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Abstract

In this paper, I will explain and provide all the definitions and background necessary to
fully understand the results that arise from Doobs Martingale Convergence Theorems. I
will then go into detail about all aspects of the theorems and also prove them. Lastly, I will
reflect on many of the applications of theorems and their usefulness to the mathematical
community.

1 Introduction

The first evidence of humans gambling can be seen as far back as the Paleolithic period,
hundreds of thousands of years ago. Ever since then, different strategies and concepts
have arisen to attempt to increase ones odds of making money. Eventually, it was
realized that mathematics had a large presence in gambling and that it could be used
to attempt to predict and analyze the outcomes of bets and possibly give gambler’s
that understood the mathematics behind a game an advantage over a player that was
oblivious to such math. This motivated the development of many math-based bet-
ting strategies, a popular class of these strategies being martingale betting strategies.

Originated from and popular in 18th century France, the term martingale originally
referred to a class of betting strategies for fair games where the gambler has a 1

2
chance

of winning their stake and 1
2

chance of losing their stake. The martingale betting strate-
gies involve the gambler doubling his stake each round so the first win would recover
all previous losses while also winning a profit equal to the original stake. As time and
the gamblers expected wealth jointly approach infinity, the probability of eventually
winning the stake approaches 1, which makes the martingale betting strategy appear
to practically guarantee an eventual win. However, the exponential growth of the bets
will eventually bankrupt the gambler due to finite budget. Observe that after each
iteration of the game, intuition tells us that the gamblers expected wealth should be
equal to the gamblers wealth prior to the iteration because it’s equally likely to increase
by some value as it is to decrease by that value which leads to an expected change of
0. This facet is what gives the betting strategy the name martingale.

Introduced to probability theory in 1934 by Paul Lévy, martingales were defined
as a sequence of random variables such that the expected value of the next random
variable is equal to the previous one. In probability theory, the definition of martingales
were expanded to submartingales and supermartingales where submartingales are
defined as sequences of random variables such that the next value is expected to be
larger than or equal to the prior one and supermartingales being a sequence of random
variables such that the next value is expected to be less than or equal to the prior
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one. Most of the original development on the theory of martingales was done by the
American mathematician Joseph Leo Doob.

In this paper, I will be focusing on Doob’s theorems regarding martingale conver-
gence which are a collection of results on the limits of supermartingales. Roughly
speaking, the theorems state that if we have a supermartingale which is bounded by
some finite supremum, it almost surely converges to some random variable[2]. However,
just because the martingale converges to a random variable, doesn’t mean the expected
values of the random variables in the martingale will approach the expected value of
the random variable the martingale is converging to. In order for this to occur, Doobs
second convergence theorem states that the condition of uniform integrability of the
random variables must hold. I will formally state the theorems later in my paper and
define all terms necessary to understand it. I will also explore the applications of the
martingale theorems in fields such as game theory, finance, and gambling and how the
theorems can be used to produce well-known results such as Lévy’s zero–one law.
Lastly, I’ll reflect on the significance of Doobs theorems and their importance to the
mathematical community.
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3 Preliminaries

Definition 3.1 (Random Variable). A random variable X is a function that maps the
outcome of a random event in a sample space Ω, to a measurable space E, often the
real numbers (X:Ω −→ E). Random variables are often denoted as a capital roman
letters such as X, Y, Z, T .

Definition 3.2 (Martingale). A martingale is a sequence of random variables X1, X2, · · ·Xn

such that
E(Xn+1|X1, X2, · · · , Xn) = Xn

At any particular time, the expected value of the next random variable is equal to the
present value, regardless of prior values.

Definition 3.3 (Submartingale). A submartingale is a sequence of random variables
X1, X2, · · ·Xn such that

E(Xn+1|X1, X2, · · · , Xn) ≥ Xn

At any particular time, the expected value of the next random variable is greater than
or equal to the present value, regardless of prior values. Analogous to a monotonically
increasing sequence.

Definition 3.4 (Supermartingale). A supermartingale is a sequence of random vari-
ables X1, X2, · · ·Xn such that

E(Xn+1|X1, X2, · · · , Xn) ≤ Xn
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At any particular time, the expected value of the next random variable is less than or
equal to the present value, regardless of prior values. Analogous to a monotonically
decreasing sequence.

Definition 3.5 (Supremum). The supremum (abbreviated sup) of a subset S of a
partially ordered set P is the smallest element in P that’s greater than or equal to each
element in S, if the element exists

Definition 3.6 (Infimum). the infimum (abbreviated inf) of a subset S of a partially
ordered set P is a greatest element in P that is less than or equal to each element of
S, if such an element exists.

Definition 3.7 (Uniform Integrability). The random variables X1, X2, X3 · · ·Xn in
a martingale are said to be uniformly integrable if there exists K ∈ [0,∞) such that
E(|X|I|X|≥K) ≤ ε for all X in the martingale and where I|X|≥K is the indicator function:

I|X|≥K =

{
1 if |X| ≥ K,

0 if |X| < K.
.

4 Doob’s First Martingale Convergence Theorem

The first of Doob’s convergence theorems states that

Theorem 1 (Doob’s First Martingale Convergence Theorem). Let X1, X2, X3, . . . be a
supermartingale. Suppose that the supermartingale has the bound

sup
t∈N

E[X−t ] <∞

where X−t = −min(Xt, 0), then the sequence will almost surely converge to a random
variable X.

Observe that through symmetry, there are identical results for submartingales with
bounded expectation of the positive part.

The following is a sketch proof of the theorem.

Proof. We can prove the following result by contradiction. For a sequence to not con-
verge it either goes off to infinity or it oscillates. The first is impossible due to the
sup
t∈N

E[X−t ] < ∞ bound. To understand why the second is impossible we can model

a supermartingale as stock market game where the expected change in stock price is
at most zero. There is no strategy that can return w positive expected profit since
the expected change must be less than or equal to 0. If prices oscillated without con-
verging, buying low and selling high would return a positive expected profit, hence a
contradiction.[1]

5 Failure of convergence

Note that, while Doob’s first martingale convergence theorem guarantees the martingale
converging to some random variable, it doesn’t guarentee that the expected values of
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the random variables in the martingale converge to the expected value of the random
variable the martingale is converging to. In other words we can’t guarantee:

E(X1), E(X2), E(X3) · · · → E(X)

which is more formally known as converging in mean. It can also be expressed as

lim
n→∞

E[|Xn −X|] = 0

In order to ensure convergence in mean, uniform integrability is necessary which brings
us to Doobs second martingale convergence theorem.

6 Doob’s Second Martingale Convergence Theorem

The statement of Doob’s second convergence theorem states that

Theorem 2. Let N1, N2, N3 · · · be a supermartingale that is uniformly integrable, then
there exists an integrable random variable N such that

lim
t→∞

Nt = N

and
E(|Nt −N |)→ 0

Observe that through symmetry, there are identical results for supermartingales.

Note that in Doob’s first martingale convergence theorem the convergence is point-
wise while in Doob’s second martingale convergence theorem there is convergence in
mean.

This result is a lot more difficult to prove than the first martingale theorem.

7 Applications

Doob’s martingale convergence theorems are very useful results in probability theory
that have many applications in game theory, gambling, finance, and the stock market.
Yet, the convergence theorems are also useful in solving math problems involving mar-
tingales and many famous results can be derived from them. An example is Levy’s
Zero-One law, which claims that if the information that determines the outcome of an
event is gradually being learned, then the outcome of the event will gradually become
certain.
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