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Abstract. Hyperbolic geometry is one of the three main geometries also including Eu-
clidean and elliptical geometries. In this paper we focus on hyperbolic 3-manifolds and
explore the way we can construct them using convex polyhedra.
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1. Introduction

There are three main types of geometries: Euclidean, elliptical, and hyperbolic. Euclidean
geometry as the name suggests was formalized with 5 postulates or axioms in Euclid’s famous
Elements [ET93] which are:

(1) A straight line can be drawn between any two points.

(2) A finite straight line can be extended into a straight line.

(3) A circle can be drawn with any center and any radius.

(4) All right angles are equal.

(5) (parallel postulate) If a straight line falls on two straight lines in such a manner that
the interior angles on the same side are together less than two right angles, then the
straight lines, if produced indefinitely, meet on that side on which are the angles less
than the two right angles.

The first four postulates are simple and but the fifth seems unnecessarily complicated
and this is exactly what mathematicians thought from the moment Euclid published the
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Elements. It was not until 2000 years later that the independence of the fifth postulate was
shown by Eugenio Beltrami in 1868.

This denial of the parallel postulate is what ultimately led to the formation of non-
Euclidean geometry. Carl Friedrich Gauss was the first to stumble upon this. After trying to
prove the parallel postulate for 20 years, he found that changing it led to strange geometries
he called non-Euclidean geometry.

He specifically considered when the sum of the angles of a triangle is less than π and
after several years of investigating this new geometry, Gauss was convinced that there was
no inconsistencies. However he did not publish his results but this was later rediscovered
in the 1830s by Nikolai Ivanovich Lobachevsky [LP10] and János Bolyai who independently
formalized this theory so it was named “Bolyai-Lobachevskian geometry” which we now call
hyperbolic geometry.
Then in 1854, Bernhard Riemann gave a famous lecture where he created “Riemannian

Geometry” and discussed an infinite family of non-Euclidean geometries using his new ideas
like Riemannian metrics and Manifolds. The simplest of these non-Euclidean geometries is
elliptical geometry.

In this paper, we first start by going more into depth about these geometries and discuss the
duality between spherical and hyperbolic geometry. Then we formalize hyperbolic space and
discussing the conformal ball model and projective disk model. With the formal definition we
can talk about a special type of manifold called (X,G)-manifolds which is what a hyperbolic
3-manifold is. Finally, we finish the paper by proving that we can glue sides of convex
polyhedra to form these (X,G)-manifolds.

2. Spherical and Hyperbolic Geometry

There are two main non-Euclidean geometries: spherical and hyperbolic. (More generally,
the two main geometries should be elliptical and hyperbolic but we don’t consider the differ-
ence between spherical and elliptical space in this paper). One of the very beautiful things
is that there is a duality between spherical and hyperbolic geometry. For example consider
the parallel postulate: in spherical geometry, we have

Through a point outside a given line, there is no line parallel to the given line.

but in hyperbolic geometry, we have

Through a point outside a given line, there are infinitely many lines parallel to the given
line.

so hyperbolic geometry is essentially the opposite of spherical geometry.
Additionally, the sum of the angles of a triangle in spherical geometry is always greater

than π but a hyperbolic triangle has a sum less than π. However, the sum for a Euclidean
triangle is exactly π so we can some what think of Euclidean geometry as the middle ground
between spherical and hyperbolic. We can apply this duality to understand more about
hyperbolic geometry.

We know that the curvature of a hypersphere of radius r is 1/r2 which is always positive
so this means that a hyperbolic hyperplane has constant negative curvature. The simplest
object with this property is the saddle so we can think of the hyperbolic hyperplane as lots
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(a) Parallel lines in the Poincaré Disk
model

(b) Parallel lines in the Beltrami-Klein
model

Figure 1. Models of Hyperbolic space

of saddles glued together. However this is not the easiest object to visualize and it only gets
worst if we increase the number of dimensions. This is why mathematicians have made lots
models that map the hyperbolic plane to something easier to visualize 1.
First, there is the Beltrami-Klein model named after Eugenio Beltrami and Fleix Klein.

Here we talk about the 2-dimensional version but everything can be scaled up to higher
dimensions. This model maps the hyperbolic plane onto a disk D in the Euclidean plane.
The boundary ∂D is called the circle at infinity since these points are not on the hyperbolic
plane but the represent the imaginary “points” infinitely far away. They are called ideal
points and the points outside the disk are called ultra ideal points.
Lines in the hyperbolic plane are represented by chords in D so if L is chord, we can easily

see that there are infinitely many chords through an outside point P that don’t intersect L.
See Figure 1b. Now one advantage of this model is straight lines map to straight lines but
the Euclidean angles are not the same as the hyperbolic angles so the model is not conformal.
There is also the Poincaré disk model named after Henri Poincaré. To keep the angles

invariant, we can use this model. This model is similar to the Beltrami-Klein model in that it
maps the hyperbolic plain to a disk in the Euclidean plane and we use the same terminology.
However, lines in the hyperbolic plane map to arcs of circles that are orthogonal to ∂D as
shown in Figure 1a. Like the Beltrami-Klein Model, we can see in this figure that there is an
infinite number of lines parallel to a line. As mentioned before, the advantage of this model
is that it is conformal but a disadvantage is that distances are greatly distorted.

3. Hyperbolic n-space

In this section, we formally define hyperbolic n-space, Hn. Before we go into this, we must
first define Euclidean and spherical space.

1Lots of these models can be found at [Rat06] and [Thu80].
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Definition 3.1. Euclidean n-space denoted with En is an inner product space of Rn with
inner product · such that

x · y = x1y1 + · · ·xnyn
where x, y ∈ R.

Definition 3.2. Spherical n-space is

Sn = {x ∈ Rn+1 : |x| = 1}

where |x| =
√
x · x.

Now there are lots of ways we can define hyperbolic space. We can call it the space
that has constant negative curvature, the space the follows the modified parallel postulate,
etc. We can also define it through models of it but we can see in the previous two models
that something is always distorted. The problem is that these models map Hn → En and
distortion was proven to be inevitable when mapping to Euclidean space by David Hilbert’s
theorem in [Hil33]. Therefore, to get around this we must work outside of En.

