
DIOPHANTINE APPROXIMATIONS

LEO OUYANG

Abstract. In this mathematical paper, we will introduce Diophantine Approximations.
We will explore the upper and lower bounds of Diophantine Approximations, and mainly
focus on its applicability to algebraic numbers and the accuracy to which one cam approxi-
mate it using rational numbers by proving Dirichlet’s Approximation Theorem, Liouville’s
Theorem, and Thue-Siegel-Roth’s Theorem.

1. Introduction

Diophantine Approximations, named after Diophantus of Alexandria, an Alexandrian
mathematician and author of Arithmetica, are the approximations of real numbers using
rational numbers. Throughout history, there are numerous mathematicians, some of whom
will be mentioned throughout this paper, whose works improved the upper and lower bounds
of Diophantine Approximations.

Section 2 explores the upper bound of Diophantine Approximations and proves Dirichlet’s
Approximation Theorem. Section 3 focuses on the lower bound of Diophantine Approxima-
tions and proves Liouville’s Theorem. Sections 4 − 8 contain theorems that will be used in
the proof of Thue-Siegel-Roth’s Theorem. Section 4 discusses and proves theorems regard-
ing Polynomials. Section 5 introduces and proves theorems regarding Wronskians. Section
6 considers and proves theorems regarding the indices of polynomials. Section 7 proves a
combinatorical lemma. Section 8 proves the theorem that is referenced in Thue-Siegel-Roth’s
theorem. In Section 9, the proof of Thue-Siegel-Roth’s Theorem will be given.

2. Upper Bound of Diophantine Approximations

Definition 2.1. We say α ∈ C is an algebraic number if it is a root of a polynomial with a
finite degree and integer coefficients.

Theorem 2.2 (Dirichlet’s Approximation Theorem). Let α be an irrational number. There
exists a fraction p/q, where p ∈ Z and q ∈ N, such that

(2.1)

∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

1
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Proof. Let n ≥ 1 be an integer. Let {x} be the fractional part of x. Consider the n + 1
fractional parts of {0 · α}, {1 · α}, . . . , {n · α}, which are all within the interval of [0, 1). The
interval [0, 1) can be split into n sub-intervals:[

0,
1

n

)
,

[
1

n
,
2

n

)
, . . .

[
n− 1

n
, 1

)
.

Since there are n + 1 fractional parts and n sub-intervals, by the Pigeonhole Principle, it
implies that there exist two integers 0 ≤ j < k ≤ n such that {j · α} and {k · α} belong in
the same sub-interval. Thus, there exists some integer p that satisfies:

|(k − j)α− p| < 1

n
.

Setting q = k − j and dividing by q on both sides, we get∣∣∣∣α− p

q

∣∣∣∣ < 1

nq
≤ 1

q2
.

□

Corollary 2.3. There are an infinitely many irreducible fractions p/q such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

Proof. According to Dirichlet’s Approximation Theorem, for any irrational α, any N , there
exists p, q integers 1 ≤ q ≤ N such that∣∣∣∣α− p

q

∣∣∣∣ < 1

Nq
.

Since α is irrational, you can take the sequence NN going to infinity such that

|qnα− pn| <
1

Nn

.

Thus, the sequence qn also has to go to infinity in order for |qnα− pn| to approach 0. If qn
is bounded, then you will always have finite values of |qnα− pn|, regardless of whether pn is
bounded or not. Since α is irrational, it means |qnα− pn| ̸= 0 can never approach 0. Thus,
it is important that qn goes to infinity, resulting in an infinite number of solutions. □

This was the first major result that was achieved for the upper bound of Diophantine
Approximations. Later on, another mathematician by the name of Adolf Hurwitz was able
to strengthen this theorem with a constant.

Theorem 2.4 (Hurwitz’s Theorem). Let A be a constant satisfying 0 < A ≤
√
5. If α is

irrational, then there are infinitely many rational numbers p/q satisfying∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

.

The proof of this theorem can be found in [Hur91]. The constant in this theorem cannot be
further improved without excluding some irrational numbers.
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3. Lower Bound of Diophantine Approximations

We will now move to the lower bound. In the 1840’s, Liouville obtained the first lower
bound for Diophantine Approximations.

Theorem 3.1 (Liouville’s Approximation Theorem). If α is an irrational algebraic number
of degree n > 1, there exists a constant c(α) such that∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qn

for all rationals p
q
, where p ∈ Z and q ∈ N. x

Proof. Let f(z) = a0+a1z+ · · ·+anz
n be the minimal polynomial, a polynomial with integer

coefficients of smallest degree, having α as a root.
Let

(3.1) M = sup
|z−α|<1

|f ′(z)| .

