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Galois Theory is a field of mathematics related to abstract algebra. Orig-
inally started by French mathematician Évariste Galois, it is used to connect
group and field theory, as well as study roots of polynomials. The Galois Cor-
respondence, or Fundamental Theorem of Galois Theory, is arguably its most
important result.

1 Group Theory

It will help to start by defining some terms from group theory, which will help
us understand a Galois group.

Definition 1 (Groups and Fields). A group is a set G and a binary operation ·
(typically denoted as (G,·)) acting on elements of G. · follows three properties:

• There is an element e in G such that for any g in G, e · g = g · e = g.

• For any g ∈ G, there exists g−1 ∈ G such that g · g−1 = g−1 · g = e.

• For all g, h, k ∈ G, g · (h · k) = (g · h) · k.

A group G is abelian if a · b = b · a, i.e. it is commutative.

A field is similar. It is a set F and two binary operations + and · such that
(F,+) is a group, (F\{0}, ·) is a group, and a · (b + c) = a · b + a · c for all
a, b, c ∈ F .

A typical example of a group would be a symmetry group of a geometric
object, such as a tetrahedron the graph K4. Here, different permutations of
vertices form a group over composition. We know that any two permutations
will form another permutation; there is an identity element, which is to leave
the vertices as they are; and associativity holds for permutations.

An example of a non-abelian group would be the group of nonzero invertible
matrices over multiplication. While there is an identity matrix, an inverse for
every matrix and associativity of multiplication, matrix multiplication is not
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commutative.

As for fields, an example would be Q. It is a group over addition; Q\{0} is
a group over multiplication, and distribution holds.
Interestingly, the intersection of two or more fields will always be another field.

Definition 2 (Homomorphisms and Isomorphisms). Define two groups, (G, ·)
and (G′, ∗). Then a function f : G → G′ is a homomorphism if it satisfies

f(g1 · g2) = f(g1) ∗ f(g2).

An isomorphism is simply a bijective homomorphism.

Example. (R,+) is isomorphic to (R+,×).
Proof. To find an isomorphism f between these two groups, notice that

e(x+y) = ex × ey.

Then, by letting f(x) = ex, we have that

f(x+ y) = ex+y = ex × ey = f(x)× f(y).

Since f(x) = ex is a bijective function, f(x) is an isomorphism, so (R,+) is
isomorphic to (R+,×).

Automorphisms, a subclass of isomorphisms, are notable for this paper:

Definition 3 (Automorphism). An automorphism is any function f : G → G
that maps a group to itself. This includes the identity function, but there are
nontrivial examples as well.

The set of all automorphisms, which is a group itself, is called Aut(K).
One example of a nontrivial automorphism would be f(g) = 2 ·g on (Z, ·), where
· is standard multiplication.
From an automorphism, the concept of a fixed field follows naturally.

Definition 4 (Fixed Field). Given a field K and an automorphism σ ∈ Aut(K),
the elements of K that are fixed by σ, i.e. σ(x) = x, forms a field. With a set
of automorphisms S, then the field of all elements fixed by all members of S is
called the fixed field of S, and it is denoted KS.

Definition 5 (Field Extentions). A field extension, typically denoted K/F or
F (α), is the smallest possible field containing the elements and operations of F ,
as well as α. There are also instances where more α are needed; this is denoted
F (α1, α2, . . .).

An example of a field extension would be Q(
√
2). This field contains Q, but

must also contain
√
2; adding this extra element also implies that all a + b

√
2

must be in the field as well.

We should also define fixed fields here, as they will be useful later.
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Definition 6 (Vector Space). For any field F , a vector space over F is defined
to be any abelian group V , with binary operation · : F × V → V , or scalar
multiplication, such that for all a, b ∈ F and v, w ∈ V ,

• 0F · v = 0V , where 0F and 0V are 0 in F and V respectively;

• 1v = v;

• a · (v + w) = av + aw;

• (ab)v = a(bv);

• (a+ b)v = av + bv.

Given a vector space V over a field K, we call the smallest linearly indepen-
dent collection of elements vk ⊆ V a basis of V ; we then define the dimension
of V , or dimF (V ), to be |vk|. Interestingly, no matter what basis is chosen,
dimF (V ) remains constant, and is a notable invariant of a vector field.

In many ways, field extensions are similar to vector spaces, and the axioms
for a vector space are satisfied by field extensions. As such, we define [K : F ] to
be the dimension of a field extension in much the same way as we do a vector
field.