Definition 3.3. Let x, y ∈ R. The Lorentizan inner product is ◦ such that

x ◦ y = x1y1 + x2y2 + · · · − xnyn.

Now Rn equipped with this inner product is known as Lorentizan n-space which is denoted
by Rn−1,1.

We can define a norm:

Definition 3.4. The Lorentizan norm is

||x|| =
√
x ◦ x.

This norm can be zero, positive, or imaginary. When the ||x||2 = 0, we have

x ◦ x = x21 + x22 + · · · − x2n = 0

so x is on the a (n− 1) dimensional cone so if ||x||2 > 0, then x is outside the cone and x is
inside the cone when ||x||2 < 0.
Going back to the duality between spherical and hyperbolic space, we know that the

hypersphere with radius r in Rn+1 has a constant curvature of 1/r2. Since hyperbolic and
spherical space are opposites, hyperbolic space should have negative curvature and the only
way to make 1/r2 negative is if r is imaginary. We cannot usually have an imaginary radius
in Euclidean space but we can in Lorentzian space.

Definition 3.5. Hyperbolic n-space is

Hn = {x ∈ Rn+1 : xn+1 > 0 and ||x||2 = −1}.

When ||x||2 = −1, we have

x21 + x22 + · · · − x2n+1 = −1

so when xn+1 > 0, then x is on the positive sheet of a (n − 1) dimensional hyperboloid of
two sheets. This is why this model is named the hyperboloid model.

With this, we can formally talk about the Beltrami-Klein Model and the Poincaré Disk
Model. We start with the Poincaré Disk model also known as the conformal ball model.



HYPERBOLIC 3-MANIFOLDS AND THEIR CONSTRUCTIONS 5

3.1. Conformal Ball Model. First we define the unit ball

Bn = {x ∈ En : |x| < 1}.
Now we embed this ball in Rn+1 by identifying Rn as Rn × {0}. Next, consider a point
x ∈ Bn and the ray from −en+1 through x. This ray will pass through one and only one
point in Hn that we call π(x) where π : Bn → Hn is a stereographic projection.

Since π(x) is on the line in the direction x+ en+1, we have

π(x) = x+ s(x+ en+1)

for some scalar s. Writing this out explicitly gives us

π(x) = (x1 + sx1, · · · , xn + sxn, s)

so we can use the condition ||π(x)||2 = −1 to get

x21(1 + s)2 + · · ·+ x2n(1 + s)2 − s2 = −1

so
(1 + s)2|x|2 − s2 = −1 =⇒ (s+ 1)2|x|2 = s2 − 1 = (s+ 1)(s− 1).

Since s must be positive, we can divide both sides by s+ 1 giving us

s =
1 + |x|2

1− |x|2
.

Explicitly,

π(x) =

(
2x1

1− |x|2
, · · · , 2xn

1− |x|2
,
1 + |x|2

1− |x|2

)
which has an inverse of π−1 : Hn → Bn where

π−1(y) =

(
y1

1 + yn+1

, · · · , yn
1 + yn+1

)
.

This is the map we use to model hyperbolic space.
Now from this projection, we can clearly see that lines in Hn will be curves in Bn and that

angles will be invarient. Additionally, notice that when x ∈ ∂Bn, the ray is an asymptote of
the hyperboloid which is why we consider these points at “infinity.”

3.2. Projective Disk Model. The Beltrami-Klein also has another name: the projective
disk model. Like before define the space we are projecting from: the unit disk

Dn = {x ∈ Rn : |x| < 1}.
Note that Dn and Bn contain the same points but mathematicians create a distinction
because they define different metrics on Dn and Bn. We shall keep the change in notation
to highlight the difference of the two models.

Again we can embed Dn in Rn+1 by identifying Rn as Rn × {0}. Now in this model, we
consider a gnomonic projection µ : Dn → Hn. If we have a point x ∈ Dn, we vertically
translate it until xn+1 = 1 and then we radially project it onto Hn. Therefore we have,

µ(x) =
x+ en+1

|||x+ en+1|||
so the inverse µ−1 : Hn → Dn is

µ−1(x) =

(
x1
xn+1

, · · · , xn
xn+1

)
.
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Let us prove that hyperbolic lines are represented by chords in Dn or more generally, an
m-plane in Hn is represented by an m-chord in Dn.

Definition 3.6. An m-plane in Hn is the intersection of of Hn with a (m+ 1) dimensional
vector subspace of Rn+1 made of vectors with imaginary Lorentizan norms.

Theorem 3.7. A subset P ⊆ Dn has the property that µ(P ) is a hyperbolic m-plane if and
only if P is the nonempty intersection of an m-plane of Rn and Dn.

Proof. Let Q be an m-plane of Hn. This means that Q is the intersection of Hn and a
(m+1)-dimensional vector subspace V of Rn+1 made of vectors with imaginary norms. Now
notice that µ−1 is first a radial projection onto the hyperplane L through en+1 and then a
vertical translation of −en+1. The radial projection maps Q onto V ∩ L but since V only
contains x such that ||x||2 < 0, we know that Q maps onto

(U ∩ Cn) ∩ L = U ∩ (L ∩ Cn) = U ∩ (Dn + en+1)

where U ⊇ V is an (m + 1)-plane in Rn+1 and Cn is the n dimensional cone {x ∈ Rn+1 :
||x|| = 0}. Therefore, when we translate the intersection down, we see that µ−1(A) is a
nonempty intersection of an m-plane of Rn and Dn. This process can easily be reversed to
convert P into a hyperbolic m-plane. ■

Corollary 3.8. Lines in H2 are represented by open chords of D2.

Proof. A line in H2 is just a 1-plane in H2 so µ−1 of the line, by Theorem 3.7, is the
intersection of a 1-plane of Rn and Dn which is a chord. ■

4. (X,G)-Manifolds

In this section, we define (X,G)-manifolds and discuss how to create them with convex
polyhedra.

Definition 4.1. An n-manifold is a Hausdorff space M such that for each point x ∈ M ,
there exists an open neighborhood U of x such that U is homeomorphic to an open set in
En.