Then let p/q be a rational number such that
∣∣∣pq − α

∣∣∣ < 1. By the Mean Value Theorem,∣∣∣∣f (p

q

)
− f(α)

∣∣∣∣ = f ′(c)

∣∣∣∣pq − α

∣∣∣∣ ≤ M

∣∣∣∣pq − α

∣∣∣∣
where c is a real number that lies between α and p/q.
Since f(z) does not have any rational roots,

0 ̸= f

(
p

q

)
= an

(
p

q

)n

+ · · ·+ a0 =
anp

n + an−1p
n−1q + · · ·+ a1pq

n−1 + a0q
n

qn
.

Since a0q
n is a nonzero integer, the numerator has an absolute value of at least 1. Thus:

(3.2)

∣∣∣∣f (p

q

)
− f (α)

∣∣∣∣ = ∣∣∣∣f (p

q

)∣∣∣∣ = anp
n + an−1p

n−1q + · · ·+ a1pq
n−1 + a0q

n

qn
≥ 1

qn
.

Combining (3.1) and (3.2), we get:

1

qn
≤ M

∣∣∣∣α− p

q

∣∣∣∣ =⇒ 1

Mqn
≤
∣∣∣∣α− p

q

∣∣∣∣ .
Writing c−1(α) as M , we achieve:

c(α)

qn
≤
∣∣∣∣α− p

q

∣∣∣∣ .
□
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This result allowed Liouville to discover the first proven example of a transcendental
number, the Liouville constant.

∞∑
i=0

10−i ! = 0.110001000000000000000001000 . . . .

More can be found on [Lio44].

According to Liouville, there is an obvious limit to the accuracy with which algebraic
numbers can be approximated by rational numbers.

Say α is an irrational algebraic number of degree n ≥ 2. Then there are infinitely many
rational numbers p/q that satisfy the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1

qκ
.

Thue, Siegel, and Dyson would be some of the mathematicians that improved the value of
κ and the accuracy of Liouville’s Theorem.

Theorem 3.2 (Thue’s Theorem, 1908).

κ ≤ 1

2
n+ 1.

Theorem 3.3 (Siegel’s Theorem, 1921).

κ ≤ s+
n

s+ 1
for s = 1, 2, . . . , n− 1.

Theorem 3.4 (Dyson’s Theorem, 1947).

κ ≤
√
2n.

In 1955, Roth would prove Siegel’s conjecture.

Theorem 3.5 (Roth’s Theorem, 1955).

κ ≤ 2.

All of this would finally lead to the Thue-Siegel-Roth’s theorem.

Theorem 3.6 (Thue-Siegel-Roth’s Theorem). There exists a positive constant c(α, ϵ) such
that ∣∣∣∣α− p

q

∣∣∣∣ > c(α, ϵ)

q2+ϵ

holds for every rational number p/q.

In this paper, we will prove the Thue-Siegel-Roth’s Theorem. This proof will be similar
to LeVeque’s in [LeV56, Chapter 4].
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4. Polynomials

Let P (z) = a0+a1z+ · · ·+anz
n be a polynomial with complex coefficients. We start with

some definitions.

Definition 4.1. Let P be the polynomial above. Then ||P || = max{|a0| , |a1| , . . . , |an|}.
Furthermore, if α is algebraic over Q with its minimal polynomial f(z) over Q, we define
the height H(α) = ||f || .

Theorem 4.2. Let

L(z) = l
h∏

k=1

(z − λk)

where l, λk ∈ C for k = 1, . . . , h. Then

(4.1) |l|
h∏

k=1

(1 + |λk|) ≤ 6h ||L|| .

Proof. It is obvious that l can be excluded. Then, we can arrange the complex number
λ1, . . . , λh in such a way that |λi| ≤ 2 for i = 1, . . . , t and |λi| > 2 for i > t. Say z0 is the
(t + 1)th root of unity. For each k = t + 1, . . . , h, we can divide 1 + |λk| with |z0 − λk| ,
achieving:

1 + |λk|
|z0 − λk|

≤ 1 + |λk|
|λk| − |z0|

=
1 + |λk|
|λk| − 1

= 1 +
2

|λk| − 1
< 1 +

2

2− 1
= 3.

Thus,

(4.2)
h∏

k=t+1

(1 + |λk|) < 3h−t

∣∣∣∣∣
h∏

k=t+1

(z0 − λk)

∣∣∣∣∣ .
For the remaining k = 1, 2, . . . , t we can say

t∏
k=1

(1 + |λk|) ≤ (1 + 2)t = 3t.

