Diophantine Approximations

Leo Ouyang <layoouyang@gmail.com>

Euler Circle

July 4, 2022

KO K K Ø K K E K K E K V K K K K K K K K K

What are Diophantine Approximations?

Diophantine Approximations was named after Diophantus of Alexandria, an Alexandrian mathematician and author of Arithmetica. Diophantine Approximations are the approximations of real numbers using rational numbers.

KORK ERKER ADA ADA KORA

Some Definitions

Definition

We say a number is **rational** if it can be written in the form $\frac{p}{q}$ for integers p and q . We say a number is **irrational** if it is not rational.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Upper Bound

Dirichlet was the first who achieved a major result for the upper bound of Diophantine Approximations.

Theorem (Dirichlet's Approximation Theorem)

Let α be an irrational number. There exists a fraction p/q , where $p \in \mathbb{Z}$ and $q \in \mathbb{N}$, such that

$$
\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2}.\tag{0.1}
$$

KORKARYKERKER POLO

Proof of Dirichlet's Approximation Theorem

Let $n \geq 1$ be an integer. Let $\{x\}$ be the fractional part of x. Consider the $n + 1$ fractional parts: $\{0 \cdot \alpha\}, \{1 \cdot \alpha\}, \ldots, \{n \cdot \alpha\}.$ Consider the *n* sub-intervals: $\left[0, \frac{1}{n}\right]$ $\frac{1}{n}$), $\left[\frac{1}{n}\right]$ $\frac{1}{n}, \frac{2}{n}$ $\frac{2}{n}$, ... $\left[\frac{n-1}{n}\right]$ $\frac{-1}{n}, 1)$.

KORKARYKERKER POLO

Proof of Dirichlet's Approximation Theorem Continued

By the Pigeonhole Principle, there exists two integers $0 \leq j < k \leq n$ such that $\{j \cdot \alpha\}$ and $\{k \cdot \alpha\}$ belong in the same sub-interval. That means that $|k\alpha - j\alpha|$ minus some integer p equals a number less than $\frac{1}{n}$.

KORKAR KERKER SAGA

Proof of Dirichlet's Approximation Theorem Continued

By the Pigeonhole Principle, there exists two integers $0 \leq j < k \leq n$ such that $\{j \cdot \alpha\}$ and $\{k \cdot \alpha\}$ belong in the same sub-interval. That means that $|k\alpha - j\alpha|$ minus some integer p equals a number less than $\frac{1}{n}$. Thus,

$$
|(k-j)\alpha-p|<\frac{1}{n}.
$$

KORKAR KERKER SAGA

Proof of Dirichlet's Approximation Theorem Continued

By the Pigeonhole Principle, there exists two integers $0 \leq j < k \leq n$ such that $\{j \cdot \alpha\}$ and $\{k \cdot \alpha\}$ belong in the same sub-interval. That means that $|k\alpha - j\alpha|$ minus some integer p equals a number less than $\frac{1}{n}$. Thus,

$$
|(k-j)\alpha-p|<\frac{1}{n}.
$$

Setting $q = k - j$ and dividing by q on both sides, we get

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{nq}\leq\frac{1}{q^2}.
$$

◆ロト→何ト→ミト→ミト → のQC

Corollary of Dirichlet's Approximation Theorem

Corollary

There are infinitely many irreducible fractions p/q such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^2}.
$$

Corollary of Dirichlet's Approximation Theorem **Corollary**

There are infinitely many irreducible fractions p/q such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^2}.
$$

Proof.

We can use the previous proof strategy to get

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{Nq},
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Corollary of Dirichlet's Approximation Theorem **Corollary**

There are infinitely many irreducible fractions p/q such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^2}.
$$

Proof.

We can use the previous proof strategy to get

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{Nq},
$$

which yields a sequence of inequalities

$$
|q_n\alpha-p_n|<\frac{1}{N_n}.
$$

 $= 990$

 $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$

Further work on the Upper Bound

Dirichlet's Approximation Theorem was further improved later on by Adolf Hurwitz.

Theorem (Hurwitz's Theorem)

If α is irrational, then there are infinitely many rational numbers p/q satisfying

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{\sqrt{5}q^2}.
$$

KORKARYKERKER POLO

Some More Definitions

Definition

We call the **degree** the highest exponent of a polynomial. (Example: 2 would be the degree of the polynomial $x^2 + 2x + 1$.)

Definition

We say $\alpha \in \mathbb{C}$ is an **algebraic number** if it is a root of a polynomial with a finite degree and integer coefficients. (Examples: 2 or $Φ = \frac{1+\sqrt{5}}{2}$ $\frac{1}{2}$).

