
MODEL THEORY AND THE AX-GROTHENDIECK THEOREM
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Abstract. In this paper we will explain basic concepts of first order logic and model theory.
We will introduce some notions from abstract algebra that will allow us to give a proof for the
Ax-Grothendieck theorem, and give the reader a perspective on the non-standard method.
This paper relies heavily on [Mar00], but our goal was to show more detailed and clearer
proofs, so as to maximize the reader’s understanding.

1. Introduction

Model theory is a branch of mathematical logic, which regards mathematical structures
(such as groups, fields or graphs) and relates them to formal theories, using first order logic
(and first order languages). This field relies in the concept of truth, and most of the work
we will do is proving some theories are true within a structure (i.e. the structure is a model
of the theory), or starting with a structure and figuring out what could be true in it. We
could also define model theory as the study of formal languages and their interpretations, or
at least it started like that. Nowadays, “model theory is the study of the interpretation of
any language, formal or natural, by means of set-theoretic structures, with Alfred Tarski’s
truth definition as a paradigm”(Wilfrid Hodges).

As in every branch of mathematical logic, model theory means abstraction. As we discuss
notions as consistency, satisfiability, decidability and completeness, we will see that the
choice of the language we choose to express mathematical ideas may change mathematics.
How and where we interpret a language affects the truth of a certain statement. Despite
this, model theory finds a clear pathway towards classical mathematics, as opposed to the
rest of mathematical logic branches. Logic results apply only in logic, and classical math
results apply only in classical math. Model theory is a sort of superposition, an intermediary
that can translate results from one field to the other. This is what we will be exploring
in this paper. We will begin by proving two theorems that work as cornerstones of model
theory (the Completeness Theorem, which states a theory is consistent if an only if it has a
model, and the Compactness Theorem, which states that if every finite subset of a theory
has a model, then the theory istelf has a model). Then, using these theorems, we will see the
connections abstract algebra shares with model theory, and reach our main theorem: the Ax-
Grothendieck Theorem. This theorem states that if an n-dimensional complex polynomial
function is injective, then it is surjective. This result alone does not tell us much, although
it might be weird for the reader to see it, as it seems completely unrelated to the subject.
The thing that is actually interesting is the proof that it uses, which illustrates perfectly this
overlapping between model theory and the rest of mathematics (also, the author would like to
add that it is beautiful). Lastly, we introduce the Löwenheim Skolem Theorems, which proves
the existence of non-standard models for infinite models, and introduce exciting possibilities.
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We could choose a lot of starting dates for model theory, so we will just stick to one.
We will consider model theory started out in 1915, when Leopold Löwenheim published
a less general case of the Downward Löwenheim-Skolem Theorem, making this the first
significant result in the field of study. Afterwards, the famous mathematician Kurt Gödel
made major advancements in logic. In 1930, he formulated the Completeness Theorem,
and the Compactness Theorem as a lemma of it. Anatoly Maltsev was able to generalize
all these theorems between the years 1936-1941. The name “model theory ”was coined by
Alfred Tarski in 1954. He is a very important figure, since he developed model theory as
an independent discipline. He set the foundations for the subject with his works on logical
consequence, deductive systems, the algebra of logic, the theory of definability, and the
semantic definition of truth. He achieved admirable results, such as proving the decidability
of the real closed fields, and as a corollary, the decidability of euclidean geometry. Here,
model theory took a turn. It started drifting away from logic, and venturing onto other
branches of mathematics. Ultraproducts became a popular tool, and Abraham Robinson
was able to develop non-standard analysis in the 1960s (this work was followed by Howard
Jerome Keisler). In this decade, significant connections between model theory and abstract
algebra (more specifically, algebraic classes) were made by James Ax. Now, we reach the
second turning point in model theory. Saharon Shelah was able to develop stability theory,
which gave place to a whole new class of concepts and questions, which are the topics for
which model theory is relevant today.

Now, regarding the paper. In Section 2 we will introduce some basic concepts about first
order languages, as well as mathematical structures. In Section 3 we define the concept of
truth, and we start applying it to models of theories. In Section 4 we will prove the two main
theorems of model theory we talked about: Completeness and Compactness. In Section 5
we prove a generalization of the Compactness Theorem. Using this result, we can move on
to Section 6, and transition towards abstract algebra and algebraically closed fields. Then,
we prove our main theorem in Section 7: the Ax-Grothendieck Theorem. In Section 8 we
give proofs for the Löwenheim-Skolem Theorems. Section 9 is an appendix which covers the
following topics: induction on formulas, cardinals, abstract algebra and Zorn’s Lemma, in a
very high pace. Whenever you feel lost, we recommend you to check the appendix.

2. Preliminaries

2.1. First Order Languages.

Notation. A first order language L consists of a set of symbols and the formulas we con
build with them (following certain rules). These symbols can be categorized in the following
way:

(1) Logical symbols
• Parentheses: (, ). They eliminate ambiguity, allowing only one possible interpre-
tation of a formula. One should read formulas from left to right, and assume
connective symbols apply only to the symbol (or formula between parentheses)
immediately to the right.
• Connective symbols: ∧,∨,←→,−→,¬. These are, respectively, and, or, iff,
implies, not.
• Variables: v1, v2 . . . , vn, one for each positive integer n. We can have infinitely
many variables. We will also use for variables the letters x, y, z, . . . .
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• Equality symbol (not necessarily): =. It is technically a predicate symbol, but
it falls into this category since we will consider the axioms of equality as rules
of logic. It is possible to consider it a non logical symbol, but it will affect its
behavior under translations into informal language.

(2) Parameters
• Quantifier symbols: ∃,∀. These mean, respectively, there exists, for all.
• Predicate symbols: They imply a relation between some elements. An n-ary
predicate symbol R describes a relation between n elements, we will refer to n
as the arity of R.
• Constant symbols: Some set (possibly empty) of symbols.
• Function symbols: They work the same way as all functions. An n-ary function
f is applied to n elements, as with predicates.

Example. From the English language, we can translate the phrase “every person who is blond-
haired is not red-haired”to a first order language where the variables correspond to people,
B is an unary predicate indicating a person has blond hair and R is an unary predicate
indicating a person has red hair. It would look like this

∀x(Bx −→ (¬Rx)).

Example. In the language of elementary number theory, where variables correspond to nat-
ural numbers, the number 0 is the constant symbol, the functions are +, ·, S, exp (addition,
multiplication, successor and exponentiation, respectively), and we have equality and the
predicate symbol <, meaning less-than. We can write the following statements:

• ∃x(y = x+ x). This tells us that y is even.
• x = S0. This means x = 1
• ∀x(x = y · z −→ y = S0∨ z = S0). This translates to “all natural numbers are either
prime or 1”(clearly false).

Definition 2.1. A finite sequence of symbols will be called an expression.

Definition 2.2. We define a term to be an expression we can get from the constant symbols
and variables, by applying zero or more times a function symbol.

Definition 2.3. An atomic formula is an expression which follows the form

Rt1···tn .

Where R is an n-ary predicate symbol and t1, . . . , tn are terms.

Definition 2.4. A well formed formula is an expression built by atomic formulas and the
use (zero or more times) of connective symbols. From this point forward we will refer to well
formed formulas as formulas.

In formulas, variables may or may not appear tied to a quantifier. If in the formula ϕ a
variable v1 is not tied to any quantifier we say v1 occurs free in ϕ (otherwise we say it is
bound). If variables v1, . . . , vn occur free in ϕ, we can indicate that by writing ϕ(v1, . . . , vn).

Definition 2.5. A formula with no free variables is called a sentence.