Assuming that |f(z0)| ≥ 1, where f(z) =
∏t

k=1(z − λk) and z0 is the previous (t+ 1)th root
of unity, we obtain

t∏
k=1

(1 + |λk|) ≤ 3t ≤ 3t

∣∣∣∣∣
t∏

k=1

(z0 − λk)

∣∣∣∣∣ .
Combining this with (4.2), we get

h∏
k=1

(1 + |λk|) < 3h

∣∣∣∣∣
h∏

k=1

(z0 − λk)

∣∣∣∣∣
.
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Since f(z0) ≤ ||L|| (|z0|h + · · ·+ 1),

3h

∣∣∣∣∣
h∏

k=1

(z0 − λk)

∣∣∣∣∣ ≤ 3h ||L|| (|z0|h + · · ·+ 1) = 3h ||L|| (h+ 1) ≤ 6h ||L|| .

To prove that |f(z0)| ≥ 1 does exist, we first let ϵ be the (t+ 1)th root of unity. Set

f(z) =
t∑

r=0

µrz
r, µt = 1.

Then

t∑
v=0

ϵvf(ϵv) =
t∑

v=0

(
ϵv

t∑
r=0

µrϵ
vr

)
=

t∑
r=0

(
µr

t∑
v=0

ϵv(r+1)

)
.

Focusing on
∑t

v=0 ϵ
v(r+1), if (t + 1) | (r + 1) this sum clearly equals t + 1. Since 0 ≤ r ≤ t

this is only true when r = t. If (t+ 1) ∤ (r + 1), then the sum reduces to

t∑
v=0

zv =
zn+1 − 1

z − 1
= 0.

Thus,

t∑
v=0

ϵvf(ϵv) = µt(t+ 1) = t+ 1.

Hence

t∑
v=0

|f(ϵv)| =
t∑

v=0

|ϵvf(ϵv)| ≥

∣∣∣∣∣
t∑

v=0

ϵvf(ϵv)

∣∣∣∣∣ = t+ 1.

Therefore, there exists a root of unity z0 ∈ {1, ϵ, ϵ2, . . . , ϵt} such that |f(z0)| ≥ 1.
□
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Now we move to some more theorems that will be useful later on.

Theorem 4.3. Let f(z) and g(z) be complex polynomials of degree n and m respectively.
Suppose the coefficient of zm in g(z) has an absolute value greater than or equal to 1. Then

||f || ≤ 6m+n ||fg||

Proof. Let

f(z) = a0 (z − λ1) · · · (z − λn)

g(z) = b0 (z − λn+1) · · · (z − λn+m) .

Then

||f || ≤

∣∣∣∣∣
∣∣∣∣∣a0

n∏
k=1

(z + |λk|)

∣∣∣∣∣
∣∣∣∣∣ ≤ |a0b0| ·

n∏
k=1

(1 + |λk|)

≤ |a0b0| ·
n∏

k=1

(1 + |λk|) ,

and we get our desired result using Theorem 4.2.
□

Theorem 4.4. Let f(z) be polynomial of degree n, having real coefficients. Then

||f ||m ≤ (mn+ 1) ||fm||

See [LeV56, Theorem 4-4] for the full proof.

We now turn to some definitions.

Definition 4.5. Let α is an algebraic number of degree n, with corresponding minimal
polynomial p(z). Then the roots, α1 = α, α2, . . . , αn, of p(z) are called the conjugates of α.

Definition 4.6. Let P (z) be a polynomial with algebraic coefficients c1, c2, . . . , cr. Also let
Ci equal the maximum of the absolute values of the conjugates of ci. Then we define

∣∣P ∣∣
as
∣∣P ∣∣ = max{C1, C2, . . . , Cr}. If α is algebraic we also define |α| as the maximum of the

absolute values of the conjugates of α.
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Theorem 4.7. If f1(z), f2(z), . . . , ft(z) are polynomials with algebraic coefficients, then∣∣∣∣∣∣
t∏

v=1

fv

∣∣∣∣∣∣ ≤
t∏

v=1

(1 + deg fv)
t∏

v=1

∣∣fv∣∣ .
Proof. Suppose, without loss in generality, that deg f1 ≥ deg f2 ≥ · · · ≥ deg ft.

Each coefficient of f1f2 will be a polynomial the sum of products of a coefficient f1 and a
coefficient of f2. The number of sums of products will be at most def f2 + 1, so we achieve:∣∣f1f2∣∣ ≤ (degf2 + 1)

∣∣f1∣∣ ∣∣f2∣∣ .
Then we can also say that∣∣f1f2f3∣∣ ≤ (1 + deg) f3

∣∣f1f2∣∣ ∣∣f3∣∣ ≤ (1 + deg) (1 + degf2)
∣∣f1∣∣ ∣∣f2∣∣ ∣∣f3∣∣ ,

and so on.
□

Theorem 4.8. Let p and r be positive integers with 1 ≤ r < p. Suppose that F (z1, . . . , zp) , G (z1, . . . , zr) ,
and H (zr+1, . . . , zp) are polynomials with coefficients in an algebraic number field K, those
of F being integers. Also suppose that

F (z1, . . . , zp) = G (z1, . . . , zr)H (zr+1, . . . , zp) .