Example. Let us prove that a circle, S1 = {x ∈ R2 : |x| = 1}, is a 1-manifold. First we
define the topology on S1 as the subspace topology of R2. Now we can see that S1 must be
Hausdorff since R2 is Hausdorff.
Let x ∈ S1 such that x2 > 0. For these points, we consider the neighborhood U = {x ∈

S1 : x2 > 0} which we can easily see is open. Now we apply the projection map, which is a
homeomorphism, π : R2 → R defined by π(x) = x1 to U to get

π(U) = (−1, 1)

which is open in R. We can essentially do the opposite for points where x2 < 0.
The only two points we are missing are (1, 0) and (−1, 0). We cover these points with

open neighborhoods U = {x ∈ S1 : x1 > 0} and V = {x ∈ S1 : x1 < 0}, respectively. Now
we apply the projection map π′ : R2 → R defined by π′(x) = x2 to U and V to get open sets
in R.

Now we can make give manifolds more structure by making open sets in the manifold
homeomorphic to a general geometric space.
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Definition 4.2. For a metric space X, a geodesic arc is a distance preserving function
γ : [a, b] → X. That is,

d1(x, y) = d2(γ(x), γ(y))

for all x, y ∈ [a, b] where d1 and d2 are metrics of R and X, respectively.
A geodesic line is a locally distance preserving function λ : R → X. That is, for each

point a ∈ R, there is an r > 0 such that x, y ∈ Br(a) implies that

d1(x, y) = d2(γ(x), γ(y))

where d1 and d2 are metrics of R and X, respectively.

Example. Let us construct a geodesic segment from x to y in En which is just the image of
a geodesic arc starting from x and ending at y. The general form for a line from x to y is
the image of the function γ : [0, |y − x|] → En such that

γ(t) = x+ t(y − x).

Let t1 and t2 be two real numbers in [0, |y − x|] so in order to make γ distance preserving,

|γ(t1)− γ(t2)| = |t1 − t2|.
Simplifying the right hand side gives us

|γ(t1)− γ(t2)| = |x+ t1(y − x)− x− t2(y − x)| = |t1 − t2||y − x| = |t1 − t2|.
From this, we see that t = s/|y−x| for some other parameter s such that our geodesic arc is

γ(s) = x+ s

(
y − x

|y − x|

)
.

Definition 4.3. An n-dimensional geometric space is a metric space X satisfying the fol-
lowing axioms:

(1) There exists a geodesic segment between any two points in X.

(2) Every geodesic arc γ : [a, b] → X can be extended into a geodesic line λ : R → X.

(3) There exists a continuous function ε : En → X and real r > 0 such that ε maps the
open ball Br(0) homeomorphically to Br(ε(0)).

(4) X is homogeneous.

Notice the parallelism between Euclid’s postulates and these axioms.

Example. Euclidean n-space is an n dimensional geometric space. So is Sn with ε(0) = en+1

and
ε(x) = (cos |x|)en+1 + (sin |x|) x

|x|
for x ̸= 0.

The same is true for Hn where ε(0) = en+1 and

ε(x) = (cosh |x|)en+1 + (sinh |x|) x
|x|

for x ̸= 0.

Now we are ready to talk about (X,G)-manifolds. First let X be a geometric space, let G
be a group of similarities of X (which are essentially isometries up to scaling), and let M be
an n-manifold. The idea is that we cover M with open connected subsets called coordinate
neighborhoods. Next we define homemorphisms, called charts, between these coordinate
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neighborhoods and open sets in X and we call the set of all charts an (X,G)-atlas for M .
These charts need to follow one property: If two coordinate neighborhoods Ui and Uj with
charts ϕi and ϕj, respectively, overlap, then the function

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj)

agrees in a neighborhood of each point of its domain with an element of G.
It turns out that for every (X,G)-atlas for M , there exists a unique maximal (X,G)-atlas

for M containing the original atlas (a proof of which we will not cover). We call a maximal
(X,G)-atlas for M an (X,G)-structure for M .

Definition 4.4. An (X,G)-manifold M is an n-manifoldM equipped with (X,G)-structure.

Essentially, an (X,G)-manifold is a manifold with some instructions on how its subsets
are like subsets of X.

Example. If I(X) is the group of isometries for a metric space X, a Euclidean n-manifold
is a (En, I(En))-manifold, a spherical n-manifold is (Sn, I(Sn))-manifold, and a hyperbolic
n-manifold is a (Hn, I(Hn))-manifold.

5. Gluing Convex Polyhedra

In this section, we cover how we can glue convex polyhedra in X = En, Sn, or Hn to create
Euclidean, spherical, or hyperbolic 3-manifolds. For this section, let X be one of these three
spaces.

Definition 5.1. A subset C ⊆ X is called convex if for each pair of points x, y ∈ C such
that x and y are distinct and not antipodal when X = Sn there exists a geodesic segment
between x and y contained in C.

Definition 5.2. The dimension of a convex set C is the least integer m such that C is
contained in an m-plane of X. This m-plane is denoted by by ⟨C⟩.

Definition 5.3. A side of a convex set P is a nonempty, maximal, convex subset of ∂P . If P
is nonempty, closed (on some topology) and for each x ∈ X, there is an open neighborhood
of x intersecting a finite number of sides of P (or P is locally finite), we call P a convex
polyhedron.

Definition 5.4 (k-face). Let P be an m dimensional convex polyhedron in X. The only
m-face of P is P itselt. Suppose that all (k + 1)-faces of P are already defined. Then the
k-face of P is a side of a (k + 1)-face.
A proper face of P is a k-face of P where k < m.

Example. As we can see in Figure 2, the square and circle are both convex subsets in E2.
However, each point on the circle is a side so for any x ∈ E2, there exists no open neighbor-
hood of x that meets only a finite number of sides of the circle. Therefore the circle is not a
convex polyhedron but a square is since it clearly has 4 sides.

From here on, when we say “polyhedra” we mean “convex polyhedra.” Also we will only
be considering n = 3 from here on. First we define angles:
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Figure 2. A geodesics segment in a square and circle in E2

Definition 5.5. Let P be a polyhedron in X and let x ∈ P . The solid angle subtended by
P at x, is

ω(P, x) = 4π
Vol(P ∩Br(x))

Vol(Br(x))
where r is less than the distance from x to some side not containing P .