It is possible for us to turn a formula ϕ with free variables into a sentence using a function
s : V −→ S, where s will translate the set V of all variables into some set S, and each
variable x will be translated to s(x). When this happens, we indicate it as ϕ[s].
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Example. Again, with the language of elementary number theory, we can get every natural
number using the constant 0 and successor function. These are all terms. Moreover, the
expression Sx < x+ y is an atomic formula. We can keep building and get a more complex
formula, like Sx < x+y ←→ S0 < y. If we quantify all variables we end up with a sentence:

∀x∀y(Sx < x+ y ←→ S0 < y).

2.2. Structures. Mathematical structures are described by languages. We could say a struc-
ture is an interpretation of a language. Essentially, a structure is a set with functions and
relations, which interprets a language L. We call this an L-structure.
Definition 2.6. Within a language L where we have a set F of function symbols f , a set
R of predicate symbols R and a set C of constant symbols, an L-structureM is given by:

• A set of elements to which the universal quantifier ∀ refers to, called the underlying
set ofM. we will refer to it as M . The amount of elements in the underlying set is
called the cardinality of the set, and it will be denoted by |M |.
• A function fM :Mn −→M for each f ∈M, where f is n-ary.
• A relation RM for each R ∈ Rn, where R is n-ary.
• An element cM for each c ∈ C.

We refer to fM, RM, and cM as the interpretations of symbols f , R and c.

Notation. The structureM can be denoted by writing (M ;RM, fM, cM).

Example. We can take the finite structure G, ({a, b, c, d};EG), where E is a binary predicate
symbol, and EG = ({a, b}, {b, c}, {c, b}). It is possible to interpret it as a directed graph,
where the elements of the underlying set are vertices and the relation EG indicates an edge
between two vertices.

a

b

c

d

Definition 2.7. LetM and N be L-structures and σ : M −→ N an injective function. If
σ satisfies

(1) σ(fM(a1, . . . , an)) = fN (σ(a1), . . . , σ(an)) for all n-ary f ∈ F and a1, . . . , an ∈M
(2) (a1, . . . , an) ∈ RM iff (σ(a1), . . . , σ(an)) ∈ RN for every n-ary R ∈ R and a1, . . . , an ∈

M
(3) σ(cM) = cN for all c ∈ C

then we say σ is an L-embedding. A bijective L-embedding is an L-isomorphism. Whenever
there exists an embedding from M to N and M ⊆ N , we callM a substructure of N , or N
an extension ofM.

Example. (Z; +, 0) is a substructure of (R; +, 0). Let us define σ : Z −→ R, and let σ(x) = x.
Then, we can see that σ is an embedding, because it is injective and it satisfies all the
conditions stated before:

(1) σ(a1 + a2) = σ(a1) + σ(a2) for every ai ∈ Z.
(2) There are no relations in these structures, we could count equality as one but we will

not do that because of what we stated in the beginning of the section.
(3) σ(0) = 0.
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Since σ is an embedding and Z ⊆ R, then our statement is true.

3. Models and Theories

In any L-structure, sentences can be true or false. Whenever a sentence ϕ is true in a
structureM we will say thatM satisfies ϕ, and write this asM |= ϕ. We will now define
more generally and rigorously the concept of truth. Let ϕ(v1, . . . , vn) be a formula, and
(v1, . . . , vn) = v̄ its free variables. Let ā = (a1, . . . , an) ∈Mn.

Definition 3.1. We defineM |= ϕ(ā) as it follows:

(1) Atomic formulas
(i) Let ti be a term, if ϕ is t1 = t2, thenM |= ϕ(ā) iff tM1 (ā) = tM2 (ā).
(ii) If ϕ is R(t1, . . . , tn), thenM |= ϕ(ā) iff (tM1 (ā), . . . , tMn (ā)) ∈ RM.

(2) Other formulas
(i) If ϕ is ¬ψ, thenM |= ϕ(ā) iffM ̸|= ψ(ā).
(ii) If ϕ is α −→ β, thenM |= ϕ(ā) iffM ̸|= α(ā) orM |= β(ā) (or both).
(iii) If ϕ is ∀vi ψ(v̄, vi), thenM |= ϕ(ā) iffM |= ψ(ā, b), for all b ∈M .

Remark 3.2. This is a definition by induction. If you are not familiar with them, we strongly
recommend you to read the appendix about induction on formulas. Also, read carefully the
proof for the next proposition.

Definition 3.3. IfM and N are both structures, and for all L-sentences ϕ
M |= ϕ ⇐⇒ N |= ϕ

then we sayM and N are elementarily equivalent, and writeM≡ N .

Example. In the language of number theory, the structure of natural numbers is elementary
equivalent to the structure of even natural numbers. It is clear that any sentence true in one
is true in the other. This can be explained by the following result.

Proposition 3.4. IfM and N are isomorphic, then they are elementarily equivalent.

Proof. We will show this by induction on formulas. Let σ : M −→ N be an isomorphism.
First we will prove that σ(tM(ā)) = tN (σ(ā)), which will be useful to prove our statement
holds in all atomic formulas. Then we will show that if our statement holds in all atomic
formulas ϕ and ψ, then it also holds in the formulas ¬ϕ, ϕ −→ ψ and ∀xϕ. Thus, it will
hold in all formulas.

Claim 3.5. Let t be a term with free variables (v1, . . . , vn) = v̄ and ā = (a1, . . . , an) ∈ M .
Let σ(ā) denote (σ(a1), . . . , σ(an)). Then, σ(t

M(ā)) = tN (σ(ā)).

Proof. We show this by induction on terms.

(i) If t = c, then σ(tM(ā)) = σ(cM) = cN = tN (σ(ā)). This follows from item (3) in 2.7.
(ii) If t = vi, then σ(t

M(ā)) = σ(ai) = tN (σ(ai)).
(iii) If t = f(t1 . . . tn), then

σ(tM(ā)) = σ(fM(tM1 (ā), . . . , tMn (ā))

= fN (σ(tN1 (ā)), . . . , σ(tNn (ā)))

= tN (σ(ā)).

This follows from item (1) in 2.7.
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■

Now, we can show the statement holds in any atomic formula ϕ:

(i) If ϕ is t1 = t2, then

M |= ϕ(ā) ⇐⇒ tM1 (ā) = tM2 (ā)

⇐⇒ σ(tM1 (ā)) = σ(tM2 (ā))

⇐⇒ tN1 (σ(ā)) = tN2 (σ(ā))

⇐⇒ N |= ϕ(σ(ā)).

(ii) If ϕ is R(t1, . . . , tn), then

M |= ϕ ⇐⇒ (tM1 (ā), . . . , tMn (ā)) ∈ RM

⇐⇒ (σ(tN1 (ā)), . . . , σ(tNn (ā))) ∈ RN

⇐⇒ RN |= ϕ(σ(ā)).

Thus, the statement is true for all atomic formulas. Our inductive hypothesis will be that
this property also holds in ψ and β. We will now prove that if our hypothesis is true, then
the statement holds as we build bigger and bigger formulas:

(i) If ϕ is ¬ψ, thenM |= ϕ(ā) ⇐⇒ M ̸|= ψ(ā) ⇐⇒ N ̸|= ψ(σ(ā)) ⇐⇒ N |= ϕ(σ(ā)).
(ii) If ϕ is ψ −→ β, thenM |= ϕ(ā) iff eitherM ̸|= ψ(ā) orM |= β(ā) (or both). This

means either

M |= ϕ(ā) ⇐⇒ M ̸|= ψ(ā)

⇐⇒ N ̸|= ψ(σ(ā))

⇐⇒ N |= ϕ(σ(ā)),

or

M |= ϕ(ā) ⇐⇒ M |= β(ā)

⇐⇒ N |= β(σ(ā))

⇐⇒ N |= ϕ(σ(ā)).