Then if γ is any coefficient in F, there is a factorization γ = αβ in K such that the coefficients
in αH and βG are integers in K.

Proof. Let the coefficients in G be α1, . . . , αs, and those in H be β1, . . . , βt, in some order.
Since the variables in G and H are disjoint, that means that the variables in F are simply
the products αiβj. Since the coefficients in F are integers, the products αiβ1, . . . , αiβt and
βjα1, . . . , βjαs are also integers. But these two sets of numbers are just the coefficients in
α1H and β1G.

□
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5. Generalized Wronskians

Now we turn our attention to Wronskians. The results from this section will be needed in
the next one.

Throughout this section f0(z1, . . . , zp), . . . , fl−1(z1, . . . , zp) are polynomials in an algebraic
number field K.

Definition 5.1. f0, . . . , ft−1 are said to be linearly dependent if

k0f0 + · · ·+ kl−1fl−1 = 0, ki ∈ K for each i = 0, . . . , l − 1,

if there exists some linear combination, where the constant coefficients are not all zero,
vanishes identically. Otherwise, k0, . . . , kl−1 are said to be linearly independent.

If p = 1, then we define the Wronskian as

W (z) =

∣∣∣∣∣∣∣∣∣
1
0!
f0(z)

1
0!
f1(z) · · · 1

0!
fl−1(z)

1
1!
f ′
0(z)

1
1!
f ′
1(z) · · · 1

1!
f ′
l−1(z)

...
...

. . .
...

1
(l−1)!

f
(l−1)
0 (z) 1

(l−1)!
f
(l−1)
1 (z) · · · 1

(l−1)!
f
(l−1)
l−1 (z)

∣∣∣∣∣∣∣∣∣
= det

(
1

µ!

dµ

dzµ
fv(z)

)
, µ, v = 0, 1, . . . , l − 1.

For convenience’s sake, we include the factors 1
µ!
, µ = 0, . . . , l − 1.

The Generalized Wronskian deals with all the cases p ≥ 1. Let ∆0, . . . ,∆l−1 be differential
operators of the form

∆µ =
1

j1! · · · jp!

(
∂

∂z1

)j1

· · ·
(

∂

∂zp

)jp

such that the order j1 + · · · jp, of ∆µ does not exceed µ for any µ = 0, . . . , l − 1. Then we
can define the generalized Wronskian as

G(z) =

∣∣∣∣∣∣∣∣∣
∆0f0(z) ∆0f1(z) · · · ∆0fl−1(z)
∆1f0(z) ∆1f1(z) · · · ∆1fl−1(z)

...
...

. . .
...

∆l−1f0(z) ∆l−1f1(z) · · · ∆l−1fl−1(z)

∣∣∣∣∣∣∣∣∣ .
Since there are several different ∆µ’s for each µ, there is not just one generalized Wron-

skian. The number of different ∆µ’s are (p+ 1)µ.
We now turn to two theorems that will be needed later. Due to the length of their proofs,

they will not be included in this paper. For full proofs see [LeV56, Chapter 4].
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Theorem 5.2. (a) If f0, . . . , fl−1 are l polynomials over K in the single variable z, whose
Wronskian W (z) vanishes identically, then they are dependent of K.
(b) If f0, . . . , fl−1 are l polynomials over K in the variables z1, . . . , zp, for which every

generalized Wronskian Gl(z1, . . . , zp) vanishes identically, then they are dependent.

Theorem 5.3. Let R(z1, . . . , zp) be a polynomial in p ≥ 2 variables, with integral coefficients
in K such that

0 <
∣∣R∣∣ ≤ B.

Let R be of degree at most rj in zj, for j = 1, . . . , p. Then there is an l in Z with

1 ≤ l ≤ rp + 1,

there is an integer β in K, and there are differential operators ∆0, . . . ,∆l−1 on the variables
z1, . . . , zp−1 of orders at most 0, . . . , l − 1 respectively, such that if

F (z1, . . . , zp) = βdet

(
∆µ

1

v!

(
∂

∂zp

)v

R

)
, µ, v = 0, . . . , l − 1,

then (a)F has integral coefficients in K and is not identically zero; (b) a decomposition

F (z1, . . . , zp) = U (z1, . . . , zp−1)V (zp)

holds, where U and V have integral coefficients in K, U is of degree at most lrj in zj for
j = 1, . . . , p− 1, and V is of degree at most lrp in zp; (c) the following bounds holds:∣∣F ∣∣ ≤ {(r1 + 1) . . . (rp + 1)}2l22(r1+···+rp)ll!2B2l.
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6. The Index

In this section we will mention the theorems with indexes. Their proofs can be found
in [Ish08, Section 4].