We will not be formally defining volume in this paper but we can think of a solid angle
as first calculating what fraction of a small enough ball is inside the polyhedron and then
multiplying by 4π.

Let P be a finite collection of disjoint convex polyhedra in X and let G be a group of
isometries of X.

Definition 5.6. A G-side-pairing for P is a subset of G indexed by the set of all sides S of
P

Φ = {gS : S ∈ S}
such that

(1) there is a side S ′ ∈ S such that gS(S
′) = S,

(2) the isometries gS and gS′ have the property that gS′ = g−1
S , and

(3) if S is a side of P ∈ P and S ′ is a side of P ′ ∈ P , then

P ∩ gS(P ′) = S.

In other words, there is a gluing map assigned for each side in our collection of polyhedra
and property (1) tells us that there is a this map glues some other side to this side and
we say that these two sides are paired. Property (2) makes sure that if two sides are glued
together, their gluing maps are inverses of each other. Finally, property (3) tells us that if
a gluing map glues sides of two different polyhedra, the gluing map does not glue together
any other part of the polyhedra. These properties make sure that gluing polyhedra is like
intuitive gluing.

Definition 5.7. Let Φ be a G-side-pairing and let Π =
⋃

P∈P P . Two points x and x′ in Π
are said to be paired, notated by ≃, if and only if there is a side S containing x, and x′ is in
S ′, and gS(x

′) = x.
Two points x and y in Π are said to be related, notated by ∼, if and only if x = y or there

is a sequence x1, x2, ...xm such that

x = x1 ≃ x2 ≃ · · · ≃ xm = y.
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Figure 3. Gluing Pattern for a Torus

Proposition 5.8. The relation ∼ is a equivalence relation

Proof. First, we know that a ∼ a since a = a so ∼ is reflexive. Next if a ∼ b, then there
exists a sequence a1, a2, ..., an such that a = a1 ≃ a2 ≃ · · · ≃ an = b so we can use this
same sequence to see that b ∼ a. Finally if a ∼ b and b ∼ c, then there exists sequences
a1, a2, ..., an and b1, b2, ..., bm such that

a = a1 ≃ a2 ≃ · · · ≃ an = b

and

b = b1 ≃ b2 ≃ · · · ≃ bm = c

so

a = a1 ≃ a2 ≃ · · · ≃ an = b1 ≃ b2 ≃ · · · ≃ bm = c

meaning that the sequence a1, a2, ..., b1, b2, ..., bm shows us that a ∼ c. ■

Definition 5.9. The quotient space Π/∼, where Π is equipped with the disjoint union
topology, is said to be the space obtained by gluing polyhedra in P by Φ.

Example. Let us step down a dimension for an example that illustrates gluing. Consider
the gluing pattern in E2 that is shown in Figure 3 where sides of the same color are paired
by reflection. Now after the gluing, we can see that the endpoints of the blue segments are
related and the same is true for the red segments. Therefore the blue and red segments are
S1 meaning that Π/∼ = S1 × S1 which is a torus.

Definition 5.10. Let [x] = {x1, x2, ..., xn} be a finite equivalence class. Let Pi be the
polyhedron in P that contains xi. The solid angle sum of [x] is

ω[x] =
n∑

i=1

ω(Pi, xi).

Definition 5.11. A G-side-pairing Φ for P is proper if and only if each equivalence class of
Φ is finite and has a solid angle sum of 4π.

The reason polyhedron gluing is useful is we can create (X,G)-manifolds with this gluing
mechanism.

Theorem 5.12. Let G be a group of isometries of X and let M be a space obtained by gluing
together a finite collection P of disjoint convex polyhedra in X by a proper G-side-pairing Φ.
Then M is a 3-manifold with an (X,G)-structure.
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XP1

XP2

XP3

Figure 4. A disjoint set of abstract convex polygons P1, P2, and P3

6. Generalized Gluing

Here we take a digression to discuss necessary concepts needed to prove Theorem 5.12. In
this section we work with X = E2, S2, and H2 and define a generalized gluing. However,
note that this is even though we use the term “generalized,” this is completely different from
the gluing we discussed before since we are working with 2 dimensional space here.

Definition 6.1. An abstract convex polygon P in X is a convex polygon P in X together
with a collection E of subsets of ∂P called the edges of P such that

(1) each edge of P is closed, 1 dimensional, and a convex subset of ∂P ,

(2) two edges of P meet only along their boundaries,

(3) the union of the edges of P is ∂P , and

(4) the collection E is a locally finite family of subsets.

Additionally, a vertex of an abstract convex polygon is an endpoint of an edge.

For angles, we can use Definition 5.5 but instead of volumes of balls we use areas of disks
since we are in 2 dimensional space. We also use a different notation: θ(P, x)

Definition 6.2. A disjoint set of abstract convex polygons of X is a set of functions indexed
by a set P

Ξ = {ξP : X → XP | P ∈ P}
such that

(1) the function ξP is a similarity for each P ∈ P ,

(2) the index P is an abstract convex polygon in XP for each P ∈ P , and

(3) the polygons in P are mutually distinct.

Essentially, we are letting each polygon live in its own copy of X so Ξ is like a set of
instruction manuals that tells us how to go from the original space to the new copy. Since
each polygon lives in its own copy, they must be disjoint. See Figure 4. Now let Ξ be a
disjoint set of abstract convex polygons of X and let G be a group of similarities of X.
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Definition 6.3. A G-edge-pairing for Ξ is the set of functions indexed by the set of all edges
of polygons in P

Φ = {ϕE : E ∈ E}
such that for each edge E of a polygon P ∈ P

(1) there is a polygon P ′ in P such that ϕE such ϕE : XP ′ → XP is a similarity,

(2) the similarity ξ−1
P ϕEξP ′ is in G,

(3) there is an edge E ′ of P ′ such that ϕE(E
′) = E,

(4) the similarities ϕE and ϕE′ satisfy the relation ϕE′ = ϕ−1
E , and

(5) the polygons P and ϕE(P
′) are defined so that P ∩ ϕE(P

′) = E.