2 Galois Theory

Definition 7 (Splitting Fields). Given a field F and a nonzero irreducible poly-
nomial f(x) with coefficients in F and roots {αk}, we say that an extension L/F
is a splitting field for f(x) if {αk} ⊆ L, but {αk} do not lie in any smaller ex-
tension of F . In other words, the splitting field for f(x) is F (α1, α2, . . .)

For example, the splitting field for x2 − 2 over Q is Q(
√
2).

Definition 8 (Galois Extentions and Groups). A Galois Extension is a field
extension E/F in which

• E/F is normal, i.e. every irreducible polynomial over F with a root in E
splits into linear factors in E

• E/F is separable, i.e. for every α ∈ E, the minimal polynomial of α over
F has no repeated roots in any extension field.

If an extension K/F is Galois, Gal(K/F ) is the same as Aut(K/F ), and we
call it the Galois Group of K/F .

Alternatively, any Galois extension of a field F must fix all of the elements
in F , and |Aut(K/F )| = [K : F ] if the field extension is finite.
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Example. Q(
√
2)/Q is a Galois Extension.

Proof. For Q(
√
2)/Q to be a Galois Extension of Q, it must be normal and

separable. For it to be separable, we need only look at the minimal polynomial of√
2, as the minimal polynomial of any a ∈ Q is trivial. This minimal polynomial,

x2 − 2, is (x −
√
2)(x +

√
2), which has no repeated roots; hence, Q(

√
2)/Q is

separable. For it to be normal, we need to show that any irreducible polynomial
with a root in Q(

√
2) factors linearly. For most polynomials, this is trivial, as

they factor linearly in Q, so they must also in Q(
√
2). The only exceptions are

those that reduce to x2 − 2; this factors linearly, as shown above, so Q(
√
2)/Q

is normal. Hence, Q(
√
2)/Q is a Galois extension. ■

To find the Galois group of Q(
√
2)/Q, we need to find the automorphism

group of Q(
√
2)/Q. Since Q must remain fixed, we need only show where each

automorphism sends
√
2. Since the roots of the minimal polynomial x2 − 2 are√

2,−
√
2, we are left with two automorphisms, σ0 and σ1.

σ0(
√
2) =

√
2

σ1(
√
2) = −

√
2.

Example. Q( 4
√
2)/Q(

√
2) is a Galois extension.

Proof. To show that Q( 4
√
2)/Q(

√
2) is a Galois extension, we need to show that

it is normal and separable.
As with the previous example, we need only look at irreducible polynomials
with roots in Q( 4

√
2) and minimal polynomials of elements only in Q( 4

√
2) and

not Q(
√
2); this means we need only look at ± 4

√
2.

The minimal polynomial of 4
√
2 over Q(

√
2) is x2 −

√
2, which factors into

(x − 4
√
2)(x + 4

√
2). Since there are no repeated roots and it factors linearly,

Q( 4
√
2)/Q(

√
2) is both a normal and separable extension; hence, it is Galois.

3 The Galois Correspondence

Before getting to the Galois correspondence, let’s start with a helpful example.

Example. Consider the field extension Q(
√
2,
√
3)/Q. In between Q(

√
2,
√
3)

and Q, there are three intermediate fields: Q(
√
2), Q(

√
3) and Q(

√
6). For each

of these subfields K, we can consider Gal(Q(
√
2,
√
3)/K). This is a subgroup

of the full Galois group Gal(Q(
√
2,
√
3)/Q), as some elements of the full Galois

group must also fix every element of K.
Let us give names to the automorphisms the full Galois group. As each one
must send

√
2 to ±

√
2 and

√
3 to ±

√
3, there are four possible automorphisms

in the group. We can choose

σ(
√
2) = −

√
2 σ(

√
3) =

√
3

τ(
√
2) =

√
2 τ(

√
3) = −

√
3

Then, the other two elements of the Galois group are the identity automorphism,
e, and στ , which sends

√
2 to −

√
2 and

√
3 to −

√
3. Next, we can work out

Gal(Q(
√
2,
√
3)/K), which we can call ΓK , in terms of σ and τ .
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Obviously, e is present in all of these subgroups. If K = Q(
√
2), then τ ∈ ΓK ; if

K = Q(
√
3), then σ ∈ ΓK ; and if K = Q(

√
6), then στ ∈ ΓK . For conciseness,

we can call the subgroup generated by an element γ ⟨γ⟩.