As we can see, the reasoning is similar to the first item.
(iii) If ϕ is ∀xψ, thenM |= ϕ(ā) ⇐⇒ M |= ψ(ā, b) for all b ∈ M ⇐⇒ N |= ψ(σ(ā), c)

for all c ∈ N ⇐⇒ N |= ϕ(ā).

Since we have proven our statement holds in any atomic formula, and we have proven it also
holds in any formula built by formulas in which it holds, then it holds for all L-formulas. ■

Definition 3.6. An L-theory T is a set of L-sentences in a language L. We say M is a
model of T and writeM |= T iff for every sentence ϕ ∈ T ,M |= ϕ.

Definition 3.7. If a theory has a model, we say it is satisfiable.

Example. Let us take the formula x2 − y = 1. This is satisfiable, since it has a model. If we
say x = 1 and y = 0, then it is true. On the contrary ∀x(x ̸= x) is unsatisfiable, since it
cannot be true in any structure.

Definition 3.8. Let T be a theory and ϕ be a formula. We say T logically implies ϕ if
M |= ϕ wheneverM |= T .



MODEL THEORY AND THE AX-GROTHENDIECK THEOREM 7

Example. Let us take a theory made up of one formula: 2x = 2. Then, it logically implies
x = 1, since every model of 2x = 2 is a model of x = 1.

Whenever we want to show that T |= ϕ, we are faced to checking if every model of T
satisfies ϕ. Since doing this could take a lifetime, what we do is give an informal mathematical
proof. A proof of ϕ from T consists in a finite chain of formulas α1, . . . , αn, where α1 ∈ T ∪ Λ,
αn is ϕ, and for each αk, either αk ∈ T ∪ Λ or αk is obtained because αi and αi −→ αk are
formulas previous to αk in said chain. Λ denotes the set of axioms (which could be infinite).
We call this way of inferring new formulas modus ponens.

Definition 3.9. A sentence ϕ which can be obtained in this manner from T ∪ Λ is a theorem
of T , written T ⊢ ϕ. The formulas α1, . . . , αn are the deduction of ϕ from T .

4. Basic Results in Model Theory

Lemma 4.1. If ϕ is a logical axiom, then ϕ is valid, meaning ∅ |= ϕ. This is equivalent to
saying any structure and any variable assignation satisfies ϕ.

We will not be giving a proof in this paper. This lemma follows from a categorization of
the kinds of logical axioms, and afterwards proving the lemma for each category. A proof
can be found in [End01], section 2.5 page 131.

Definition 4.2. A theory T is said to be consistent if and only if there are not any formulas
ϕ such that T ⊢ ϕ and T ⊢ ¬ϕ. If such formula exists, then T is inconsistent.

Theorem 4.3 (Soundness Theorem). If T ⊢ ϕ, then T |= ϕ

Proof. We show this by induction.

(i) If ϕ is an axiom, then by 4.1, T |= ϕ.
(ii) If ϕ ∈ T , T |= ϕ, since it is clear that every model that satisfies T , by force has to

satisfy ϕ.
(iii) If ϕ is obtained from ψ and ψ −→ ϕ by modus ponens, then we know by our inductive

hypothesis that T |= ψ and T |= ψ −→ ϕ. Therefore, T |= ϕ, since if this does not
happen, then T ̸|= ψ −→ ϕ.

■

Theorem 4.4 (Gödel’s Completeness Theorem). An L-theory T is consistent if and only if
it is satisfiable.

This proof contains assumptions that will be justified later on. If this is your first reading,
we recommend you to move forward and read the full proof later.

Proof. Suppose T is inconsistent. Then, T ⊢ ϕ and T ⊢ ¬ϕ. By the Soundess Theorem,
T |= {ϕ,¬ϕ}. Therefore, T cannot have a model, and it is unsatisfiable. Now, assume T is
consistent. We extend L and T to L∗ and T ∗ just like in 5.8. By 5.3, T ∗ has a modelM∗.
Reduce M∗ to M, where we limit the model to the language L. Since formulas in T only
involve constants in L, thenM |= T . ■

Lemma 4.5. If T ∪ α ⊢ β, then T ⊢ α −→ β.

Proof. If the deduction of β does not use α, then β can be deducted from just formulas in
T , so T ⊢ β, and therefore T ⊢ α −→ β. If the deduction of β uses α, we have two cases.
Either T ⊢ α, and then T ⊢ β since we can obtain α from T , and therefore we can deduct
β, or T ̸⊢ α. Thus, T ⊢ α −→ β. ■
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Corollary 4.6. Let T be a theory and ϕ an L-sentence. Then, T |= ϕ if and only if T ⊢ ϕ.

Proof. Because of Theorem 4.3, we only have to prove the converse: if T |= ϕ then T ⊢ ϕ.
Assume T |= ϕ. M |= T implies M |= ϕ. Therefore, M ̸|= ¬ϕ, which means T ;¬ϕ is
unsatisfiable (T ;¬ϕ means the theory T plus the formula ¬ϕ), and hence, inconsistent. If
T ;¬ϕ is inconsistent, then T ;¬ϕ ⊢ {α,¬α}. By 4.5, T ⊢ (¬ϕ −→ α) and T ⊢ (¬ϕ −→ ¬α)
for some formula α. {¬ϕ −→ α,¬ϕ −→ ¬α} implies ϕ, thus T ⊢ ϕ. ■

Theorem 4.7 (Compactness Theorem). If every finite subset of a theory T is satisfiable,
then T is satisfiable.

Proof. If T is finite, then it is trivial to see that T is satisfiable, given that T is a subset of
itself. Suppose T is infinite. If T is unsatisfiable, then by Theorem 4.3 it is inconsistent. Let
us say T ⊢ α and T ⊢ ¬α. Let R ⊂ T be the set of formulas from which one can deduct α
and S ⊂ T be the of formulas from which one can deduct ¬α. Both R and S are finite, so
R ∪ S is also finite, and it is a subset of T . Because of this, R ∪ S is satisfiable, and thus,
consistent. But we have stated that R ∪ S ⊢ {α,¬α}. Contradiction! ■

This Theorem may seem simple, but it will be one of the most important tools in this
paper. Whenever every finite subset of a theory T is satisfiable, we will say T is finitely
satisfiable.

Proposition 4.8. For T a theory, if T |= ϕ, then there exists a finite ∆ ⊆ T such that
∆ |= ϕ.

Proof. If ∆ ̸|= ϕ, then ∆;¬ϕ is satisfiable. Consider T a union of satisfiable subsets, since
∆;¬ϕ is satisfiable, T ∪¬ϕ is satisfiable, because of the Compactness Theorem. Thus T ̸|= ϕ.
Contradiction! ■

5. The Compactness Theorem Revisited

We will proceed to prove a stronger version of the Compactness Theorem, with a proof
based on one of the Completeness Theorem given by Leon Henkin in [Hen49]. We will
show that for every finitely satisfiable theory it is possible to construct a model by adding
constant symbols to the language, so that every element of the model is named by a constant
symbol. It will take long to prove this, if the proof seems overwhelming we recommend to
skip forward, and return to it later.

Definition 5.1. We say that an L-theory T has the witness property if whenever ϕ(v)
is a formula with one free variable v, then there is a constant symbol c ∈ L such that
(∃vϕ(v)) −→ ϕ(c)) ∈ T .

An L-theory T is maximal if for all ϕ either ϕ ∈ T or ¬ϕ ∈ T .

