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What are Diophantine Approximations?

Diophantine Approximations was
named after Diophantus of
Alexandria, an Alexandrian
mathematician and author of
Arithmetica. Diophantine
Approximations are the
approximations of real numbers
using rational numbers.



Some Definitions

Definition
We say a number is rational if it can be written in the form p

q for
integers p and q. We say a number is irrational if it is not rational.



Upper Bound

Dirichlet was the first who achieved a major result for the upper
bound of Diophantine Approximations.

Theorem (Dirichlet’s Approximation Theorem)

Let α be an irrational number. There exists a fraction p/q, where
p ∈ Z and q ∈ N, such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
. (0.1)



Proof of Dirichlet’s Approximation Theorem

Let n ≥ 1 be an integer. Let {x} be the fractional part of x .
Consider the n + 1 fractional parts: {0 · α}, {1 · α}, . . . , {n · α}.
Consider the n sub-intervals:
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Proof of Dirichlet’s Approximation Theorem Continued
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{0 · α} {1 · α} {2 · α}{3 · α}{n · α}

By the Pigeonhole Principle, there exists two integers
0 ≤ j < k ≤ n such that {j · α} and {k · α} belong in the same
sub-interval. That means that |kα− jα| minus some integer p
equals a number less than 1

n .

Thus,

|(k − j)α− p| < 1

n
.

Setting q = k − j and dividing by q on both sides, we get∣∣∣∣α− p

q

∣∣∣∣ < 1

nq
≤ 1

q2
.
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Corollary of Dirichlet’s Approximation Theorem

Corollary

There are infinitely many irreducible fractions p/q such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

Proof.
We can use the previous proof strategy to get∣∣∣∣α− p

q

∣∣∣∣ < 1

Nq
,

which yields a sequence of inequalities

|qnα− pn| <
1

Nn
.

■
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Further work on the Upper Bound

Dirichlet’s Approximation Theorem was further improved later on
by Adolf Hurwitz.

Theorem (Hurwitz’s Theorem)

If α is irrational, then there are infinitely many rational numbers
p/q satisfying ∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

.



Some More Definitions

Definition
We call the degree the highest exponent of a polynomial.
(Example: 2 would be the degree of the polynomial x2 + 2x + 1.)

Definition
We say α ∈ C is an algebraic number if it is a root of a
polynomial with a finite degree and integer coefficients. (Examples:

2 or Φ = 1+
√
5

2 ).

Definition
We say a number is transcendental if it is not an algebraic
number.



Liouville’s Theorem

Now we move onto the lower bound of
Diophantine Approximations.

Theorem (Liouville’s Approximation
Theorem (1840))

If α is an irrational algebraic number of degree
n > 1, there exists a constant c(α) such that∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qn

for all rationals p
q , where p ∈ Z and q ∈ N.



Proof of Liouville’s Theorem

Let f (z) = a0 + a1z + · · ·+ anz
n be the minimal polynomial, a

polynomial with integer coefficients of smallest degree, having α as
a root.

Then let p/q be a rational number such that
∣∣∣pq − α

∣∣∣ < 1.

By the Mean Value Theorem,∣∣∣∣∣ f (
p
q )− f (α)
p
q − α

∣∣∣∣∣ = f ′(c),

where c is a real number that lies between α and p/q.
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Proof of Liouville’s Theorem Continued

Rearranging the previous equation we get:∣∣∣∣f (p

q

)
− f (α)

∣∣∣∣ = f ′ (c)

∣∣∣∣pq − α

∣∣∣∣ .

Let
M = sup

|z−α|<1

∣∣f ′(z)∣∣ .
Then we can say:∣∣∣∣f (p

q

)
− f (α)

∣∣∣∣ = f ′ (c)

∣∣∣∣pq − α

∣∣∣∣ ≤ M

∣∣∣∣pq − α

∣∣∣∣ .
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Proof of Liouville’s Theorem Continued

Since f (z) does not have any rational roots,

0 ̸= f

(
p

q

)
= an

(
p

q

)n

+ · · ·+a0 =
anp

n + · · ·+ a1pq
n−1 + a0q

n

qn
.

The numerator has an absolute value of at least 1.

Thus,∣∣∣f (p
q

)
− f (α)

∣∣∣ = ∣∣∣f (p
q

)∣∣∣ = anpn+an−1pn−1q+···+a1pqn−1+a0qn

qn ≥ 1
qn .
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Proof of Liouville’s Theorem Continued

Combining the two equations, we get:

1

qn
≤ M

∣∣∣∣α− p

q

∣∣∣∣ =⇒ 1

Mqn
≤

∣∣∣∣α− p

q

∣∣∣∣ .

Writing 1
c(α) as M, we achieve:

c(α)

qn
≤

∣∣∣∣α− p

q

∣∣∣∣ .
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Liouville’s Constant

This result allowed Liouville to discover the first proven example of
a transcendental number, the Liouville constant.

∞∑
i=0

10−i ! = 0.110001000000000000000001000 . . . .

Part of the proof also included how this transcendental number
doesn’t satisfy Liouville’s Theorem.



Lower Bound Discoveries

A lower bound would be a result of the form:
Say α is an irrational algebraic number of degree n ≥ 2. Then
there are infinitely many rational numbers p/q that satisfy the
inequality ∣∣∣∣α− p

q

∣∣∣∣ < 1

qκ
,

where κ is some exponent.

Over time, mathematicians would improve the accuracy of
Liouville’s Theorem with the value of κ.



Improvements by Thue, Siegel, Dyson, and Roth

∣∣∣∣α− p

q

∣∣∣∣ < 1

qκ
.

Thue (1908): κ ≤ 1

2
n + 1.

Siegel (1921): κ ≤ s +
n

s + 1
for s = 1, 2, . . . , n − 1.

Dyson (1947): κ ≤
√
2n.

Roth (1955): κ ≤ 2.
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Thue-Siegel-Roth’s Theorem

All of these improvements would later combine into one single
theorem: the Thue-Siegel-Roth’s theorem.

Theorem (Thue-Siegel-Roth’s Theorem)

There exists a positive constant c(α, ϵ) such
that ∣∣∣∣α− p

q

∣∣∣∣ > c(α, ϵ)

q2+ϵ

holds for every rational number p/q.



Key Elements of Thue-Siegel-Roth’s Theorem

Let P(z) = a0 + a1z + · · ·+ anz
n be a polynomial with complex

coefficients.

Then ||P|| = max{|a0| , |a1| , . . . , |an|}. Furthermore, if α is
algebraic over Q with its minimal polynomial f (z) over Q, we
define the height H(α) = ||f || .
This was used to help make numerous inequalities and properties
between polynomials. Also helps when analyzing algebraic
coefficients within a polynomial.



Key Elements Continued

Generalized Wronskians

W (z) =

∣∣∣∣∣∣∣∣∣
1
0! f0(z)

1
0! f1(z) · · · 1

0! fl−1(z)
1
1! f

′
0(z)

1
1! f

′
1(z) · · · 1

1! f
′
l−1(z)

...
...

. . .
...

1
(l−1)! f

(l−1)
0 (z) 1

(l−1)! f
(l−1)
1 (z) · · · 1

(l−1)! f
(l−1)
l−1 (z)

∣∣∣∣∣∣∣∣∣
= det

(
1

µ!

dµ

dzµ
fv (z)

)
, µ, v = 0, 1, . . . , l − 1.

This was used to relate the Wronskians and determinants to
monomials’ exponents.