KORKAR KERKER SAGA

Definition

We say a number is **transcendental** if it is not an algebraic number.

Liouville's Theorem

Now we move onto the lower bound of Diophantine Approximations.

Theorem (Liouville's Approximation Theorem (1840))

If α is an irrational algebraic number of degree $n > 1$, there exists a constant $c(\alpha)$ such that

$$
\left|\alpha-\frac{p}{q}\right|>\frac{c(\alpha)}{q^n}
$$

for all rationals $\frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{N}$.

KORKARYKERKER POLO

Proof of Liouville's Theorem

Let $f(z) = a_0 + a_1 z + \cdots + a_n z^n$ be the minimal polynomial, a polynomial with integer coefficients of smallest degree, having α as a root.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Proof of Liouville's Theorem

Let $f(z) = a_0 + a_1 z + \cdots + a_n z^n$ be the minimal polynomial, a polynomial with integer coefficients of smallest degree, having α as a root.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Then let p/q be a rational number such that $\Big\vert$ $\left|\frac{p}{q}-\alpha\right|<1.$

Proof of Liouville's Theorem

Let $f(z) = a_0 + a_1 z + \cdots + a_n z^n$ be the minimal polynomial, a polynomial with integer coefficients of smallest degree, having α as a root.

Then let p/q be a rational number such that $\Big|$ $\left|\frac{p}{q}-\alpha\right|<1.$ By the Mean Value Theorem,

$$
\left|\frac{f(\frac{p}{q})-f(\alpha)}{\frac{p}{q}-\alpha}\right|=f'(c),
$$

KORKAR KERKER SAGA

where c is a real number that lies between α and p/q .

Rearranging the previous equation we get:

$$
\left|f\left(\frac{p}{q}\right)-f\left(\alpha\right)\right|=f'\left(c\right)\left|\frac{p}{q}-\alpha\right|.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Rearranging the previous equation we get:

$$
\left|f\left(\frac{p}{q}\right)-f\left(\alpha\right)\right| = f'\left(c\right)\left|\frac{p}{q}-\alpha\right|.
$$

Let

$$
M=\sup_{|z-\alpha|<1}|f'(z)|.
$$

KOKK@KKEKKEK E 1990

Rearranging the previous equation we get:

$$
\left|f\left(\frac{p}{q}\right)-f\left(\alpha\right)\right|=f'\left(c\right)\left|\frac{p}{q}-\alpha\right|.
$$

Let

$$
M=\sup_{|z-\alpha|<1}\left|f'(z)\right|.
$$

Then we can say:

$$
\left|f\left(\frac{p}{q}\right)-f\left(\alpha\right)\right| = f'\left(c\right)\left|\frac{p}{q}-\alpha\right| \leq M\left|\frac{p}{q}-\alpha\right|.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Since $f(z)$ does not have any rational roots,

Since $f(z)$ does not have any rational roots,

$$
0 \neq f\left(\frac{p}{q}\right) = a_n\left(\frac{p}{q}\right)^n + \cdots + a_0 = \frac{a_np^n + \cdots + a_1pq^{n-1} + a_0q^n}{q^n}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Since $f(z)$ does not have any rational roots,

$$
0 \neq f\left(\frac{p}{q}\right) = a_n\left(\frac{p}{q}\right)^n + \cdots + a_0 = \frac{a_np^n + \cdots + a_1pq^{n-1} + a_0q^n}{q^n}.
$$

The numerator has an absolute value of at least 1.

Since $f(z)$ does not have any rational roots,

$$
0 \neq f\left(\frac{p}{q}\right) = a_n\left(\frac{p}{q}\right)^n + \cdots + a_0 = \frac{a_np^n + \cdots + a_1pq^{n-1} + a_0q^n}{q^n}.
$$

The numerator has an absolute value of at least 1.

Thus, $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $f\left(\frac{p}{q}\right)$ $\left|\frac{p}{q}\right]-f(\alpha)\right|=\Big|$ $f\left(\frac{p}{q}\right)$ $\left\vert \frac{p}{q}\right\rangle \right\vert =\frac{a_{n}p^{n}+a_{n-1}p^{n-1}q+\cdots +a_{1}pq^{n-1}+a_{0}q^{n}}{q^{n}}$ $\frac{+\cdots+a_1pq^{n-1}+a_0q^n}{q^n}\geq\frac{1}{q^n}$ $\frac{1}{q^n}$.