In the same way as Definition 5.7, we can define an equivalence relation on the set Π =⋃
P∈P P by pairing edge points using elements Φ.

Definition 6.4. Let [x] = {x1, x2, ..., xn} be a finite equivalence class. Let Pi be the polygon
in P containing xi. The angle sum of [x] is

θ[x] =
n∑

i=1

θ(Pi, xi).

Definition 6.5. A G-edge-pairing Φ for Ξ is proper if and only if every equivalence class of
Φ is finite and has a angle sum of 2π.

Definition 6.6. The quotient space Π/∼, where Π is equipped with the disjoint union
topology, is said to be the space obtained by gluing abstract polygons in Ξ by Φ.

Lemma 6.7. Let G be a group of similarities of X and let M be a space obtained by gluing
together a disjoint set Ξ of abstract convex polygons of X by a proper G-edge-pairing Φ. Then
M is a 2-manifold with an (X,G)-structure.

Proof. First we can assume that each polygon in P has at least one edge. Let q : Π → M
be the quotient map and let x̂ ∈ Π and x = ξ−1

P̂
(x̂). Now we consider an open neighborhood

Ur(x) of q(x) in M and we construct a homeomorphism fx : Ur(x) → Br(x) for values of r
that are small enough. Then we shift everything back up to x̂.

If P̂ ∈ P is a polygon containing x̂, then x is in polygon P = ξ−1

P̂
(P̂ ). Next we know that

x̂ ∈ P̂ ◦, or x̂ is in the interior of an edge of P̂ , or x̂ is a vertex of of P̂ . If x ∈ P̂ ◦, then
[x̂] = {x̂}. If x̂ is an interior of an edge, then [x̂] = {x̂, x̂′} with x̂ ̸= x̂′ since Φ is proper so
the angle sum must be 2π. Finally, if x̂ is a vertex, it is on two edges so it gets related to
two other points again since Φ is proper.

This means that we can order the elements of [x̂] = {x̂1, x̂2, ..., x̂n} such that

x̂ = x̂1 ≃ x̂2 ≃ · · · ≃ x̂n ≃ x̂.

Now for each i, let P̂i ∈ P contain x̂i and let Pi = ξ−1

P̂i
(P̂i) which contains xi = ξ−1

P̂i
(x̂i).

Notice that when n = 1, we know that x̂ ∈ P̂ ◦ so if n > 1, we have that x̂ is on an edge.
This means that there exists a unique edge Êi ∈ E such that

ϕÊi
(x̂i+1) = x̂i for i = 1, ..., n− 1
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and ϕÊn
(x̂1) = x̂n.

Let ϕ1 be the identity map and ϕi = ϕÊ1
· · ·ϕÊi−1

for i = 2, ..., n. Now let gEi
= ξ−1

P̂i
ϕÊi

ξP̂i+1

for i = 1, 2, ..., n− 1 and let gEn = ξ−1

P̂n
ϕÊn

ξP̂1
which are elements of G where Ei = ξ−1

P̂i
(Êi).

Additionally let gi = gE1 · · · gEi−1
∈ G so

gi = (ξ−1

P̂1
ϕÊ1

ξP̂2
)(ξ−1

P̂2
ϕÊ2

ξP̂3
) · · · (ξ−1

P̂i−1
ϕÊi−1

ξP̂i
) = ξ−1

P̂1
ϕiξP̂i

for i = 1, ..., n. This means that gi(xi) = x.
Now let r be a positive real such that r is less than a fourth of the distance from xi to

xj when i ̸= j and the distance from xi to any edge of Pi not containing xi. Therefore the
Pi ∩Br(xi) are disjoint for each i.

If θi = θ(Pi, xi), then Pi ∩Br(xi) is just the sector of angle θi of the open disk Br(xi). We
can backtrack this to x by using gi so

gi(Pi ∩Br(xi)) = gi(Pi) ∩Br(x)

is a sector of angle θi of the open disk Br(x).
We know that if n = 1, then Br(x) = g1(P1) ∩ Br(x) and similarly if n = 2, then

Br(x) = (g1(P1) ∩ Br(x)) ∩ (g2(P2) ∩ Br(x)). Following the same pattern when n > 2, we
suspect that

Br(x) =
n⋃

i=1

gi(Pi) ∩Br(x).

The only thing we need to check is if the edges match up.
First we identify these edges which are the edges gi(Pi) that have a common endpoint of

x. We know that E ′
i and Ei+1 are the two edges of Pi that have a common endpoint of xi

which means that gi+1(E
′
i) and gi+1(Ei+1) are the two edges of gi(Pi) that have a common

endpoint of x for i = 1, 2, ..., n− 1.
Now notice that polygons Pi and gEi

(Pi+1) are on opposite edges of the common edge
Ei meaning that polygons gi(Pi) and gi+1(Pi+1) are on opposite edges of the common edge
gi(Ei) for i = 1, 2, ..., n− 1. Additionally,

Ei = gEi
(E ′

i) =⇒ gi(Ei) = gi+1(E
′
i)

which means that gi(Ei) and gi+1(Ei+1) are the two edges of gi(Pi) that share a common
endpoint of x for i = 1, 2, ..., n− 1. This means that all the edges match up. See Figure 5.

The polygons Pn and gEn(P ) are on opposite edges of their common edge En. Therefore
g−1
En
(Pn) and P are on opposite edges of E ′

n. Since E1 and E ′
n are the two edges of P who

have a common endpoint of x, we have

gn(Pn) = g−1
En
(Pn)

so gn = g−1
En

=⇒ gE1 · · · gEn−1 = g−1
En
. Thus gE1 · · · gEn is the identity map.

Let us define

Ur(x) = q

(
n⋃

i=1

Pi ∩Br(xi)

)
and we claim that it is open in M . First we can see that Pi∩Br(xi) for i = 1, 2, ..., n is open
in Π so

n⋃
i=1

Pi ∩Br(xi) = q−1(Ur(x))



14 NANDANA MADHUKARA

ϕ1(E
′
n)

ϕn(En)

ϕ
2
(E

′ 1
)

ϕ
1
(E

1
)

ϕ
2 (E

2 )ϕ
3 (E ′

2 )

ϕ3(
E3)

ϕ1(P1)

ϕ2(P2)

ϕ3(P3)

...

