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Abstract. This paper presents an exposition of origami’s expansion to the constructible field.
We first define and employ basic field theory and axioms based on sets of manipulations to define

the constructible field. We explore certain constructions through the set of single-fold origami

constructions, such as the Beloch Fold, 3
√
2, doubling the cube, and trisecting the angle. Over the

course of these sections, I present proofs upon the constructibility of objects. Lastly, this paper

presents a method to solve polynomials with origami.

1. Introducing The Fold

It’s 478BC ancient Greece and a plague sent by Apollo has devastated the small island of Delos.
The oracle has presented a problem that, once solved, would end the plague. Apollo must have his
cubic altar’s volume doubled.

In a world of solely lines and circles, you may only use a straightedge and a compass. Soon after,
another problem arises: given a circle of area A, construct a square of the same area, A. As countless
people tired over these problems over the course of 2000 years, there comes a breakthrough.

It isn’t possible.

But, being a true mathematician, you must question why. You begin by learning the basics of field
theory, after noticing parallels between constructible numbers and fields.

2. Field Theory

Definition 2.1 (Field). A field, F , is a set of elements that satisfy a number of field axioms:

(1) The set is closed under multiplication and addition.
(2) Both addition and multiplication must be commutative and associative.
(3) The distributive property holds for addition and multiplication.
(4) There is an additive identity for every element as well as a multiplicative identity for every

element.
(5) There is an additive inverse for every element as well as a multiplicative inverse for every

element except 0.

Some examples of fields are the rational (Q), real (R), and complex (C) numbers.

However, some fields contain all the numbers from another field:

Definition 2.2 (Subfield). A subfield E of F is a field consisting of a subset of the elements in field
F satisfying the field axioms of F . In other words, subfield E of F is a subset of F containing the
multiplicative identity of F and is closed under multiplication, addition, the multiplicative inverse
and additive inverse across all nonzero elements of F .
For example, the rational numbers are a subfield of the real numbers, which in turn, are a subfield
of the complex numbers.

In order to get from a subfield to the original field, we need to introduce a field extension:
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Definition 2.3 (Field Extensions). A field extension is a the smallest extension of a field when an
element is added such that the new field satisfies all field axioms.
A finite field extension is the field generated by adjoining x1, . . . , xn to the original field.
For example, a field extension of the real field, R, by the imaginary number i results in the complex
field, C.

A generalized form of a field, of sorts, is a group:

Definition 2.4 (Groups). A group is a set of finite or infinite elements that satisfy the properties
of closure, the additive property, the inverse property, and the identity property. A group is a
generalized form of a field: the closure property holds under any binary operation, not necessarily
addition and multiplication only. An example of a group is the integers with the operation of
addition.

Similar to fields, we have subgroups:

Definition 2.5 (Subgroups). A subgroup is a subset of a group closed under the group operation
and the inverse operation. An example of a subgroup of rationals under addition is integers under
addition.

Definition 2.6 (Abelian). An Abelian group is a group in which applying the group operation is
independent of the order of the elements. For example, in the real numbers, + is abelian.

Similarly, we have 2 types of fields:

Definition 2.7 (Algebraic, Transcendental). For 2 fields K and L, where L is a field extension of
K, element α of L is called algebraic over K if α is a root of polynomial p(x) in K[x]. Element α of
L is transcendental over K if α is not a root of polynomial p(x) in K[x]

From here, we can begin to explore what numbers we can construct with a straightedge and
compass in terms of fields.

3. Straightedge and Compass Constructions

Straightedge and Compass constructions can be synthesized into some manipulations that can be
achieved. We can repeatedly apply these manipulations to construct different points and lines.

(1) Creating the line through two existing points
(2) Creating the circle through one point with center another point
(3) Creating the point which is the intersection of two existing, non-parallel lines
(4) Creating the one or two points in the intersection of a line and a circle (if they intersect)
(5) Creating the one or two points in the intersection of two circles (if they intersect).

We will now be attempting to characterize all constructible points using field theory:

Proposition 3.1. For some field F a subfield of R and some point (a,b) one step away (one
straightedge and compass axiom away) from F × F = {(a, b) | a, b ∈ F},

[F (a, b) : F ] = 2m

for some m ∈ N ∪ 0.

Proof. Constructible point (a,b) is the intersection of two distinct figures. We will be taking the last
3 manipulations (3-5) from the list above into consideration.