KELK KØLK VELKEN EL 1990

Combining the two equations, we get:

$$
\frac{1}{q^n} \leq M \left| \alpha - \frac{p}{q} \right| \implies \frac{1}{Mq^n} \leq \left| \alpha - \frac{p}{q} \right|.
$$

Kロトメ部トメミトメミト ミニのQC

Combining the two equations, we get:

$$
\frac{1}{q^n} \leq M \left| \alpha - \frac{p}{q} \right| \implies \frac{1}{Mq^n} \leq \left| \alpha - \frac{p}{q} \right|.
$$

Writing $\frac{1}{c(\alpha)}$ as M , we achieve:

$$
\frac{c(\alpha)}{q^n} \leq \left|\alpha - \frac{p}{q}\right|.
$$

■

KO K K Ø K K E K K E K V K K K K K K K K K

Liouville's Constant

This result allowed Liouville to discover the first proven example of a transcendental number, the Liouville constant.

$$
\sum_{i=0}^{\infty} 10^{-i\,!} = 0.110001000000000000000001000\dots.
$$

KORKARYKERKER POLO

Part of the proof also included how this transcendental number doesn't satisfy Liouville's Theorem.

Lower Bound Discoveries

A lower bound would be a result of the form:

Say α is an irrational algebraic number of degree $n > 2$. Then there are infinitely many rational numbers p/q that satisfy the inequality

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{\kappa}},
$$

KORKARYKERKER POLO

where κ is some exponent.

Over time, mathematicians would improve the accuracy of Liouville's Theorem with the value of κ .

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{\kappa}}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

$$
\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^{\kappa}}.
$$
\nThus, (1908):

\n
$$
\kappa \leq \frac{1}{2}n + 1.
$$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

$$
\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^{\kappa}}.
$$
\nThus, (1908):

\n
$$
\kappa \leq \frac{1}{2}n + 1.
$$

Siegel (1921):
$$
\kappa \le s + \frac{n}{s+1}
$$
 for $s = 1, 2, ..., n-1$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

$$
\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^{\kappa}}.
$$
\nThus, (1908):

\n
$$
\kappa \leq \frac{1}{2}n + 1.
$$

Siegel (1921):
$$
\kappa \le s + \frac{n}{s+1}
$$
 for $s = 1, 2, ..., n-1$.

Dyson (1947): $\kappa \leq$ √ 2n.

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

$$
\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^{\kappa}}.
$$
\nThus, (1908):

\n
$$
\kappa \leq \frac{1}{2}n + 1.
$$

Siegel (1921):
$$
\kappa \le s + \frac{n}{s+1}
$$
 for $s = 1, 2, ..., n-1$.

Dyson (1947): $\kappa \leq$ √ 2n.

Roth (1955): $\kappa \leq 2$.

KO KKOKKEKKEK E DAG

Thue-Siegel-Roth's Theorem

All of these improvements would later combine into one single theorem: the Thue-Siegel-Roth's theorem.

Theorem (Thue-Siegel-Roth's Theorem) There exists a positive constant $c(\alpha, \epsilon)$ such that

$$
\left|\alpha-\frac{p}{q}\right|>\frac{c(\alpha,\epsilon)}{q^{2+\epsilon}}
$$

holds for every rational number p/q .

KORKARYKERKER POLO

Key Elements of Thue-Siegel-Roth's Theorem

Let $P(z) = a_0 + a_1 z + \cdots + a_n z^n$ be a polynomial with complex coefficients.

Then $||P|| = \max\{|a_0|, |a_1|, \ldots, |a_n|\}$. Furthermore, if α is algebraic over $\mathbb Q$ with its minimal polynomial $f(z)$ over $\mathbb Q$, we define the *height* $H(\alpha) = ||f||$.

This was used to help make numerous inequalities and properties between polynomials. Also helps when analyzing algebraic coefficients within a polynomial.

KORKAR KERKER SAGA

Key Elements Continued

Generalized Wronskians

$$
W(z) = \begin{vmatrix} \frac{1}{0!}f_0(z) & \frac{1}{0!}f_1(z) & \cdots & \frac{1}{0!}f_{l-1}(z) \\ \frac{1}{1!}f'_0(z) & \frac{1}{1!}f'_1(z) & \cdots & \frac{1}{1!}f'_{l-1}(z) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{(l-1)!}f_0^{(l-1)}(z) & \frac{1}{(l-1)!}f_1^{(l-1)}(z) & \cdots & \frac{1}{(l-1)!}f_{l-1}^{(l-1)}(z) \end{vmatrix}
$$

= det $\left(\frac{1}{\mu!} \frac{d^{\mu}}{dz^{\mu}} f_{\nu}(z)\right)$, $\mu, \nu = 0, 1, ..., l - 1$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

This was used to relate the Wronskians and determinants to monomials' exponents.