ϕn(Pn)

θ1
θ2

θ3

x
θn

Figure 5. The partition of Br(x) into sectors of angle θi

must also be open in Π. Thus by the definition of a quotient map, are claim must be true.
Additionally we can clearly see that x ∈ Ur(x) so Ur(x) is an open neighborhood of q(x).
Define the function

ψx :
n⋃

i=1

Pi ∩Br(xi) → Br(x)

satisfying ψ(z) = gi(z) if z ∈ Pi ∩Br(xi). Thus ψx induces the continuous bijection

fx : Ur(x) → Br(x)

with a continuous inverse defined by f−1
x (z) = q(g−1

i (z)) whenever z ∈ gi(Pi) ∩ Br(x).
Therefore fx is a homeomorphism. Now Br(x) is an open disk in S2, H2, or E2. Therefore
we can perform another homeomorphism to get to an open subset of E2.
Next forM to be a manifold, it must also be Hausdorff which is what we show now. Recall

that a space is Hausdorff if for any two points, there exists disjoint open neighborhoods of
them. Let x, y ∈ Π such that π(x) ̸= π(y) in M . Let [x] = {x1, ..., xn} and [y] = {y1, ..., ym}
be the equivalence classes of x and y, respectively. Then [x] and [y] are disjoint subsets of Π.
Let the polygon Pi ∈ P contain xi for i = 1, 2, ..., n and let the polygon Qj ∈ P contain yj
for j = 1, 2, ...,m. Let r and s be real numbers such that r is less than a fourth the distance
from xi to xj when i ̸= j and the distance from xi to an edge of Pi not containing xi for each
i and s is less than a fourth the distance from yj to yi when j ̸= i and the distance from xj
to an edge of Qj not containing xj for each j. This means that

Ur(x) = q

(
n⋃

i=1

Pi ∩Br(xi)

)
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and

Uy(x) = q

(
m⋃
j=1

Qj ∩Bs(yi)

)
.

Now we choose r and s small enough such that
n⋃

i=1

Pi ∩Br(xi) and
m⋃
j=1

Qj ∩Bs(yi)

are disjoint in Π. Therefore Ur(x) and Uy(s) are disjoint open neighborhoods of q(x) and
q(y), respectively. This completes our proof that M is a 2-manifold.

Now we must prove that M has (X,G)-structure. We show that

{fx : Ur(x) → Br(x)}
is an (X,G)-atlas for M . By definition, we know that Ur(x) is an open connected subset of
M and and fx is a homeomorphism that maps open Ur(x) onto an open subset of X, in this
case Br(x). This means that the Ur(x) are coordinate neighborhoods and the fx are charts.
Furthermore Ur(x) is defined for each point q(x) ∈ M and a radius of r sufficiently small.
Therefore {Ur(x)} is an open cover of M . Now, all that remains for us to show is that if
Ur(x) and Us(y) with charts fx and fy, respectively, overlap, then the function

fyf
−1
x : fx(Ur(x) ∩ Uy(s)) → fy(Ur(x) ∩ Us(y))

agrees in a neighborhood of each point of its domain with an element of G.
Like before, we have

q−1(Ur(x)) =
n⋃

i=1

Pi ∩Br(xi),

and

q−1(Us(y)) =
m⋃
j=1

Qj ∩Bs(yj).

Without loss of generality, assume that n ≤ m. If n > 1, let Ei be the edge of Pi containing
xi and if m > 1, let Fj be the edge of Qj containing yj. Let g1, ..., gn and h1, ..., hn be the
functions constructed as before for x and y, respectively. Since we have the 1/4 bound on r
and s, there is one index j, call it ℓ, such that the set

P ∩Br(x) ∩Qj ∩Bs(yj)

is nonempty. Let just prove that fyf
−1
x is the restriction of the element hℓ of G.

First assume that n = 1. This means that x ∈ P ◦ and

q−1(Ur(x)) = Br(x).

Therefore

Ur(x) ∩ Uy(s) = q(Br(x)) ∩ q

(
m⋃
j=1

Qj ∩Bs(yj)

)

= q

(
Br(x) ∩

m⋃
j=1

Qj ∩Bs(yj)

)
= q(Br(x) ∩Bs(yℓ)).
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This means that
fx(Ur(x) ∩ Us(y)) = Br(x) ∩Bs(yℓ)

and
fy(Ur(x) ∩ Us(y)) = hℓ(Br(x) ∩Bs(yℓ)).

Hence, the function

fyf
−1
x : Br(x) ∩Bs(yℓ) → hℓ(Br(x) ∩Bs(yℓ)

is a restriction of hℓ.
Now if n = 2, then x is in the interior of an edge E of P and x′ is in the interior of an

edge E ′ of P ′ and the set
P ′ ∩Br(x

′) ∩Qj ∩Bs(yj)

is nonempty only when j ≡ ℓ− 1 or ℓ+1 (mod m). Now without loss of generality, we may
assume the latter. This means that P = Qℓ, P

′ = Qℓ+1, and E = Fℓ. Therefore,

Ur(x) ∩ Us(y) = q[(P ∩Br(x)) ∪ (P ′ ∩Br(x
′))] ∩ q

[
m⋃
j=1

Qj ∩Bs(yj)

]

= q

[
m⋃
j=1

(P ∩Br(x) ∩Qj ∩Bs(yj)) ∪
m⋃
j=1

(P ′ ∩Br(x
′) ∩Qj ∩Bs(yj))

]
= q[(P ∩Br(x) ∩Bs(yℓ)) ∪ (P ′ ∩Br(x

′) ∩Bs(yℓ+1))]

Thus,

fx(Ur(x) ∩ Us(y)) = gE(P ∩Br(x) ∩Bs(yℓ)) ∪ gE(P ′ ∩Br(x
′) ∩Bs(yℓ+1))

= (P ∩Br(x) ∩Bs(yℓ)) ∪ (gE(P
′) ∩Br(x) ∩Bs(yℓ))

= Br(x) ∩Bs(yℓ).

and

fy(Ur(x) ∩ Us(y)) = hℓ(P ∩Br(x) ∩Bs(yl)) ∪ hℓ+1(P
′ ∩Br(x

′) ∩Bs(yℓ+1))

= hℓ[(P ∩Br(x) ∩Bs(yℓ)) ∪ gE(P ′ ∩Br(x
′) ∩Bs(yℓ+1))]

= hℓ[(P ∩Br(x) ∩Bs(yℓ)) ∪ (gE(P
′) ∩Br(x) ∩Bs(yℓ))]

= hℓ(Br(x) ∩Bs(yℓ)).