Lemma 5.2. Let T be a maximal and finitely satisfiable L-theory. If ∆ ⊆ T is finite and
∆ |= ψ, then ψ ∈ T .

Proof. Suppose not. Then, because T is maximal, ¬ψ ∈ T , and thus ∆ ∪ ¬ψ is satisfiable,
and this means ∆ ̸|= ψ. Contradiction! ■

Proposition 5.3. Let T be a maximal and finitely satisfiable L-theory with the witness
property. Let the language L have at most κ constant symbols, then T has a modelM which
cardinality is less than or equal to κ, |M | ≤ κ.
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Proof. Let C be the set of constant symbols in L. For c, d ∈ C, we say c ∼ d if c = d ∈ T .

Claim 5.4. c ∼ d is an equivalence relation.

Proof. c = c is in T . Let us say c = d and d = e are in T , we can see that since the sentences
c = c, d = d, c = d are in T , and those sentences imply d = c, then by 5.2 d = c ∈ T . With
the same argument, c = e ∈ T . ■

The underlying set of our model will be M = C/ ∼, the equivalence classes of C mod
∼. Since there cannot be more equivalence classes than constant symbols, then |M | ≤ κ.
Let c∗ denote the equivalence class of c, our structure will interpret c as is equivalence class
c∗ = cM. Now we will see how we will interpret predicate and function symbols. Suppose R
is an n-ary predicate symbol in L.

Claim 5.5. Assume that c1, . . . , cn, d1, . . . , dn ∈ C, and ci = di for all i = {1, . . . , n}. Then,
R(c̄) ∈ T iff R(d̄) ∈ T .

Proof. If R(c̄) ∈ T then R(d̄) is implied by that, and because of 5.2, R(d̄) ∈ T . ■

Let us interpret R as RM = {c∗1, . . . , c∗n : R(c1, . . . , cn) ∈ T}. By the previous claim, RM

is unambiguous. Let us say f is an n-ary function symbol in L and c1, . . . , cn ∈ C. Since
|= ∃vf(c1, . . . , cn) = v (if not, f would not have an image), and T has the witness property,
by 5.2, there exists cn+1 ∈ C such that f(c1, . . . , cn) = cn+1 ∈ T . As above, if ci ∼ di for all
i = {1, . . . , n+1} then f(d1, . . . , dn) = dn+1 ∈ T . Similiarly, if f(d1, . . . , dn) = dn+1 ∈ T and
ci ∼ di for all i = {1, . . . , n}, then cn+1 = dn+1. So, we have an unambiguous interpretation
for the function fM :Mn −→M ,

fM(c∗1, . . . , c
∗
n) = d∗ ⇐⇒ f(c1, . . . , cn) = d ∈ T.

We are finished describing the structureM. Now, we will prove by induction thatM |= T .
First, we show terms behave properly.

Claim 5.6. Let t be a term with free variables v1, . . . , vn, and take c1, . . . , cn, d ∈ C. Then,
t(c1, . . . , cn) = d ∈ T iff tM(c∗1, . . . , c

∗
n) = d∗.

Proof. Suppose t(c1, . . . , cn) = d. If t is a constant symbol then c = d ∈ T , and cM = c∗ = d∗.
If t is the variable vi, then ci = d ∈ T and tM(c∗1, . . . , c

∗
n) = c∗i = d∗. Let us assume the

claim is true for t1, . . . , tm, and t is f(t1, . . . , tm). Since T has the witness property, and
by 5.2, it is possible for us to find d, d1, . . . , dm ∈ T such that ti(c1, . . . , cn) = di ∈ T and
that f(d1, . . . , dm) = d ∈ T (due to the fact that if there exists a set of free variables
satisfying a formula in T , there has to exist a set of constants which also satisfy it in T ,
and this implies the formula with its variables assigned to the set of constants, which we
have seen in 5.2 that is reason enough for this formula to be in T ). Therefore, by our
assumption, tMi (c∗1, . . . , c

∗
n) = d∗i , and f

M(d∗1, . . . , d
∗
m) = d∗. Hence, tM(c∗1, . . . , c

∗
n) = d∗, and

the induction is complete. To see the converse, we suppose we have tM(c∗1, . . . , c
∗
n) = d∗. In a

similar way than before, we can see that by the witness property and 5.2, we can take e ∈ C
such that t(c1, . . . , cn) = e ∈ T . But previously we had proven that if t(c1, . . . , cn) = d, then
tM(c∗1, . . . , c

∗
n) = d∗, so now we have that tM(c∗1, . . . , c

∗
n) = e∗. Therefore, e∗ = d∗, e = d ∈ T .

e = d and t(c1, . . . , cn) = e imply t(c1, . . . , cn) = d, so by 5.2, t(c1, . . . , cn) = d ∈ T ■

Finally, we complete the proof via induction on formulas.

Claim 5.7. For all formulas ϕ(v1, . . . , vn) and c1, . . . , cn ∈ C,M |= ϕ(c̄∗) iff ϕ(c̄) ∈ T .
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(1) Atomic formulas
(i) Say ϕ is t1 = t2. Because of the witness property an 5.2, we can find d1 and

d2 constants such that t1(c̄) = d1 and t2(c̄) = d2. Also, by 5, tM1 (c̄∗) = d∗1 and
tM2 (c̄∗) = d∗2. Now,

ϕ(c̄) ∈ T ⇐⇒ t1(c̄) = t2(c̄)

⇐⇒ d1 = d2

⇐⇒ d∗1 = d∗2

⇐⇒ tM1 (c̄∗) = tM2 (c̄∗)

⇐⇒ M |= ϕ(c̄∗).

(ii) Say ϕ is R(t1, . . . , tn), then by witness property and 5.2, there exist d1, . . . , dm ∈
C such that ti(c̄) = di. So,

ϕ(c̄) ∈ T ⇐⇒ R(d̄) ∈ T
⇐⇒ d̄∗ ∈ RM

⇐⇒ M |= ϕ(c̄∗).

(2) Other formulas Assume the claim is true for ψ and β
(i) Suppose ϕ is ¬ψ. If M |= ϕ(c̄∗), then M ̸|= ψ(c̄∗), then ψ(c̄) ̸∈ T , and by

maximality, ϕ(c̄) ∈ T . (This also works inversely)
(ii) Suppose ϕ is ψ −→ β. IfM |= ϕ(c̄∗) then eitherM ̸|= ψ(c̄∗) (we have already

seen that case in the previous item) orM |= β(c̄∗), so β(c̄) ∈ T . And β |= ϕ, so
by 5.2, ϕ(c̄) ∈ T . (This also works inversely).

(iii) If ϕ is ∀xψ, then M |= ϕ(c̄∗) iff M |= ψ(d∗, c̄∗) for all constants d in C, then
ψ(d, c̄) ∈ T , and by 5.2, ϕ ∈ T . (Again, this also works inversely).

Thus, induction is finished, and we have fully proven our proposition. ■

Lemma 5.8. Let T be a finitely satisfiable L-theory. There is a language L∗ ⊇ L and a
finitely satisfiable L-theory T ∗ ⊇ T such that any L∗-theory extending T ∗ has the witness
property. We can choose L∗ such that L∗ = L+ ℵ0.

(ℵ0 denotes the cardinality of natural numbers, check the appendix!).