We now take 3 cases:
Case 1: Intersection of 2 distinct lines defined by 2 pairs of points: A(xa, ya), B(xb, yb) and
C(xc, yc), D(xd, yd), with A,B,C, and D contained in F × F . Let us label the intersection point of
the 2 lines as Q(a, b). We have the equations:

(xb − xa)(b− ya) = (yb − ya)(a− xa)
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(xd − xc)(b− yc) = (yd − yc)(a− xc).

Once solved, these equations will provide a solution to a and b in terms of field F . Therefore,
F (a, b) = F :

[F (a, b) : F ] = [F : F ] = 20

Case 2: Intersection of a line defined by 2 points: A(xa, ya), B(xb, yb) and a circle with radius CD
and center E: C(xc, yc), D(xd, yd), and E(xe, ye) with A,B,C, D, and E contained in F × F . Let
us label the intersection point of the 2 lines as Q(a, b). We can solve for the radius r:

r =
√
(xc − xd)2 + (yc − yd)2

(xb − xa)(b− ya) = (yb − ya)(a− xa)

(a− xe)
2 + (b− ye)

2 = r2

When we solve for a or b, we get an expression in terms of other elements in F . We have polynomials
with roots including a and b in F [x] of a degree less than or equal to 2. In each polynomial ring,
the polynomials are either irreducible, or have a factor of which a and b are roots of. Therefore, we
have:

[F (a) : F ] ≤ 2, [F (a, b) : F (a)] ≤ 2

This gives us: [F (a) : F ], [F (a, b) : F (a)] ∈ 1, 2, implying that [F (a) : F ] and [F (a, b) : F (a)] ≤ 2 are
both powers of 2:

[F (a, b) : F ] = [F (a, b) : F (a)][F (a) : F ] = 2m

for some m ∈ N ∪ 0.
Case 3: Intersection of a circle with radius AB: A(xa, ya), B(xb, yb) centered on C(xc, yc) and a
circle with radius DE and center G: D(xd, yd), E(xe, ye), and G(xg, yg) with A,B,C, D,E, and G
contained in F × F . Let us label the intersection point of the 2 lines as Q(a, b). Additionally, the
radius of the circle centered at C is rc and the radius of the circle centered at G is rg. Again, we
have: r2c , r

2
g ∈ F ,

(a− xc)
2 + (b− yc)

2 = r2c

(a− xg)
2 + (b− yg)

2 = r2g

We can express the first equation in the form

a2 + b2 + lca+mcb+ nc = 0

for lc,mc, nc ∈ F . Similarly, we can express the second equation in terms of lg,mg, and ng. When
we subtract one equation from the other, we have that (a, b) lies on the line:

(lc − lg)x+ (mc −mg)y + (nc − ng) = 0.

We know that the circles are distinct, so at least one of lc and lg, mc, and mg, or nc and ng cannot
equal 0. Therefore, we have the above equation is a line. Additionally, all the coefficients are in F ,
so (a, b) must lie on a line in F . Therefore, we have:

[F (a, b) : F ] = [F (a, b) : F (a)][F (a) : F ] = 2m

for some m ∈ N ∪ 0.
For all 3 cases, we have that

[F (a, b) : F ] = 2m

for some m ∈ N ∪ 0. □

We now expand upon the previous proposition (3.1) to get a generalization true for all straightedge
and compass constructible points.

Proposition 3.2. All constructible points lie on a 2n degree field extension of Q.
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Proof. Let F be a subfield of R and let point (a, b) ∈ R2 constructible from F × F . We know there
exists points P1, P2, P3, . . . , Pn ∈ R2 such that each point Pi1 ≤ i ≤ n is constructible in one step
from (F × F ) ∪ {P1, P2, . . . , Pn}. Let P1 = (ai, bi) and Ki = Ki−1(ai, bi). We have that K0 = F .
Therefore, we have, for some 0 ≤ j ≤ n− 1:

(F × F ∪ {P1, P2, . . . , Pn} ⊆ Kj ×Kj

It directly follows that

(F × F ) ∪ {P1, P2, . . . , Pn} ⊆ (Ki ×Ki) ∪ {Pj+1}.
We simplify the right side to get

(F × F ) ∪ {P1, P2, . . . , Pn} ⊆ (Kj(aj+1, bj+1)×Kj(aj+1, bj+1) = Kj+1 ×Kj+1.