We say P (z1, . . . , zp) is a non-zero polynomial, while αp = (α1, . . . , αp) and rp = (r1, . . . , rp)
are lists of complex numbers and positive numbers, respectively.

Now, expand the polynomial P (α1 + y1, . . . , ap + yp) in y1, . . . , yp, i.e.,

P (α1 + y1, . . . , ap + yp) =
∞∑

j1=0

· · ·
∞∑

jp=0

c(j1, . . . , jp)y
j1
1 · · · yjpp .

Definition 6.1. The index θ of P at point αp
∗ relative to rp is

θ = min

(
j1
r1

+ · · ·+ jp
rp

)
,

where the minimum is extended over the set of nonnegative integers j1, . . . , jp for which
c(j1, . . . , jp) ̸= 0.

Theorem 6.2. Let P (z1, . . . , zp) and Q(z1, . . . , zp) be non-zero polynomials that do not van-
ish identically. If we consider the indices at the same point αp relative to the same list of
numbers rp, then the following relations hold:

index (P +Q) ≥ min (index P, index Q),

indexPQ = index P + index Q.

Let K be an algebraic number field, B ≥ 1 and consider the set Rm = Rm(B; rm) of
polynomials R ∈ K[z1, . . . , zm] with the properties:

(i) R is of degree at most rj in zj, for j = 1, . . . ,m,
(ii) and

∣∣R∣∣ ≤ B.

Let ζ1, . . . , ζm be algebraic numbers in C of heights q1, . . . , qm respectively. Let θ(R) denote
the index of R(z1 . . . , zm) at the points ζm = (ζ1, . . . , ζm) relative to rm. Now we will proceed
to create definations which will be useful later on.

Definition 6.3. We say

Θm(B; qm; rm = sup{θ(R)}
is the supremum or the upper bound that is iterated over all R ∈ Rm and all list ζm with
elements of heights q1, . . . , qm

†

To find an upper bound for Θm(B; qm; rm), we will use induction on m and proceed with
the theorem that will be used later in the case m = 1.

∗Note that we refer to αp as a point here.
†I.e. H(ζ1) = q1, . . . ,H(ζm) = qm.
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Theorem 6.4.

Θ1 (B; q1; r1) ≤
3N(N + 1)

log q1
+

N logB

r1 log q1
, ‡

where N = [K : Q].

With this, we can find a recurrence relation between Θm and Θm−1.

Theorem 6.5. Let p ≥ 2 be a positive integer, let r1, . . . , rp be positive integers such that

(6.1) rp > 10δ−1,
rj−1

rj
> δ−1, for j = 2, . . . , p,

where 0 < δ < 1, let q1, . . . , qp be positive integers. Then

(6.2) Θp(B; qp; rp) ≤ 2 max(Φ + Φ
1
2 + δ

1
2 ),

where the maximum is taken over integers l satisfying

1 ≤ l ≤ rp + 1,

and where

Φ = Θ1(M ; qp; lrp) + Θp−1(M ; qp−1; lrp−1)

and

M = (r1 + 1)2pl22r1pll!2B2l.

‡If we only consider the index of a polynomial at the point αp of real numbers, then the term 3N(N+1)
log q1

could be neglected. This was what Roth did in his original proof. See [Rot55].
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Now, we use Theorem 6.4 and 6.5 for the main theorem in this section.

Theorem 6.6. Let m be a positive integer, and suppose that

(6.3) 0 < δ <
1

m2m(N + 1)2
.

Let r1, . . . , rm be positive integers such that

(6.4) rm > 10δ−1,
rj−1

rj
> δ−1, for j = 2, . . . ,m.

Let q1, . . . , qm be positive integers such that

(6.5) log q1 > 2δ−1m(2m+ 1),

(6.6) rj log qj ≥ r1 log q1, for j = 2, . . . ,m,

(6.7) log q1 > 3δ−1N(N + 1),

Then

(6.8) Θ(qδr11 ; qm; rm) < 10mδ(
1
2
)m .

7. A Combinatorical Lemma

In this section, we will mention the Combinatorical Lemma. Due to its length, we will not
go over the proof. The proof can be found in [Ish08, Section 5].

Definition 7.1. Let r1, . . . , rm be positive integers, and λ > 0. Let (j1. . . . , jm) be a list of
integers such that

(7.1) 0 ≤ j1 ≤ r1, . . . , 0 ≤ jm ≤ rm

and

(7.2)
j1
r1

+ · · ·+ jm
rm

≤ 1

2
(m− λ).

If A is the set of all such lists of integers, then Am(λ) is defined as

Am(λ) = |A|

Theorem 7.2. If r1, . . . , rm and λ are as in the above definition, then

(7.3) Am(λ) ≤ 2
√
mλ−1(r1 + 1) · · · (rm + 1).
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8. The Approximation Polynomial

In this section, we will prove the theorem which is the only one referenced in the proof of
the Thue-Siegel-Roth theorem.