Proof. Let us build a language L1 ⊇ L and a theory T1 ⊇ T in the following manner: for
any L-formula ϕ(v), we will have a constant symbol in L1 such that T1 |= ∃vϕ(v) −→ ϕ(c).
For an L-formula ϕ, denote this constant symbol as cϕ, so that L1 is L ∪ {cϕ : ϕ an L-
formula}. For each L-formula ϕ(v), Θϕ will be the L1-sentence ∃vϕ(v) −→ ϕ(cϕ). T1 will be
T ∪ {Θϕ : ϕ(v) an L-formula}. With this, we will be always be able to extend T so it has
the witness property. We now have to prove that every time we extend T , it remains finitely
satisfiable, so as to finally prove our statement.

Claim 5.9. T1 is finitely satisfiable.

Proof. Assume there exists a counterexample, where ∆0∪{Θϕ1 , . . . ,Θϕn} is a non satisfiable
subset of T1, and ∆0 is a finite subset of T . In the case of ∆0, there exists an L-structure
M such thatM |= ∆0. Make an L ∪ (cϕ1 , . . . , cϕn)-structureM′ fromM, so that all inter-
pretations remain the same, only we added more constant symbols. Since the interpretation
remains the same, M′ |= ∆0. How do we make all interpretations remain the same? We
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show how (cϕ1 , . . . , cϕn) are interpreted in our new model. IfM |= ϕi(v), we choose ai in M
such that M |= ϕi(ai), and we say cM

′

ϕi
= ai. If M ̸|= ϕi(v), then c

M′

ϕi
can be any element

of M . Since M′ |= ∆0 and M′ |= Θϕi
(this is clear from what what we just stated and

the fact that T1 has the witness property). Then ∆0 ∪ {Θϕ1 , . . . ,Θϕn} is satisfied by M′.
Contradiction! ■

We keep on constructing like this, so we have L ⊆ L1 ⊆ L2 . . . and T ⊆ T1 ⊆ T2 . . .
Then, if ϕ(v) is an Li-formula, then there exists a constant symbol c ∈ Li+1 such that
Ti+1 |= ∃vϕ(v) −→ ϕ(c). Let L∗ be

⋃
Li and T ∗,

⋃
Ti. T

∗ has the witness property (we
built it to have it), so if ∆ is a finite subset of T ∗, then ∆ ∈ Ti. Every theory Ti is finitely
satisfiable, so ∆ is satisfiable, and thus, T ∗ is finitely satisfiable. Now, we know that in any
countable L-language, the cardinality set of all formulas we can make is |L| + ℵ0, since we
can combine symbols in countably many ways (L being the set of all constants, functions
and relation symbols). Since the cardinality of the union of bounded sets is equal to the
cardinality of the biggest set, then we can say |L∗| = |L|+ ℵ0. ■

Lemma 5.10. Let T be a finitely satisfiable L-theory and ϕ an L-sentence. Then, either
T ∪ ϕ or T ∪ ¬ϕ is finitely satisfiable.

Proof. Suppose this is not true. Then, there must exist finite subsets R and S of T such that
R ∪ ϕ and S ∪ ¬ϕ are both unsatisfiable. If R ∪ ϕ is unsatisfiable, this means every model
of R is not a model of ϕ, thus, R |= ¬ϕ. Since every model of R satisfies ¬ϕ, and R ∪ S is
satisfiable (so it has a model), then there exists a model of S which is also a model of ¬ϕ,
meaning S ∪ ¬ϕ is satisfiable. Contradiction! ■

Corollary 5.11. If T is a finitely satisfiable L-theory, then there is a maximal finitely
satisfiable L-theory T ∗ ⊇ T .

Proof. Let I be the set of all the finitely satisfiable L-theories containing T . Define a partial
ordering in I by inclusion (meaning, elements of the set are ordered by which one of them is
a subset of which). Let C ∈ I be a chain (a subset of the set of subsets of I, where for all
subsets X, Y , either X ⊆ Y or Y ⊆ X). Let TC =

⋃
{Σ : Σ ∈ C}. For ∆ a subset of TC , we

know by our definition of chain that ∆ ⊆ Σ for some Σ ∈ T . Every Σ is finitely satisfiable
by assumption (it is one of the finitely satisfiable L-theories in I). Then, ∆ is satisfiable, so
TC is finitely satisfiable.

This means every chain in I has to have an upper bound, so we can use Zorn’s Lemma
(in the appendix) to find T

′
maximal in the partial ordering. If T

′
is not maximal, then for

a formula ϕ, T
′ ∪ ϕ is not finitely satisfiable. But, by 5.10, this means T

′ ∪ ¬ϕ is finitely
satisfiable, and T

′
is not maximal in the partial ordering. Contradiction! ■

After all this work, we are able to prove this version of the Compactness Theorem, which
will allow us to keep advancing towards abstract algebra.

Theorem 5.12. If T is a finitely satisfiable L-theory and κ is an infinite cardinal with
κ ≥ |L|, then there is a model of T of cardinality at most κ.

Proof. By 5.8, we are always able to find L∗ ⊇ L and a finitely satisfiable L∗-theory T ∗ ⊇ T
such that any L∗-theory extending T ∗ has the witness property and cardinality at most
κ (since κ is infinite). Then, by 5.11, we can find a maximal finitely satisfiable L-theory
T

′ ⊇ T ∗. Since T
′
has the witness property, then 5.3 tells us that there is M |= T with

|M | ≤ κ. ■
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6. The Theory of ACFp

Definition 6.1. An L-theory T is complete iff for any L-sentence ϕ, either T |= ϕ or T |= ¬ϕ.
Proposition 6.2. Let T be an L-theory with infinite models. If κ is an infinite cardinal and
κ ≥ |L|, then there is a model of T of cardinality κ.

Proof. Let L∗ be L ∪ {cα : α < κ}, where each cα is a new constant symbol. Define T ∗ as
T ∪ {cα ̸= cβ : α, β < κ, α ̸= β}. First we will show that T ∗ is finitely satisfiable. Take ∆
a finite subset of T ∗, so ∆ ⊆ T ∪ {cα ̸= cβ : α, β ∈ I, α ̸= β}, where I is a finite subset of
κ. LetM be an infinite model of T . Then, for every constant cα ∈ I, we can interpret it as
a different element of M . This means these sentences are satisfied byM, soM |= ∆. This
means T ∗ is finitely satisfiable.

Now, we can see that since that since T ∗ has κ constants, every model of T ∗ has a
cardinality of at least κ. Since T ⊆ T ∗, every model of T ∗ has to satisfy T . We apply 5.12
and take a modelM of T ∗ of cardinality at most κ. Then, |M | = κ, and by what we said
before,M |= T . ■

Definition 6.3. Let κ be an infinite cardinal and T a theory with models of cardinality κ.
If any two models of T with cardinality κ are isomorphic, we say T is κ-categorical.

The following proposition will regard topics from abstract algebra. We recommend the
reader to read first the appendix (if they are not confident on their knowledge over this
subject).

Proposition 6.4. The theory ACFp is κ-categorical for all uncountable cardinals κ.

Proof. Two algebraically closed fields are isomorphic if and only if they have the same tran-
scendence degree and characteristic. The cardinality of an algebraically closed field of tran-
scendence degree γ is γ+ℵ0. If κ > ℵ0, an algebraically closed field of cardinality κ also has
transendence degree κ. Then, any two algebraically closed fields of the same characteristic
and same uncountable cardinality are isomorphic, then their models also are isomorphic. ■

Theorem 6.5 (Vaught’s Test). Let T be a satisfiable L-theory with no finite models that is
κ-categorical for some infinite cardinal κ ≥ |L|. Then T is complete.