Using induction for 0 ≤ j ≤ n, we have:

(F × F ) ∪ {P1, P2, . . . , Pn} ⊆ Kj+1 ×Kj+1.

We know that P is constrictible from one step from (F × F ) ∪ {P1, P2, . . . , Pn} and is, therefore,
constructible in one step from Kj+1 ×Kj+1. From Proposition 3.1, we know

[Ki : Ki−1] = [Ki−1(ai, bi) : Ki1 ] = 2m

for some natural number m. From this, we can expand the left hand side:

[Kn : F ] = [Kn : 0]

[Kn : F ] = [Kn : Kn−1][Kn−1 : Kn−2] . . . [K1 : K0]

[Kn : F ] = 2mn2mn−1 . . . 2m1
[Kn : F ] = 2m

We have that F = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn, so f ⊆ Kn. Again, we have:

2m = [Kn : F ] = [Kn : F (a, b)][F (a, b) : F ].

Now, we have [F (a, b) : F ] divides 2m. Therefore, [F (a, b) : F ] must be 2k for some k, 0 ≤ k ≤ m.
□

Now we know which points are straightedge and compass constructible and which are not.
There are 3 main constructions that are impossible to achieve (Sections 6-8) with simply a straight-

edge and compass. These constructions are the following:

(1) Given a cube of volume v, construct a cube with a volume 2v.
(2) Given angle PQR measuring 3n◦, trisect the angle into 3 angles measuring n◦.
(3) Given a square of area a, construct a circle with the same area as the square.

We will attempt to solve these problems with origami.

4. Origami Constructions

Employing origami, we are able to form more constructions:

(1) Given two distinct points p1 and p2, there is a unique fold that passes through both of them.
(2) Given two distinct points p1 and p2, there is a unique fold that places p1 onto p2.
(3) Given two lines l1 and l2, there is a fold that places l1 onto l2.
(4) Given a point p1 and a line l1, there is a unique fold perpendicular to l1 that passes through

point p1.
(5) Given two points p1 and p2 and a line l1, there is a fold that places p1 onto l1 and passes

through p2.
(6) Given two points p1 and p2 and two lines l1 and l2, there is a fold that places p1 onto l1 and

p2 onto l2.
(7) Given one point p and two lines l1 and l2, there is a fold that places p onto l1 and is

perpendicular to l2.
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Proposition 4.1. Let r ∈ R. Then r is in the origami constructible group if and only if there exists
fields Q = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ R such that r ∈ Fn and [Fi : Fi−1] = 2 or 3 for all 1 ≤ i ≤ n.

Proof. Suppose Q = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ R and [Fi : Fi−1] = 2 or 3. It follows that
Fi = Fi−1[

√
di] or Fi = Fi−1[

3
√
di]. Note that all rational numbers are constructible with a compass

and straightedge. Assume that all elements of Fn are origami constructible for 0 ≤ n ≤ k − 1.
Then for some dk ∈ Fk−1, it is well known that

√
dk and 3

√
dk are also constructible. Therefore,

the elements in Fk = Fk−1[
√
dk] and Fk = Fk−1[

3
√
dk] are origami constructible. We use induction

to prove that any r ∈ Fn is origami constructible. □

Proposition 4.2. If r is origami constructible then [Q(r);Q] = 2a3b for integers a, b ≥ 0.

Proof. We can expand upon proposition 4.1 using the tower rule[5]:

[Fn : Q] = [Fn : Fn−1][Fn−1 : Fn−2] . . . [F1 : F0] = 2c3d

in which c+ d = n.
We also have Q ⊂ Q(r) ⊂ Fn, so we apply the tower rule:

[Q(r) : Q][Fn : Q] = 2c3d.

If r is an origami constructible number, then [Q(r) : Q] = 2a3b for integers a, b ≥ 0 □

5. The Beloch Fold and Square

The fold that sets origami constructions apart from straightedge and compass constructions is
the Beloch Fold:

Beloch Fold: Given two points A and B and two lines l1 and l2, there exists a fold F placing A
onto l1 and B onto l2 simultaneously.

We first need to understand what we are doing when we fold point A onto line l1. The crease
produced is the tangent of the parabola formed with focus A and directrix l1.