Now on the set
P ∩Br(x) ∩Bs(yℓ),

we can see that the map fyf
−1
x is a restriction of hℓ. Similarly, on the set

gE(P
′ ∩Br(x

′) ∩Bs(yℓ+1)),

the map fyf
−1
x is the restriction of hℓ+1g

−1
E = hℓ. Thus the map

fyf
−1
x : Br(x) ∩Bs(yℓ) → hℓ(Br(x) ∩Bs(yℓ))

is the restriction of hℓ.
Finally, assume that n > 2. This means that both x and y are vertices. Since Ur(x) and

Us(y) overlap, we have q(x) = q(y) resulting from the bounds for r and s. Therefore x = yℓ.
Let t = min(r, s). Then

Ur(x) ∩ Us(y) = Ut(x),

fx(Ut(x)) = Bt(x),
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and

fy(Ut(x)) = Bt(y).

Now xi ≡ yℓ+i−1 or yℓ−i−1 (mod n). Without loss of generality, we may assume the former.
Then

Pi ≡ Qℓ+i−1 and Ei ≡ Fℓ+i−1 (mod n).

Notice that

gi = gE1 · · · gEi−1

≡ gFℓ
· · · gFℓ+i−2

≡ h−1
ℓ hℓ+i−1 (mod n)

which means that

hℓ+i−1 ≡ hℓgi (mod n).

Now since

Bt(x) =
n⋃

i=1

gi(Pi) ∩Bt(x),

the map fyf
−1
x is the restriction of

hℓ+i−1g
−1
i = (hℓgi)g

−1
i = hℓ

on the set gi(Pi) ∩Bt(x) for each i = 1, ..., n. Therefore the map

Bt(x) → Bt(y)

is the restriction of hℓ. Therefore we have completed the proof that {fx} is an (X,G)-atlas
for M . ■

7. Proof of Theorem 5.12

For convenience, we restate the theorem here.

Theorem 7.1. Let G be a group of isometries of X and let M be a space obtained by gluing
together a finite collection P of disjoint convex polyhedra in X by a proper G-side-pairing Φ.
Then M is a 3-manifold with an (X,G)-structure.

Proof. Without loss of generality, we can assume that each polyhedron in P has at least
one side. Let x be a point Π and let [x] = {x1, ..., xn}. Let Pi ∈ P be the polyhedron
containing xi for each i. If xi is contained in a side of Pi, then m ≥ 2. Now we can let δ(x)
be the minimum distance from xi to xj for i ̸= j and distance from xi to any side of Pi not
containing xi for each i.
Let r be a real such that 0 < r < δ(x)/2. Then for each i, the set Pi ∩ Sr(xi) is a polygon

in the sphere Sr(xi) and these polygons are disjoint. Now the side-pairing Φ restricts to
a proper I(S2)-side-pairing of {Pi ∩ Sr(xi)}. Let Σr(x) be the space obtained by gluing
together the polygons. By Lemma 6.7, the space Σr(x) has spherical structure. Since Σr(x)
is compact, connected, and ω[x] = 4π, we can see that Σr(x) is a 2-sphere

Let q : Π → M be the quotient map. For each i, the restriction of q to the polygon
Pi ∩ Sr(xi) extends to an isometry

χi : Sr(xi) → Σr(x).
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Additionally, for each i and j, the isometry

χ−1
j χi : Sr(xi) → Sr(xj)

extends to a unique isometry gij of X where gij(xi) = xj.
Suppose that gS ∈ Φ pairs the side S ′ ∩ Sr(xi) of Pi ∩ Sr(xi) to the side S ∩ Sr(xj) of

Pj ∩ Sr(xj). This means that χ−1
j χi agrees with gS on the set S ′ ∩ Sr(xi). Therefore χ−1

j χi

agrees with gS on the great circle ⟨S ′⟩∩Sr(xi). Thus gij agrees with gS on ⟨S ′⟩. Since gij and
gS both map Pi ∩ Sr(xi) to the opposite side of ⟨S⟩ from Pj ∩ Sr(xj), we see that gij = gS.
Now if

xi = xi1 ≃ xi2 · · · ≃ xip = xj,

then

χ−1
j χi = (χ−1

ip
χip−1)(χ

−1
ip−1

χip−2) · · · (ξ−1
i2
χi1)

which means that

gij = gip−1ipgip−2ip−1 · · · gi1i2
and gi1i2 , ..., gip−1ip ∈ Φ so gij ∈ G for each i, j.
Define

Ur(x) =
n⋃

i=1

q(Pi ∩Br(xi)).

Since

q−1(Ur(x)) =
n⋃

i=1

Pi ∩Br(xi)

is open in Π, we have that Ur(x) is open in M .
Suppose x = xk and let

ψ :
n⋃

i=1

Pi ∩Br(xi) → Br(x)

be a function defined by ψx(z) = gik(z) if z ∈ Pi ∩Br(xi). Now if gS(xi) = xj, then gS = gij.
Let y be a point in S ∩Br(xj) and let y′ = g−1

S (y) so y′ is a point of S ′ ∩Br(xi). Since

χ−1
k χi = (χ−1

k χj)(χ
−1
j χi),

we have that gik = gjkgij. Thus

ψx(y) = gjk(y) = gjkgS(y
′) = gik(y

′) = ψx(y
′).

This results in ψx inducing a continuous function

ϕx : Ur(x) → Br(x).

For each t such that 0 < t < r, the map ϕx restricts to the isometry

χ−1
k : Σt(x) → St(x).