Let α be an algebraic integer of degree n ≥ 2 over K. Let ω1, . . . , ωN be an integral basis
for K, and put

|α| = b1 ≥ 1, max (|ω1| , . . . , |ωN |) = b2.

That ω1, . . . , ωN is an integral basis for K mean that every element OK can be written
uniquely as a linear combination of {ω1, . . . , ωN} with coefficients in Z.
We will later choose the variables m, δ, q1, ζ1, . . . , qm, ζm, r1, . . . , rm, in the given order just

specified, such that they satisfy the following conditions:

(8.1) 0 < δ <
1

m2m(N + 1)2
,

(8.2) 10mδ(
1
2
)m + 2(1 + 3δ)n

√
m <

m

2
,

(8.3) rm > 10δ−1,
rj−1

rj
> δ−1, for j = 2, . . . ,m,

(8.4) δ2 log q1 > 2m+ 1 +m log(b1 + 1) + 4b2N,

(8.5) rj log qj ≥ r1 log q1, for j = 2, . . . ,m,

(8.6) log q1 > 3δ−1N(N + 1).

Below are some variables that are defined to simplify later calculations:

(8.7) λ = 4(1 + 3δ)n
√
m,

(8.8) µ =
1

2
(m− λ),

(8.9) η = 10mδ(
1
2
)m ,

(8.10) B1 = ⌊qδr11 ⌋.
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Theorem 8.1. Suppose that the conditions (8.1) - (8.6) are satisfied, and suppose that
δ1, . . . , δm are algebraic numbers of heights q1, . . . , qm, respectively. Then there exists a poly-
nomial Q ∈ K[z1, . . . , zm] with integral coefficients in K and of degree at most rj in zj, for
j = 1, . . . ,m, such that

(i) the index of Q at the point (α, . . . , α) relative to r1, . . . , rm is at least µ− η;
(ii) Q(ζ1, . . . , ζm) ̸= 0;
(iii) for all derivatives

Qim...im(zi, . . . , zm) =
1

i1! · · · im!

(
∂

∂z1

)i1

. . .

(
∂

∂zm

)im

Q,

where im . . . im are non-negative integers, the inequality

|Qim...im(zi, . . . , zm)| < B1+3δ
1 (1 + |z1|)r1 · · · (1 + |zm|)rm

holds, and the corresponding inequality also holds if the coefficients in Q are replaced
by their respective field conjugates.

Proof. Let C be the set of integers of K of the form

c1ω1 + · · ·+ cNωN ,

where c1, . . . , cN range over all non-negative integers not exceeding B1. If we put

(1 + r1) · · · (1 + rm) = r,

then there are |C|r = (1 +B1)
Nr distinct polynomials

P (z1, . . . , zm) =

r1∑
s1=0

· · ·
rm∑
sm

γ(s1, . . . , sm)z
s1
1 · · · zsmm

whose coefficients γ(s1, . . . , sm) ∈ C. If we put

Pi1...im(z1, . . . , zm) =
1

i1! · · · im!

(
∂

∂z1

)i1

. . .

(
∂

∂zm

)im

P (z1, . . . , zm)

=

r1∑
s1=0

· · ·
rm∑

sm=0

γ(s1, . . . , sm)

(
r1
j1

)
· · ·
(
rm
jm

)
zs1−j1
1 · · · zsm−jm

m ,
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then ∣∣Pj1,....jm

∣∣ ≤ 2r1+···+rmb2B1N ≤ b2N2mr1B1 < b2NB1+δ
1 ,

since

(8.11)
∣∣∣γ(s1, . . . sm)∣∣∣ ≤ b2B1N,

mr1 log 2 < r1[m(1 + log
√

b1 + 1] <
1

2
r1[2m+ 1m log(b1 + 1) + 4b2N ]<

1

2
δ2r1 log q1,(

rk
jk

)
< 2rk

and q
1
2
r1

1 < B1. Also, since, by (8.4),

r ≤ 2r1+···+rm ≤ 2mr1 ≤ (b1 + 1)mr1 < Bδ
1,

we obtain the bound ∣∣∣Pj1,....jm(α, . . . , α)
∣∣∣ ≤ b2NB1+δ

1 rbr1+···+rm
1(8.12)

≤ b2NB1+3δ
1 .

Let ϑ be a primitive element of L, so that L = Q(ϑ). Order the conjugates of ϑ so that
ϑ1, . . . , ϑp1 are real and ϑp1+v = ϑp1+p2+v are complex conjugates for v = 1, . . . , p2, Pj1...jm(α, . . . , α),
where j1, . . . , jm satisfy the given inequalities

(8.13) 0 ≤ j1 ≤ r1, . . . , 0 ≤ jm ≤ rm,
j1
r1

+ · · ·+ jm
rm

≤ µ.