We can visualize this by taking a piece of paper and labeling an arbitrary point A and line l1. We
start making folds placing point A onto arbitrary points on l1. As we make more folds, the outline
of a parabola begins to form.

To prove the tangency of the crease, we can take any point X on line l1 and label the intersection
point of the normal to l1 and crease X’. We then compare the distances X’A and X’X. They turn
out to be equal. By the definition of a parabola, point X’ must be on the parabola. Any other point
on the crease will only be equidistant between X and A and will therefore not be on the parabola.
The crease is tangent to the parabola at point X’.

Proposition 5.1. The equation of a crease line f tangent to the parabola formed with focus P (0, 1)

and line l with equation y = −1 is y = t
2x− t2

4 .
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Recall from section 5 that a point-line pair crease is tangent to a parabola with a focus at the
point and a directrix at the line.

We can define point P ′(t,−1) where t ∈ R as the point where point P was folded onto line l. We
know that crease f is the perpendicular bisector of PP ′. We have the slope of line PP ′ as − 2

t and

the midpoint of line PP ′ as ( t2 , 0).
We can solve for the equation of the crease line, f as we know the slope and a point on the line:

f : y =
t

2
x− t2

4

Definition 5.1 (Beloch Square). Given two points A and B and two lines l1 and l2, a Beloch square
is a square XYWZ such that X and Y lie on l1 and l2 respectively, A lies on line XZ and B lies on
line YW.

To create a square, we must have 2 sets of parallel sides set at 90◦ to adjacent sides. Let x denote
the shortest distance between A and line l1 and let l′1 be a line parallel to line l1 set a distance of x
away from line l1 such that l1 lies between A and l′1. (Figure 1)

Figure 1. Construction of Beloch Square

Likewise, let y denote the shortest distance between B and line l2 and let l′2 be a line parallel to
line l2 set a distance of y away from line l2 such that l2 lies between B and l′2. (Figure 2)

Figure 2. Construction of Beloch Square

We then employ the Beloch fold, folding A onto l′1 and B onto l′2 to create A’ and B’, respectively.
This crease is the perpendicular bisector of AA’ and BB’. If we find the midpoints of AA’ and BB’,
X and Y respectively, we know that X lies on l1 and Y on l2 using the definitions of l1 and l2.
(Figure 3) 4
We then construct vertices W and Z by moving a distance of XY past X and Y, respectively.
(Figure 4)

The Beloch square also provides us with the construction of the cube root of any number. Let us
define l1 as the y-axis, l2 as the x-axis, A=(−1, 0), and B=(0,−k). We construct lines l′1 and l′2 as
x = 1 and y = k respectively. We use the Beloch fold to fold A and B onto l′1 and l′2, respectively,
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Figure 3. Construction of Beloch Square

Figure 4. Construction of Beloch Square

to find X and Y. X is the intersection of the crease and l1 and Y is the intersection of the crease
and l2. Let O be the origin. We then get that:

△OAX ∼ △OXY ∼ △OBY .

From that, we have:
OX

OA
=

OY

OX
=

OB

OY
.

We know that OA = 1 and OB = k. Plugging in, we get OX = OY
OX = k

OY . Using this, we can solve
for OX:

OX3 = OX · OY

OX
· k

OY
= k.

We get that OX is 3
√
k. Therefore, constructing the Beloch square results in the construction of the

cube root of any number.

6. Doubling Cube

In section 1, we proved that all straightedge-compass constructible points must lie in a field of
degree 2k over Q for some finite positive integer k. In order to double the volume of a cube with
a straightedge and compass, 3

√
2 must be constructable. Since 3

√
2 is algebraic over Q and it’s

irreducible polynomial is x3 − 2 = 0, 3
√
2 lies in a field extension of 3 over Q. Therefore, 3

√
2 is not

an element in the straightedge-constructable field. It is impossible to construct with a straightedge
and compass.
However, we could use origami - in square ABCD, we attempt to construct 3

√
2 of the side length.

(1) Construct the midpoint J of side BC.
(2) Construct midpoint K of side CD
(3) Find the intersection L of lines AC and BK
(4) Construct a line MN parallel to line BC through L
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Figure 5. Doubling the Cube

(5) Construct a line PQ parallel to line MN halfway between MN and AD.
We have now divided side AB and DC into thirds with points M and P and N and Q,
respectively.