Proof. Suppose T is not complete. Then, there exists a sentence ϕ such that T ̸|= ϕ and
T ̸|= ¬ϕ. This means that theories T ∪ϕ and T ∪¬ϕ are satisfiable. Since all models of T are
infinite, then the models of these theories also are infinite. By 6.2, there exists a model of
each with cardinality κ, let us call themM and N , respectively. Since they are models of T
with cardinality κ, they are isomorphic. By 3.4, this means they are elementary equivalent,
but since ϕ is true in one and false in the other, we have a contradiction. ■

Corollary 6.6. ACFp is complete.

Proof. By our two previous statements, this proof is immediate. ACFp is κ-categorical.
Since it has no finite models (and it has uncountable models), then it is complete. ■

Corollary 6.7 (Lefschetz Principle). Let ϕ be a sentence in the language of rings. The
following statements are equivalent:

(i) ϕ is true in the complex numbers.
(ii) ϕ is true in some algebraically closed field of characteristic 0.
(iii) ϕ is true in every algebraically closed field of characteristic 0.
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(iv) There are arbitrarily large primes p such that ϕ is true in some algebraically closed
field of characteristic p.

(v) There exists m such that ϕ is true for all ACFp, with p > m.

We will begin by proving (i)-(iii) are equivalent, and then see that (ii) implies (v), (v)
implies (iv) and (iv) implies (ii).

Proof. If ϕ is true in some algebraically closed field of characteristic 0 and false in another,
then ACF0 ̸|= ϕ and ACF0 ̸|= ¬ϕ. But, since ACF0 is complete, then this is impossible.
Also, complex numbers are an algebraically closed field of characteristic 0. Thus, we see
(i)-(iii) are equivalent. It is also evident that (v) implies (iv).

Suppose ACF0 |= ϕ. Then by 4.8, there exists a finite theory ∆ ⊂ ACF0 such that ∆ |= ϕ.
Since ∆ is finite, then it can only have finitely many sentences ¬ψp (see the appendix for
this). Thus, for large enough p, ACFp |= ∆, and thus ACFp |= ϕ.

Lastly, we can see that (iv) implies (ii) by contraposition. Suppose ACF0 ̸|= ϕ. By the
completness of ACF0, ACF0 |= ¬ϕ. By the argument above, ACFp |= ¬ϕ for sufficiently
large ϕ, so (iv) fails. ■

7. The Ax-Grothendieck Theorem

Theorem 7.1 (Ax-Grothendieck Theorem). Let f : Cn −→ Cn be an injective polynomial.
Then, f is surjective.

For the proof, we use the fact that every injective function from a finite set to another
with the same cardinality is surjective. This applies to finite fields. We can build a first
order sentence in the language of rings that holds in a field k if and only if every injective
polynomial h : kn −→ kn is surjective. After that, we prove that the sentence also holds for
any increasing union of finite fields, specifically, the algebraic closure of a finite field. Then,
by the previous corollary, the sentence holds in the complex numbers.

Proof. Note that the statement is trivial for polynomials f : kn −→ kn, where k is a finite
field. If f is injective, f is neccesarily one-to-one because k is finite, so if there was a ∈ k
such that a was not in the range, then at least two elements in the domain of the function
have the same image.

Now, assume the theorem is false, and that f(X), is a counterexample, with X =
(X1, . . . , Xn), and f(X) = (f1(X1), . . . , fn(Xn)). Suppose every fi ∈ C[X] has degree at
most d. We can build an Lr-sentence ϕn,d, such that for K a field, K |= ϕn,d if and only
if the theorem is true for all polynomials Kn −→ Kn with degree at most d. To do so, we
quantify over polynomials of degree at most d by quantifying over the coefficients, in the
following manner.

We start by writing a sentence α(i1,...,in) which describes an n-variable polynomial with
coefficients a(i1,...,in) which is injective, where ik indicates the exponent of the variable mul-
tiplied by aik and all exponents are less than or equal to d. Since f = (f1, . . . , fn), then we
will write ak,(i1,...,in) to denote that a(i1,...,in) is a coefficient of k. Then, the sentence would
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look like this:

∀x1, . . . ,∀xn∀y1, . . . ,∀yn∧
k≤n

∑
(i1,...,in)

ak,(i1,...,in)x
i1
1 · · ·xinn =

∑
(i1,...,in)

ak,(i1,...,in)y
i1
1 · · · yinn

 −→ ∧
i=1,...,n

xi = yi

 .

We also build the sentence βi1,...,in , which says such polynomial is surjective. This would
look like this:

∀z1, . . . ,∀zn∃x1, . . . , xn

∧
k≤n

∑
(i1,...,in)

ak,(i1,...,in)x
i1
1 · · ·xinn = zk

 .

Now, we quantify over the coefficients and define ϕn,d to be the following sentence:

∀
k,(i1,...,(in)

ak,(i1,...,in)(αi1,...,in −→ βi1,...,in).

Therefore, it is clear we can translate this theorem to a first order language.For example,
ϕ2,2 would look like this:

∀a1,(0,0)∀a1,(0,1)∀a1,(0,2)∀a1,(1,0)∀a1,(1,1)∀a1,(2,0)∀a2,(0,0)∀a2,(0,1)∀a2,(0,2)∀a2,(1,0)∀a2,(1,1)∀a2,(2,0)[
∀x1∀x2∀y1∀y2

((∑
a1,(i1,i2)x

i1
1 x

i2
2 =

∑
a1,(i1,i2)y

i1
1 y

i2
2 ∧
∑

a2,(i1,i2)x
i1
1 x

i2
2 =

∑
a2,(i1,i2)y

i1
1 y

i2
2

)

−→ x1 = y1∧x2 = y2

)
−→ ∀z1∀z2∃x1∃x2

(∑
a1,(i1,i2)x

i1
1 x

i2
2 = z1∧

∑
a2,(i1,i2)x

i1
1 x

i2
2 = z2

)]
.

Claim 7.2. The sentence is true in some algebraically closed field with characteristic p, with
arbitrarilly large p.

Proof. Suppose not. We know that if the polynomial f : kn −→ kn is injective then it
is bijective (k is a finite field). Let Falg

p be the algebraic closure of the finite field with p

elements. Let us assume that there exists a counterexample, f : Falg
p −→ Falg

p which is

injective but not surjective. Let ā ∈ Falg
p be the coefficients of f and (b1, . . . , bn) ∈ Falg

p an

element not in the range of f . Consider the subfield K ∈ Falg
p generated by ā and (b1, . . . , bn).

It follows that f↾Kn (the function f , with its domain restricted to Kn) is an injective but not
surjective map from Kn into itself (given how K is a field generated by ā and (b1, . . . , bn)).
Since Falg

p =
⋃∞

n=1 Fpn , then any finitely generated subfield is contained in some finite sub-

union
⋃N

n=1 Fpn . Thus, K is always finite, so we have a contradiction. Then, Falg
p |= ϕn,d

for all primes p, so this is true in an algebraically closed field with characteristic p, for an
arbitrarily large p. ■

By the claim, we see that for ϕn,d, the statement (iv) in 6.7 is true. Then, the statement
(i) is also true, and C |= ϕn,d. ■
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8. Non-Standard Models

Within model theory, whenever we have a theory and a model, we can find another model
of that theory, non-isomorphic to the original one. This new model, called the non-standard
model of the theory, may help us to prove some things for that theory. We will not be able to
prove things that were impossible to prove in the standard model, but the procedure might
actually become easier. In this section we will present the Löwenheim-Skolem Theorems,
which guarantee us the existence of non-standard models (for infinite models). These the-
orems consist in two parts: the Upward part, proving the existence of larger non-standard
models, and the Downward part, doing the same but for smaller models.