Thereefore ϕx is a bijection with the continuous inverse

ϕ−1
x (z) = qg−1

ik (z)

if z ∈ gik(Pi ∩ Br(xi)) meaning that ϕx is a homeomorphism. We can consider the same
argument as Lemma 6.7 to show that M is Hausdorff so this completes our proof that M is
a 3-manifold.
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Now all that remains to show is that M has (X,G)-structure. Specifically, we show that

{ϕx : Ur(x) → Br(x) : x ∈ Π and r < δ(x)/3}
is an (X,G)-atlas for M . By definition, we know that Ur(x) is an open connected subset of
M and ϕx is a homeomorphism. Furthermore Ur(x) is defined for each point q(x) of M and
a radius r that is sufficiently small. This means that {Ur(x)} is an open cover of M .

Suppose Ur(x) and Us(y) overlap and r < δ(x)/3 and s = δ(y)/3. Let F (x) be the face
of the polyhedron in P that contains x in its interior. Without loss of generality, we may
assume that

dim F (x) ≥ dim F (y).

Like before,

q−1(Ur(x)) =
n⋃

i=1

Pi ∩Br(xi)

and

q−1(Us(y)) =
m⋃
j=1

Qj ∩Bs(yj).

Now for some i and j, the set Pi ∩ Br(xi) mmets Qj ∩ Bs(yj). After reindexing, we can
assume that P1 ∩ Br(x1) meets Q1 ∩ Bs(y1) so P1 = Q1 and by the triangle inequality,
d(x1, y1) < r + s.

Suppose y1 is not in a side of P1 containing x1. This means that s < d(x1, y1)/3 so
r < d(x1, y1)/3 which is a contradiction. Therefore x1 is in every side of P1 that contains
y1. Thus F (x1) is a proper face of F (y1) which is another contradiction. This means that y1
is in every side of P1 that contains x1. Consequently, for each i, the set Pi ∩ Br(xi) meets
Qj ∩Bs(yj) for some j.

Now we claim that the set Pi ∩Br(xi) meets Qj ∩Bs(yj) for one index j. For the sake of
contradiction, suppose that Pi∩Br(xi) meets Qj ∩Bs(yj) and Qk∩Bs(yk) with j ̸= k. Then
Pi = Qj = Qk. Since yj and yk are in every side of Pi that contains xi, we see that F (yj) and
F (yk) are faces of F (xi). Furthermore, F (yi) and F (yk) must be distinct. Therefore F (yi)
and F (yk) are proper faces of F (xi). This means that

r < d(xi, yi)/3, r < d(xi, yk)/3, and s < d(yj, yk)/3.

Now by the triangle inequality,

d(xi, yj) + d(xi, yk) < (r + s) + (r + s)

<
d(xi, yj)

3
+
d(xi, yk)

3
+

2 · d(yj, yk)
3

< d(xi, yj) + d(xi, yk)

which is a contradiction.
Next we claim that the set Qj ∩ Bs(yj) meets Pi ∩ Br(xi) for one index i. Again for the

sake of contradiction, suppose that Qj∩Bs(yj) meets Pi∩Br(xi) and Pk∩Br(xk) with i ̸= k.
Then Pi = Qj = Pk. Since yj is in every side of Pi that contains xi or xk, we know that F (yj)
is a face of F (xi) and F (xk). Furthermore, F (xi) and F (xk) must be distinct. Therefore, we
have

r <
d(xi, yj)

3
<
r + s

3
.
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This means that r < s/2. Since s < δ(y)/3, we see that r < δ(y)/6). Notice that

d(xi, yj) < r + s < δ(y)/2 and d(xk, yj) < r + s < δ(y)/2.

By the definition of Ur+s(y), we see that q maps Pi∩Br+s(yj) injectively to M . Since xi and
xk are in Pi ∩ Br+s(yj), we have a contradiction. This means that we can reindex [y] such
that Pi ∩Br(xi) meets Qj ∩Bs(yi) for i = 1, ...,m. Then Pi = Qi for each i.
Now let gij and hij be the elemetns of G constructed as before for x and y. If gS pairs

the side S ′ ∩ Sr(xi) of P ∩ Sr(xi) to the side of S ∩ Sr(xj) of Pj ∩ Sr(xj), then gS = gij and
gS(xi) = xj. Thus xi ∈ S ′. Now since Pi ∩ Br(xi) meets Pi ∩ Bs(yi), we have that yi is also
in S ′. Notice that gS(Pi ∩Br(xi)) meets gs(Pi ∩Bs(y)i). This means that Pj ∩Br(xj) meets
Pj ∩Bs(gs(yi)). Therefore gs(yi) = yj which means that gij = hij.
Suppose that

xi = xi1 ≃ xi2 ≃ · · · ≃ xip = xj

like before. This means that

yi = yi1 ≃ yi2 ≃ · · · ≃ yip = yj

and

gij = gip−1ipgip−2ip−1 · · · gi1i2 = hip−1iphip−2ip−1 · · ·hi1i2 = hij.

Next, notice that

Ur(x) ∩ Us(y) = q

(
n⋃

i=1

Pi ∩Br(xi)

)
∩ q

(
m⋃
j=1

Qj ∩Bs(yj)

)

= q

((
n⋃

i=1

Pi ∩Br(xi)

)
∩

(
m⋃
j=1

Qj ∩Bs(yj)

))

= q

(
n⋃

i=1

m⋃
j=1

(Pi ∩Br(xi) ∩Qj ∩Bs(yj))

)

= q

(
n⋃

i=1

Pi ∩Br(xi) ∩Bs(yi))

)
.

If x = xk and y = yℓ, then

ϕx(Ur(x) ∩ Us(y)) =
n⋃

i=1

gik(Pi ∩Br(xi) ∩Bs(yi))

and

ϕy(Ur(x) ∩ Us(y)) =
n⋃

i=1

hiℓ(Pi ∩Br(xi) ∩Bs(yi)).

Now on the set

gik(Pi ∩Br(xi) ∩Bs(yi)),

the map ϕyϕ
−1
x is the restriction of

hiℓg
−1
ik = hiℓh

−1
ik = hiℓhki = hkℓ

for each i = 1, ..., n. Therefore ϕyϕ
−1
x is the restriction to hkℓ and ϕyϕ

−1
x agrees with an

element of G. This completes our proof that {ϕx} is an (X,G)-atlas for M . ■
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