(6) Use axiom 6 to create for R, placing C on AB at C’ and N on PQ at N’

(7) AC’ is 3
√
2

Proof. Let us denote the length of the side of the square a+1. We aim to show that a = 3
√
2. After

step 6, we label BC ′ of length 1 and BJ of length b. We know that JC ′ = JC = a+ 1− b.
We solve for the value of PC ′. This is 2

3 (a + 1) − 1 = 2a−1
3 . Additionally, we can solve for the

value of b using the pythagoran theorem on triangle C ′BJ to get b = 2a+a2

2(a+1) .

We have that angle JC ′N ′ is a right angle as it is just a projection of, and therefore congruent
to the triangle JNC. From this, we can angle chase in triangles BC ′J and C ′PN ′ to get that
BC ′J ∼ C ′PN ′ by AA.

Using the similarity, we have:

b

a+ 1− b
=

2a−1
3

a+1
3

.

Once we substitute for b, we get:

a2 + 2a

a2 + 2a+ 2
=

2a− 1

a+ 1
.

Once we simplify and solve for a, we get a3 = 2 so a = 3
√
2. □

7. Trisecting the angle

Trisecting an angle is known to be impossible using straightedge and compass constructions. We
can prove this by taking a specific angle and prove that that angle cannot be trisected.

Proposition 7.1. It is impossible to trisect a 60◦ angle with a straightedge and compass

Proof. We begin by considering the triple angle formula:

cosθ = 4cos3
θ

3
− 3cos

θ

3
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Let us form a polynomial in terms of x = cos(20◦), where θ = 60◦. We can simplify the equation
after plugging in cos(θ) and x values to:

8x3 − 6x− 1 = 0.

This equation can be simplified by substituting 2x for x because as as long as x is constructible, 2x
will also be. We get:

x3 − 3x− 1 = 0.

The roots of this polynomial are not straightedge- compass constructible. □

Now, we trisect the angle with origami.

Proposition 7.2. Any angle can be trisected with origami.

Proof. We begin with angle PQR. We aim to trisect angle PQR into 3 equal angles.

(1) Allow line p to be the perpendicular to QR at point Q.
(2) Let the foot of any perpendicular q to p be A.
(3) Let the foot of a perpendicular r to p, B be a point equidistant from A and Q.
(4) We construct fold m placing A onto PQ at A’ and Q onto line r at Q′

(5) Let point B′ be the image of B reflected across fold m.

We want to prove that PQB′, B′QQ′, and Q′QR equally trisect angle PQR. Let us begin by
defining a few more points. Let N be the intersection of AQ′ and A′Q, let S be the intersection of
QQ′ and the fold m, let V the intersection of AA′ and the fold m, let W be the intersection of line
q and DQ′, let X be the intersection of line q and DS and let T be the foot of fold m (on QR).

Additionally, let us call A′QB′ as γ, B′QQ′ as δ, A′QD as α, and DQM as β.
Now, we know that △DAX ∼ △DSQ by AA. Therefore, angle DXA is DQS, which is δ+γ+α.

We know that, by reflection, angle Q′DS is β, so angle DB′A is α + γ + δ − β. We also know, by
reflection, that angle DQ′A = α, angle AQ′B is γ, and BQ′Q is δ. Therefore, angle DQ′B is α+ γ.
We also know that triangle DWA is similar to triangle DQ′B by AA (lines r and q are parallel).
Therefore, angle DWA = DQ′B, giving α+ γ = α+ γ + δ − β. This gives us: δ = β.

We also have that △NSQ ∼= △NSQ′ by SAS because, by reflection, DS, or fold m, is the
perpendicular bisector of QQ′. This gives us AQ′B is γ and BQ′Q is δ, or β. We know that
ABQ′ ∼= QBQ′ by SAS, so angle AQ′B is equal to angle BQ′Q, yielding γ = β.

Lastly, we have, by triangle DMQ, that angle DMQ = 90 − β. We also know that angle QSM
is a right angle because DM , or fold m is the perpendicular bisector of QQ′. Therefore, angle
DMQ = SMQ = 90− β. This gives us, in triangle QSM , that angle SQM = β.

Therefore, β = A′QB′ = B′QQ′ = Q′QR. □

8. Squaring Circle

The objective of squaring the circle is, given a circle of area πr2, construct a square of the same
area.