Definition 8.1. Let us have two L-structures M and N , and let h : M −→ N be an
L-embedding. If for every L-formula ϕ(v̄) and all (ā) ∈M ,

M |= ϕ(ā) ⇐⇒ N |= ϕ(h(ā))

then we say h is an elementary embedding. IfM ⊂ N we sayM is the elementary substructure
of N (and N is the elementary extension ofM).

Definition 8.2. LetM be an L-structure, and let us add to the language a constant m for
every element of M , so as to build the language LM .

The atomic diagram of M will be {ϕ(m̄) :M |= ϕ and ϕ is an atomic L-formula or its
negation}.
The elementary diagram ofM will be {ϕ(m̄) :M |= ϕ and ϕ is an L-formula}.
We will denote these as Diag(M) and ElDiag(M), respectively.

Lemma 8.3. Let N be an LM -structure.

(i) If N |=Diag(M) and we view N as an L-structure, then there is an L-embedding
M −→ N .

(ii) If N |=ElDiag(M), then there is an elementary embedding M −→ N .

Proof. Let us see each case separately:

(i) Consider the function j : M −→ N , for which j(m) = mN , meaning j(m) is the in-
terpretation in N for each constant in LM . For m1,m2 distinct elements in Diag(M),
we have m1 ̸= m2 ∈Diag(M), so j(m1) ̸= j(m2). Now with functions, if we have
fM(m̄) = mi, then f(m̄) = mi is a formula in Diag(M) and fN (j(m̄) = j(mi). Let
R be a relation symbol, so for (m̄) ∈ RM, then R(m̄) ∈Diag(M) and (j(ā)) ∈ RN .
Since we see j meets all the conditions, then it is an L-embedding.

(ii) The function j from above is elementary, we can see that by repeating the same
argument and replacing Diag(M) with ElDiag(M).

■

Theorem 8.4 (Upward Löwenheim-Skolem Theorem). Let M be an infinite L-structure
and let κ be a cardinal number such that κ ≥ |M | + |L|. Then, there exists an elementary
extension N such that |N | = κ.

Proof. Since M |=ElDiag(M), then ElDiag(M) is satisfiable. We can see that by 5.12 we
can find a model N of DiagEl(M) of cardinality at most |LM | = |L|+ |M |+ κ = κ.
Now, we know that if we have ϵ, ω < κ, then N |= mϵ ̸= mω. This means mϵ ̸= mω, so the

function from ϵ to mN
ϵ is an injective embedding from κ to N . Therefore, |N | ≥ κ. Along

with the previous result we get |N | = κ. Then, by lemma 8.3, there exists an elementary
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embedding M −→ N . Since N is a model of the elementary diagram of M, then M ⊂ N
and N is an elementary extension. ■

Proposition 8.5 (Tarski-Vaught Test). Suppose thatM is a substructure of N . Then,M
is an elementary substructure if and only if, for any formula ϕ(v, w̄) and ā ∈ M , if there is
b ∈ N such that N |= ϕ(b, ā), then there is c ∈M such that N |= ϕ(c, ā).

Proof. IfM is an elementary substructure of N , then the following part is clearly true.
Let us see the converse. We must show that for all ā ∈M and all formulas ψ(v̄)

M |= ψ(ā) ⇐⇒ N |= ψ(ā).

We will prove this by induction on formulas.

Claim 8.6. IfM is a substructure of N , ā ∈M , and ϕ(v̄) is a quantifier free formula, then
M |= ϕ(ā) ⇐⇒ N |= ϕ(ā).

Proof. We first show terms behave well. By induction on terms, we see that if t(v̄) is a term
and b̄ ∈M , then tM(b̄) = tN (b̄).

If t is a constant symbol c, then cM = cM.
If t is the variable b, then tM(b̄) = b = tN (b̄).
If t = f(t1, . . . , tn) and t

M
i (b̄) = tNi (b̄). Since M ⊆ N , fM = fN |Mn. Then,

tM(b̄) = fM(tM1 (b̄), . . . , tMn (b̄))

= fM(tM1 (b̄), . . . , tMn (b̄))

= fN (tN1 (b̄), . . . , tNn (b̄))

= tN (b̄).

Now, we prove the claim by induction on formulas. If ϕ is t1 = t2, then

M |= ϕ(ā) ⇐⇒ tM1 = tM2 ⇐⇒ tN1 = tN2 ⇐⇒ N |= ϕ(ā).

If ϕ is R(t1, . . . , tn), then

M |= ϕ(ā) ⇐⇒ (tM1 (ā), . . . , tMn (ā)) ∈ RM

⇐⇒ (tM1 (ā), . . . , tMn (ā)) ∈ RN

⇐⇒ (tN1 (ā), . . . , tNn (ā)) ∈ RN

⇐⇒ N |= ϕ(ā).

Thus, our claim is proved for all atomic formulas. Assume the claim is true for ψ and β.
Then, suppose ϕ is ¬ψ. We have

M |= ϕ(ā) ⇐⇒ M ̸|= ψ(ā) ⇐⇒ N ̸|= ψ(ā) ⇐⇒ N |= ϕ(ā).

Lastly, let ϕ be ψ −→ β. Then,

M |= ϕ(ā) ⇐⇒ M |= ¬ψ(ā) ⇐⇒ N |= ¬ψ(ā) ⇐⇒ N |= ϕ(ā)

or

M |= ϕ(ā) ⇐⇒ M |= β(ā) ⇐⇒ N |= β(ā) ⇐⇒ N |= ϕ(ā).

■
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By the claim, we know that if ϕ(v̄) is quantifier free, then M |= ϕ(ā) if and only if
N |= ϕ(ā). Therefore, our statement is true for all atomic formulas.

If the statement is true for ψ, then

M |= ¬ψ(ā) ⇐⇒ M ̸|= ψ(ā) ⇐⇒ N ̸|= ψ(ā) ⇐⇒ N |= ¬ψ(ā).

If the statement is true for ψ −→ β, then

M |= (ψ −→ β)(ā) ⇐⇒ M |= ¬ψ(ā) ⇐⇒ N |= ¬ψ(ā) ⇐⇒ N |= (ψ −→ β)(ā)

or

M |= (ψ −→ β)(ā) ⇐⇒ M |= β(ā) ⇐⇒ N |= β(ā) ⇐⇒ N |= (ψ −→ β)(ā).

Now, suppose the claim is true for ψ(v, w̄). Let ā ∈ M . If M |= ∀vψ(v, ā) then for all
b ∈M ,M |= ψ(b, ā). By our inductive assumption, N |= ψ(b, ā), so N |= ∀vψ(v, ā).

If we want to see the converse, then assume N |= ∀vψ(v, ā). This means that for all
b ∈M , N |= ψ(b, ā). By inductive hypothesis,M |= ψ(b, ā), soM |= ∀vψ(v, ā). ■

Definition 8.7. An L-theory T has built-in Skolem functions if for all L-formulas ϕ(v, w̄)
there exists a function symbol f such that T |= ∀w̄((∃vϕ(v, w̄)) −→ (ϕ(f(w̄), w̄)).

Lemma 8.8. Let T be an L-theory. There are L∗ ⊇ L and T ∗ ⊇ T an L∗-theory such that
T ∗ has built-in Skolem functions, and ifM |= T , then we can expandM toM∗ |= T ∗. We
can choose L∗ such that |L∗| = |L|+ ℵ0.

Proof. We build a sequence of languages L = L0 ∪ L1, . . . and a sequence of Li-theories
T = T0 ∪ T1, . . .. Given Li, let Li+1 = Li ∪ {fϕ : ϕ(v, w1, . . . , wn) an Li-formula}, where fϕ
is an n-ary function symbol. For ϕ(v, w̄) an Li-formula, let Ψϕ be the sentence

∀w̄((∃vϕ(v, w̄)) −→ (ϕ(fϕ(w̄), w̄))

and let Ti+1 = Ti ∪ {Ψϕ : ϕ an Li formula}.