Then ξ can be written as a polynomial in ϑ, with rational coefficients, with the field conju-
gates ξ(v), for v = 1, . . . , nN, i.e., if

ξ = a0 + a1ϑ
1 + · · ·+ an−1ϑ

nN−1,

where ai ∈ Q, for i = 1, . . . , nN, then

ξ(v) = a0 + a1ϑ
1
v + · · ·+ an−1ϑ

nN−1
v ,

is a field conjugate, where ϑv is one of the conjugates of ϑ. We can define nN real numbers
ξ1, . . . , ξnN by the equations

ξv = ξ(v), for v = 1, . . . , p1,

ξv + iξv+p2 = ξ(v), for v = p1 + 1, . . . , p1 + p2.
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Fixing the coefficients γ(s1, . . . , sm), we can then arrange the ξv’s in a fixed order and each of
these numbers can be viewed as coordinates of a point. Doing this for all j1, . . . , jm satisfying
(8.13), we get, by Theorem 7.2,

M ≤ 2nN
√
mλ−1r

coordinates. Furthermore, from (8.12) we see that each of the coordinates have absolute
values smaller than ⌊b2NB1+3δ

1 ⌋+ 1 = t. Thus all points for various γ(s1, . . . , sm) ∈ C lie in
a cube of edge 2t in M -dimensional space. We can divide the cube into (3t)M subcubes of
edge 2

3
. If

(8.14) |C|r = (1 +B1)
Nr > (3t)M ,

then there exists more points than subcubes and thus the points corresponding to two dif-
ferent polynomials P ∗(z1, . . . , zm) and P ∗∗(z1, . . . , zm) lie in the same subcube. If we put

P = P ∗ − P ∗∗,

then the point P j1,...,jm(α, . . . , α) is in one of the 2M subcubes closest to the origin, thus∣∣∣P j1,...,jm(α, . . . , α)
∣∣∣ ≤ √

2× 2

3
< 1,

for all j1, . . . , jm satisfying (8.13). But, since P j1,...,jm(α, . . . , α) is an algebraic integer, this
can only be true if it equals zero. Since this is true for all j1, . . . , jm satisfying (8.13), the
index of P at (α, . . . , α) relative to r1, . . . , rm must be greater than µ. The coefficients of P
are the differences of two elements of C, and thus it is not hard to see that the inequality
(8.11) holds for them.

We now verify that (8.14) indeed holds, so that the above conclusions are valid. Notice
that by (8.4)

qδr11 > 4b2N,

so

B1 > 4b2N,

BNr
1 > (4b2NB1)

1
2
Nr,

BNr
1 > (3b2NB1+3δ

1 + 3)
1
2
Nr(1+3δ)−1

,

(1 +B1)
Nr > (3t)M ,

where the third inequality follows from the fact that B1 > e15 > 3.
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Now, P ∈ Rm(q
δr1
1 ; rm), its index at (ζ1, . . . , ζm) relative to r1, . . . , rm must be less than

η, by Theorem 6.5. Hence there exists a different operator

∆k =
1

k1! · · · km!

(
∂

∂z1

)k1

· · ·
(

∂

∂zm

)km

with

Q(z1, . . . , zm) = ∆kP ,

so that if

k1
r1

+ · · ·+ km
rm

< η,

then

Q(ζ1, . . . , ζm) ̸= 0.

The index of Q at the point (α, . . . , α) relative to r1, . . . , rm is at least µ− η. Notice that
by (8.2) µ− η. Thus (i) and (ii) are satisfied.
From (8.11) and the inequality r < Bδ

1,∣∣Q∣∣ ≤ 2r1+···+rmb2NB1 < 2mr1b2NB1 < b2NB1+δ
1 ,

and hence ∣∣Qi1,...im

∣∣ < 2r1+···+rmb2NB1+δ
1 < b2NB1+2δ

1 .

Finally,

|Qi1,...im(z1, . . . zm)| < b2NB1+2δ
1

m∏
v=1

(1 + |zv|+ · · ·+ |zv|rv)

< b2NB1+2δ
1

m∏
v=1

(1 + |zv|)rv

< B1+3δ
1

m∏
v=1

(1 + |zv|)rv ,

where the last inequality follows since b2N < Bδ
1 by (8.4). The same inequality holds if the

coefficients are replaced by their respective field conjugates, and thus we are done.
□
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9. Proof of the Thue-Siegel-Roth’s Theorem

Theorem 9.1 (Generalization of the Thue-Siegel-Roth’s theorem). Let K be an algebraic
number field of degree N, i.e., [K : Q] = N, and let α be algebraic of degree n ≥ 2 over K.
Then for each κ > 2, the inequality

(9.1) |α− ζ| < 1

[H(ζ)]κ

has only finitely many solutions for ζ in K.