In order to square the circle,
√
π must be constructed. If

√
π is constructible, π would also be

constructible. It was first showed by Pierre Wantzel in 1837 that all straightedge and compass
constructible lengths must be a solution to a polynomial with rational coefficients. In other words,
all straightedge compass constructible lengths must be algebraic. In 1882, Ferdinand von Lindenman
proved that π is transcendental[2] , yielding the impossibility of this construction.

Similarly, we cannot construct π with origami. Since π is transcendental, we know that Q(π)/Q is
not algebraic and [Q(π) : Q] is infinite, which cannot be expressed in the form 2k for some integer k
as described in section 1. Therefore, the squaring of the circle is also impossible to do with origami.
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Figure 6. Cubic Example

9. Solving a Cubic

Proposition 9.1. Performing the Beloch fold on 2 points P1 and P2 and 2 lines l1 and l2 is
equivalent to solving a cubic.

Proof. Define points P1(0, 1) and P2(a, b), and line l1 as the horizontal line y = −1. We observe the
point where P2 is folded to when we fold P1 with different creases, P ′

2, or (x, y). We established in
section 5 that the crease line, f , that we constructed is tangent to the parabola formed with focus
P1 and directrix l1. Additionally, f is tangent to the parabola formed with focus P2 and directrix
l2.

Recall from section 5: The equation of the crease f is y = t
2x − t2

4 . f is also the perpendicular

bisector of P2P
′
2. Calculating the slope and midpoint gives us: y−b

x−a and (a+x
2 , b+y

2 ). We know that

P2P
′
2 is perpendicular to f , giving us the slope of P2P

′
2 as −2

t . We equate the two slopes to get
equation 1:

(1)
−2

t
=

y − b

x− a

Additionally, we observe that the midpoint of P2P
′
2 lies on the crease to get equation 2:

(2)
b+ y

2
=

t

2
· a+ x

2
− t2

4

If we substitute (1) into (2), we get a cubic.

(3) (y + b)(y − b)2 = −(x2 − a2)(y − b)− 2(x− a)2

Folding P2 onto line l2 creates another intersection with the cubic curve. Solving the cubic above at
a certain point is equivalent to finding the intersection point. □

10. Introducing Another Fold

There are two commonly used folds: the multifold and the single fold. The single fold is what we
have been working with thus far. Using single folds, we can derive 8 axioms from which we derive
equations and solve (sections 2-3).
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Definition 10.1 (Multifold). An n-fold multifold defines n (greater than 1) simultaneous folds on
a plane with finite roots.

The multifold allows for 203 axioms. This enables us to solve a multitude of problems that we
couldn’t sole with single fold origami. For example, a useful multifold axiom is AL4a6ab.

Algorithm AL4a6ab is comprised of two folds based on 2 points, P and Q, and 3 lines, l,m, and
n that defines 2 creases ξ and χ. These creases are determined in 3 alignments:

(1) χ(P ) ∈ m
(2) χ(l) = ξ
(3) ξ(Q) ∈ n

In other words, given 2 points, P and Q, and 3 lines, l,m, and n, fold χ places point P onto line
l and ξ places point Q onto line m and line n onto fold χ. As described in section 1, some fold χ

Figure 7. AL4a6ab

determined by alignment χ(P ) ∈ m is a tangent to a parabola, Ca with focus P and directrix m.
In his paper, Nishimura[6] synthesizes the fold: The algorithm AL4a6ab is the same as the inter-

section of the line χ and the locus

C := {χ(l)(Q) | χ is a tangential line of Ca}.

11. Solving a Quintic

A quintic is solvable by radicals if its Galois group is solvable.[3] A group F is said to be solvable
if it has a finite series of subgroups

1 = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G

such that for every i, 1 ≤ i ≤ n, gn−1 is a subgroup of G and the factor group Gn/Gn−1 an
abelian group. In 1867, Eduard Lill designed an algorithm that presented a geometric solution to
any polynomial.
Say we have a polynomial of form anx

n+an−1x
n−1+an−2x

n−2+· · ·++a2x
2+a1x+a0. We construct

a path consisting of the unit lengths of each coefficient an, an−1, an−2, . . . , a2, a1, and a0, beginning
at the origin with an along the x-axis. After every segment, we take a 90◦ counterclockwise turn.
We construct a second path as follows:

(1) The path begins at the origin at some angle.
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(2) Whenever the second path encounters the first path or any extensions of the first path, it
reflects at 90◦.

