be the space obtained by gluing
polyhedra in P by Φ.

Definition 5.7

Let [x ] = {x1, x2, ..., xn} be a finite equivalence class. Let Pi be
the polyhedron in P that contains xi . The solid angle sum of [x ] is

ω[x ] =
n∑

i=1

ω(Pi , xi ).

Definition 5.8

A G -side-pairing Φ for P is proper if and only if each equivalence
class of Φ is finite and has a solid angle sum of 4π.
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Main Theorem

Theorem 5.9

Let G be a group of isometries of X and let M be a space obtained
by gluing together a finite collection P of disjoint convex polyhedra
in X by a proper G-side-pairing Φ. Then M is a 3-manifold with an
(X ,G )-structure.
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Thank you!

Thank you everyone, Simon, and Eric.
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