Claim 8.9. If M |= Ti, then we can interpret the function symbols of Li+1 \ Li so that
M |= Ti+1.

Proof. Let c be some fixed element of M . If ϕ(v, w1, . . . , wn) is an Li-formula, we find a
function g :Mn −→M such that if ā ∈Mn and Xā = {b ∈M :M |= ϕ(b, ā)} is nonempty,
then g(ā) ∈ Xa, and if Xā = ∅, then g(ā) = c (the choice in this case is irrelevant). Thus, if
M |= ∃vϕ(v, ā), thenM |= ϕ(g(ā), ā). If we interpret fϕ as g, thenM |= Ψϕ. ■

Let L∗ =
⋃
Li and T ∗ =

⋃
Ti. If ϕ(v, w̄) is an L∗-formula, then ϕ ∈ Li for some i and

Ψϕ ∈ Ti+1 ⊆ T ∗, so T ∗ has built-in Skolem functions. By iterating the claim, we see that
for anyM |= T we can interpret the symbols ofL∗ \ L to makeM |= T ∗. Because we have
added one function symbol to Li+1 for each Li-formula, |Li+1| = |Li| + ℵ0 so |L∗| has the
desired cardinality. ■

Theorem 8.10 (Downward Löwenheim-Skolem Theorem). LetM be a model in some lan-
guage L. Then for any subset X ⊆M , there exists an elementary substructure N containing
X, with |N | ≤ |X| + |L| + ℵ0. In particular, taking X to be an arbitrary subset of size κ
with |L| ≤ κ ≤ |M |, we can find an elementary substructure ofM of size κ.
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Proof. By 8, we may assume that Th(M) (the set of all formulas true in M) has built in
Skolem functions. Let X0 = X. Given Xi, Xi+1 = Xi∪{fM(ā) : f an n-ary function symbol,
ā ∈ Xn

i }. Let N be
⋃
Xi, then |N | ≤ |X|+ |L|+ ℵ0 (check the appendix).

If f is an n-ary function symbol of L and ā ∈ Nn, then ā ∈ Xn
i } for some i and fM(ā) ∈

Xn
i+1 ⊆ N . Therefore, fM|N : Nn −→ N . Thus, we are able to interpret f as fM|N = fN .

For R an n-relation symbol, let RN = RN ∩Nn. Let c be a constant in L, then there exists
a Skolem function f ∈ L such that f(x) = cM for all x ∈M . Then, cM ∈ N . Let cN = cM.
This makes N an L-structure, substructure ofM.

For ϕ(v, w̄) a formula, ā, b ∈M , andM |= ϕ(b, ā), thenM |= ϕ(f(ā), ā) for some function
symbol f ∈ L. By construction, fM(ā) ∈ N . So, by Tarski-Vaught Test, N is an elementary
substructure ofM. ■
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9. Appendix

9.1. Induction on Formulas. A powerful tool to prove things in model theory is induction
on formulas. It was used several times in this paper, since it is very useful to prove that
some property is met by all formulas. It works in the following way.

First, we prove our base case. We show that the property we want to prove is met by all
atomic formulas. Then, we make our induction hypothesis, and suppose the property applies
for formulas ψ and β. Afterwards, we prove that if our hypothesis is true, then the property
is met by all formulas, by proving it is met by formulas ¬ψ, ψ −→ β and ∀xψ. If this is
true, then the property is met by all formulas, and induction is completed. But, why does
this work?

This is due to the fact that all logical connectives are replaceable by just {−→,¬}. It is
clear that for formulas {α, β}, the formula α ∨ β is equivalent to (¬α) −→ β, and α ∧ β is
equivalent to ¬(α −→ (¬β)). We can make α←→ β by (α −→ β)∧ (β −→ α) since we have
already proven ∧ is replaceable. For the quantifiers, it is enough to see that ∃xα is the same
as saying ¬∀x¬α. Then this three symbols are enough to build all formulas.
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9.2. Cardinals.

Definition 9.1. The cardinality of a set is the quantity of elements contained by it.

For the cardinality of the set A, we will write |A|.
Proposition 9.2. The following statements are equivalent:

• |A| = |B|.
• There exists a bijection f : A −→ B.

Definition 9.3. We will say |A| is countable if there exists a bijective map A −→ N. If this
is true, then |A| = ℵ0.
Let us say we want to add two infinite cardinals κ and λ. Then, the opperation follows as

κ+ λ =max{κ, λ}.
Corollary 9.4. If |I| = κ and |Ai| ≤ κ for all i ∈ I, then |Ai| ≤ κ.

9.3. Abstract Algebra. Even though in this paper we will frequently discuss topics related
to abstract algebra, we consider the reader does not need a deep understanding of the subject.
Nevertheless, we still think some notions will be useful.

Definition 9.5. A group G is a set in which you can perform one operation ∗, and for any
x, y ∈ G, x ∗ y ∈ G (i.e. it is closed). Also, it has an identity element e such that x ∗ e = x,
and an inverse x−1 for every x ∈ G such that x−1 ∗ x = e.

Definition 9.6. A ring is a group which is closed under two operations, and is abelian under
one of them (i.e. x ∗ y = y ∗ x). It also has the associative and distributive properties.

Definition 9.7. A field F is a ring which is abelian under two operations if the identity
of one of them is removed from F . Fields can be infinite or finite. In this last case, the
cardinality of it will be in the form pn, meaning the n-th power of the prime p.

These definitions are very basic and informal. The reader can think of a field as a set with
some “nice properties”, that will make it easier to work with. We will focus our attention in
a more specific kind of field.

Definition 9.8. An algebraically closed field (or ACF ) is a field F in which any non-constant
polynomial with all coefficients in F has at least one root in F .

Definition 9.9. The characteristic of an algebraically closed field is the least number p,
such that x + p times. . . + x = 0 for all x in such field (it is actually a bit more general than
this, but this is the case we are interested in). If such p does not exist, we say the field has
characteristic 0.

Definition 9.10. The transcendence degree of an ACF is the cardinality of the set of
transcendental elements (i.e. elements that are not a root of any polynomial).

Definition 9.11. When we refer to ACF of a certain characteristic p, we will denote this
as ACFp.

In this paper, the theory of ACF will be of our interest. To obtain the theory of ACFp,
we will consider the sentence ψp for p a prime number. Let ψp be:

∀x(
p times

x+ . . .+ x) = 0.

Since neither ψp or ¬ψp are implied by ACF , we add them as axioms. Let ACFp be ACF
plus ψp (ACF0 will be ACF plus ¬ψp for every prime p).
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9.4. Zorn’s Lemma.

Definition 9.12. If X is a set and < is a binary relation on X, we say that (X,<) is a
partial order if (X,<) |= ∀x¬(x < x) and (X,<) |= ∀x∀y∀z((x < y ∧ y < z) −→ x < z).

Definition 9.13. We say that (X,<) is a linear order if we have a partial order and (X,<
) |= ∀x∀y(x < y ∨ x = y ∨ y < x).

Definition 9.14. If (X,<) is a partial order, then we say that C ⊆ X is a chain in X if C
is linearly ordered by <.

Theorem 9.15 (Zorn’s Lemma). If (X,<) is a partial order such that for every chain
C ⊆ X there is x ∈ X such that c ≤ x for all c ∈ C, then there is y ∈ X such that there
is no z ∈ X with z > x. In other words, if every chain has an upper bound, then there is a
maximal element of X.
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