For example, we have polynomial 3x2 + 5x− 2. We have the first path drawn in black in the figure
below. We have 2 options for the second path, depicted in blue and red. The negative slopes of the
first segments of the blue and red paths, 1

3 and −2, are the solutions to the polynomial.

Proposition 11.1. The solutions to a polynomial anx
n + an−1x

n−1 + · · · + a1x + a0 = 0 are the
negative slope of the first segment of the second path.

Proof. The sides of the second path consist of the hypotenuses to a set of similar right triangles with
one side on the first path.
Let us define yk as the length opposite the ricocheting angle. For example:

We know that the following set of equations is true:

yn = slope · an = −xan

yn−1 = slope · (an−1 − (−xan) = −x(an−1 + xan)

yn−2 = slope · (an−2 − (−x(an−1 − (−xan)) = −x(an−2 + x(an−1 + xan))

.

.

.

(4) y1 = −x(a1 + x(a2 + . . . .+ x(an−2 + x(an−1 + xan)) . . . ))

However, we know that y1 = a0. Equating (4) and a0 simplifies to f(x) = 0.
Lill’s method works on a polynomial based off of Horner’s method. The polynomial anx

n +
an−1x

n−1+ · · ·+a1x+a0 has distances of anx, (an−1+an)x, ((an−1+an)x+an−2)x, . . . between the
vertices of the polynomial and root paths. Lill’s method is simply a visual construction of synthetic
division by a linear root.

□
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As an extension of this, we have:

Proposition 11.2. A polynomial of degree n can be solved with n− 2 simultaneous folds.

Proof. We can use Lill’s method to reason this. A polynomial with degree n, when drawn out using
Lill’s method, would be composed of n segments and n− 1 folds. We can apply a certain algorithm
to specific segments and turns:
Assume we use a multitude of two fold algorithms (AL1-AL10) for all the n− 3 intermediate turns.
This would give us a total of 2(n− 3) + 2 = 2(n− 2) equations.

Now, assume we use the two fold algorithm AL6[4] for the first and last segment and n − 2 fold
axiom for the n− 2 intermediate segments.
This would give us a total of 2(n − 2) equations, equivalent to the number of equations from the
turns.

Therefore, the same amount of equations used to solve the polynomial formed from the turns is
formed from n− 2 simultaneous folds. □

From the section above, we can say that all quintics can be solved with 3-fold origami. However,
Alper and Lang[4] attempted to do better and found a method to solve quintics with 2 fold origami:

Proposition 11.3. The quintics are solvable with axiom AL4a6ab.

Proof. As described in section 10, algorithm AL4a6ab is a two-fold algorithm, composed of 2 folds
done simultaneously:

Fold 1: On a coordinate plane Q(0, h) and m : y = −h, Q is folded over ξ
onto line m to point Q′(2t,−h).

We describe fold ξ in vector form in terms of the normal vector −→n :
QQ′ =< 2t,−2h >, point x(x, y), and point x0 on line ξ as −→n ·x = −→n ·x0. We
can choose x0 to be (t, 0), the midpoint of QQ′. Substituting and evaluating,
we get

(5) t2 = tx− hy.

Fold 2: On a coordinate plane P (p, q) and l : x = k, P is folded over χ onto
line l to point P ′(k, s). Again, we describe fold χ in vector form in terms of
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the normal vector −→n : PP ′ =< k− p, s− q >, point x(x, y), and point x0 on

line χ as −→n · x = −→n · x0. Substituting −→n and x0 as ( s+q
2 , k+p

2 ), we have the
equation for χ as:

(6)
s2 − q2

2
+

k2 − p2

2
= (k − p)x+ (s− q)y

Define line n as the imprint of χ folded over ξ. We set n as ax+ by = c.
We now have 2 cases: ξ and n intersect or ξ and n do not intersect.
Let us first take the case in which they do intersect: We solve for the intersection point of ξ and

n using the equations of both to get the intersection as

(7)

(
bt2 + ch

bt+ ah
,− t(at− c)

bt+ ah

)
We also know that the intersection is on χ, so we plug in the point in the equation of χ to get:

(8) (k − p)
bt2 + ch

bt+ ah
− (s− q)

t(at− c)

bt+ ah
=

s2 − q2

2
+

k2 − p2

2
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Additionally, fold χ bisects the angle θ between ξ and n. We then get:

cos
θ

2
=

|−→nξ · −→nχ|
||−→nξ|| ||−→nχ||

=
|−→nξ · −→nn|

||−→nξ|| ||−→nn||
.