Q(
√
2,
√
3)

Q

Q(
√
2) Q(

√
3) Q(

√
6)

⟨e⟩

⟨σ, τ⟩

⟨τ⟩ ⟨σ⟩ ⟨στ⟩

For each field K in the left diagram, we have the subgroup Gal(Q(
√
2,
√
3)/K),

which is kept track of in the right diagram.
Interestingly, if we start with any intermediate field K, then look at its Galois
group ΓK , and find the fixed field Q(

√
2,
√
3)ΓK , we are left with K; this can

also be done the opposite direction, where if we start with any subgroup H ≤
Gal(Q(

√
2,
√
3)/Q), take its fixed field, and find the Galois group of the resulting

field, we are left with H.

Theorem 1 (Galois Correspondence). The Galois Correspondence, also known
as the Fundamental Theorem of Galois theory, states that:

1. There exists a bijection between intermediate fieldsK between fields L and
F , and subgroups of Gal(L/F ). This bijection is given by the function
Φ : K 7→ Gal(L/K), with its inverse being Ψ : H 7→ LH .

2. Ψ and Φ reverse inclusion, so if K1 and K2 are intermediate fields so that
K1 ⊆ K2, Φ(K2) ≤ Φ(K1); and if H1 and H2 are subgroups of Gal(L/F )
and H1 ≤ H2, then LH2 ⊆ LH1 .

3. For any intermediate field K, |Φ(K)| = [L : K]; if H ≤ Gal(L/K), then
|H| = [L : Ψ(H)].

Proof. We’ll start with the proof of statement (3).
(3) Earlier, we said that for any L/K to be Galois, [L : K] = |Aut(L/K)|. As
for the second part, we know that H ≤ Gal(L/K) fixes LH , so H ≤ Gal(L/LH),
or H ≤ [L : Ψ(H)]. To prove equality, we must now prove that H ≥ [L : Ψ(H)].
It turns out that we can always find α ∈ L such that L = LH(α) for a finite
Galois extension.
Consider the polynomial

h(x) =
∏
σ∈H

(x− σ(α)).
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For any τ ∈ H, the coefficients of h(x) are fixed by τ , as τ simply permutes the
order of factors in the product for h(x). Hence, the coefficients of h(x) lie in
LH . Thus, if p(x) is the minimal polynomial of α, p(x)|h(x), so

|H| = deg(h) ≥ deg(p) = [LH(α) : LH ] = [L : LH ].

Hence, |H| ≥ [L : LH ], so |H| = [L : LH ] = [L : Ψ(H)].
(1) Starting with an intermediate field K, let’s look at LGal(L/K). Gal(L/K)
is the subgroup of Gal(L/F ) that fixes K, so by definition LGal(L/K) must
contain K, so K ⊆ LGal(L/K). By part (3), this means that [L : LGal(L/K)] =
|Gal(L/K)| = [L : K]. Hence, LGal(L/K) = K.
As for the other direction, we start withH ≤ Gal(L/F ), and look at Gal(L/LH).
By part (3), |Gal(L/LH)| = [L : LH ] = |H|, so H = Gal(L/LH).
(2) Suppose that L/K2/K1/F is a tower of fields, and that σ ∈ Φ(K2) =
Gal(L/K2). This means that σ fixes every element of K2, and since K1 ⊆ K2,
it fixes K1 as well, so σ ∈ Φ(K1) = Gal(L/K1). Thus, Φ(K1) ≤ Φ(K2).
Now suppose that H1 ≤ H2 ≤ Gal(L/F ). Suppose that α ∈ LH2 , so α is fixed
by every element of H2. Then α ∈ LH1 , so LH1 ⊆ LH2 .

Example. Consider the splitting field of x3 − 2, Q( 3
√
2, e2πi/3/Q. As each au-

tomorphism fixes Q, we need only look at where each root is sent, which gives
six automorphisms. Let us write α = 3

√
2 and ζ = e2πi/3, for conciseness. The

Galois group Gal(Q(α, ζ)/Q) is generated by two elements, σ and τ where

σ(α) = α σ(ζ) = ζ−1

τ(α) = ζα τ(ζ) = ζ.

From the Galois Correspondence, we know that there must exist a bijection Φ
mapping intermediate fields betweenQ(α, ζ) andQ to subgroups of Gal(Q(α, ζ)/Q);
this is shown in the diagram below.

Q(α, ζ)

Q

Q(ζ)

Q(α) Q(αζ) Q(αζ−1)
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⟨e⟩

⟨σ, τ⟩

⟨τ⟩

⟨σ⟩ ⟨στ⟩ ⟨στ−1⟩
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