When we substitute nξ, nχ, and nn for (t,−h), (k − p, s− q), and (a, b), respectively, to get:

|t(k − p)− h(s− q)|√
(k − p)2 + (s− q)2

=
|at− bh|√
a2 − b2

.

This equation can be substituted along with equation (8) to get a quintic:

t5 + αt4 + βt3 + γt2 + δt+ ϵ = 0.

When we solve for the coefficients, we get:

(9) α = (−k − p+ 2bq − b2k + b2p− 12bc− 2c)/4

(10) β = h(q + 2bp− b2q + bc− h+ 2b2h)

(11) γ = h2(3p− k − 6bq − b2k − 3b2p+ 2bh)/2

(12) δ = −h3(q + 2bp− b2q − bc)

(13) ϵ = h4(−k − p+ 2bq − b2k + b2p+ 2c)/4.

Now, we solve for P,Q, l,m, and n. Using equations (9) and (13), we get:

(14) ϵ− h4α = h4(c+ 3bh)

Using equations (10) and (12), we get:

(15) b2β + δ = h3(2bc− 2b2h− h)
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Using equations (14) and (15), we have:

b =
ϵ− h4α±

√
(ϵ− h4α)2 − 4h6(h4 + h2β + δ)

4h5

c =
ϵ− h4α± 3

√
(ϵ− h4α)2 − 4h6(h4 + h2β + δ)

4h4
.

From the set of equations (9-13), we can substitute the values of b and c to solve for k, p, and q:

k = −17bh3 + 3h2(c+ 2α)− γ

2h2(b2 + 1)

p =
−bh3(b2 − 3) + h2((2a− 3c)b2 − c2 − 2α) + 4bhβ + (1− b2)γ

2h2(b2 + 1)2

q =
h3(2b4 + 4b2 + 1) + bh2(bc + 2α) + βh(1− b2)− bγ

h2(b2 + 1)2

Now, we take the case in which ξ and n do not intersect. We immediately see that some adjustments
must be made:

(1) The normal vectors to ξ and n (< t,−h > and < a, b >, respectively) are parallel. Therefore,
we have:

(16) bt+ ah = 0.

(2) Since fold ξ places fold χ upon line n, all 3 are parallel to each other. Therefore, we get
another equation from the normals of the 3 vectors:

(17) b(k − p)− a(s− q) = 0.

(3) The distance between ξ and χ is equal to the distance between ξ and n. The distance
between 2 parallel lines is: ∣∣∣∣ |c1 − c2|√

a2 + b2

∣∣∣∣ ,
where c1 and c2 are the y-intercepts of the two lines and a and b are the coefficients of x
and y, respectively.

Substituting equation (16), we can alter the equation of ξ to ax − by = −a2h/b and solve for the
distance between ξ and n:

d =
|ah2/b+ c|√

a2 + b2
.

Similarly, we can alter the original equation of χ using equation (17) to get ax+ by = (a2(k + p) +
2abq + b2(k − p))/2a and solve for the distance between ξ and χ:

d =
|ah2/b+ (a2(k + p) + 2abq + b2(k − p))/2a|√

a2 + b2
.

Setting the two distances equal to each other gives:

(18)
a2(k + p) + 2abq + b2(k − p)

2a
= c

and

(19) 4a3h+ a2b(k + p) + 2ab(bq + c) + b3(k − p) = 0.

We now compare the 2 new conditions:

(1) Equation (18) compares the altered equation of χ and the original equation of n, ax+by = c,
implying that n is equal to χ. This can be disregarded.

(2) Equation (19) can be shown using equations (16) and equations (9-13), so this condition,
too, can be disregarded.
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This shows that case 2, the case when ξ and n are parallel, is entirely contained within the first case.
The solution found in case 1 stands regardless of the intersection of ξ and n.

So, we still have the same solutions as in case 1. We are able to solve a quintic with two-fold
origami. □
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