Proof. We will prove this theorem by assuming it is false and achieving a contradiction.
Let the monic defining polynomial of α be p(z) = zn+an−1z

n−1+· · ·+a1z+a0 Furthermore,
let a equal the least common multiple of the denominators of the rational coefficients of p(z).
Then q(z) = anp

(
z
a

)
has integral coefficients, is monic and irreducible. aα is a root of the

equation, implying aα is an algebraic integer. Suppose ζ is a solution of (9.1). Then

|aα− aζ| < α

[H(ζ)]κ
≤ aκN+1

[H(aζ)]κ
,

where the last inequality follows from the fact that ζ, and viz. aζ, can be at most of degree
N, thus H(aζ) ≤ aNH(ζ). Hence, for arbitrary ϵ > 0, and for all solutions ζ with H(ζ)
sufficiently large,

|aα− aζ| < 1

[H(aζ)]κ−ϵ
,

and ϵ can be chosen so small that κ − ϵ > 2. Thus we can assume that α is an algebraic
integer. We also realize that can ignore the ζ’s for which H(ζ)) is not sufficiently large since
K is an algebraic number field, and thus a finite extension, resulting in only a finite amount
of cases. We also note that we only need to prove the theorem for primitive elements ζ in K.
This is because the number of subfields of an algebraic number field is finite and each element
of K is a primitive element in such a subfield, thus the proof can be repeated. Choose m to
be a rational integer so that m > 4n

√
m and

(9.2)
2m

m− 4n
√
m

< κ.

By first inequality, the right-hand side of (9.2) is positive and 2m
m−4n

√
m

→ 2 as m → ∞.

Thus, there exists an m since κ is strictly greater than 2. Furthermore, for sufficiently small
δ, we have

m− 4(1 + 3δ)n
√
m− 2η > 0,

where η was defined in (8.9). This inequality is the same as the one in (8.2). We choose δ
to satisfy this, (8.1) and the inequality

(9.3)
2m(1 + δ) + 2δN(2 + 5δ)

m− 4(1 + 3δ)n
√
m− 2η

< κ

which is possible because of (9.2). Using (8.7) and (8.8), we can write this inequality as
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(9.4)
m(1 + δ) + δN(2 + 5δ)

µ− η
< κ.

We now choose a primitive solution ζ1 of (9.1) such that q1 = H(ζ1) satisfies (8.4) and
(8.6).Then, we choose further primitive solutions ζ2, . . . , ζm of heights q2, . . . , qm, respectively,
such that for j = 2, . . . ,m,

(9.5)
log qj
log qj−1

>
2

δ
.

We now let r1 be any rational integer such that

(9.6) r1 >
10 log qm
δ log q1

,

and define rj, for j = 2, . . . ,m, by

(9.7)
r1 log q1
log qj

≤ rj <
r1 log q1
log qj

+ 1.

This satisfies (8.5). Notice it gives us

(9.8)
rj log qj
r1 log q1

< 1 +
log qj

r1 log q1
< 1 +

log qm
r1 log q1

< 1 +
δ

10
,

where (9.5) is used for the second inequality and (9.6) for the third. The conditions (8.3)
are satisfied since

rm ≥ r1 log q1
log qm

> 10δ−1,

by (9.7) and (9.6), and

rj−1

rj
>

(
log qj

r1 log q1 + log qj

)(
r1 log q1
log qj−1

)
=

log qj
log qj−1

(
r1 log q1

r1 log q1 + log qj

)
=

log qj
log qj−1

(
1 +

log qj
r1 log q1

)−1

>
log qj
log qj−1

(
1 +

δ−1

10

)−1

>
2

δ

(
1 +

δ−1

10

)−1

>
2

δ
> δ−1.

Let Q(z1, . . . , zm) be the polynomial as in Theorem 8.1. Let ζ1, . . . , ζm ∈ K be zeros of
irreducible polynomials of degreeN with relatively prime coefficients in Z, and the coefficients
in zN being k1, . . . , km, respectively. Then the number

ϕ = Q(ζ1, . . . , ζm)

is in K. If the field conjugates of ζi are ζ ′i, ζ
′′
i , . . . , for i = 1, . . . ,m, then NoK/Q(ϕ) is a sum

of products of powers of the ζ
(j)
i with integral coefficients from K. In each such product, the

factor ζ
(j)
i occurs to the power ri at most. It can be shown that the product of ki and any
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set of distinct conjugates of ζ
(j)
i is an algebraic integer. For each i, the field conjugates of ζi

are distinct, because ζi is a primitive element of K. It follows that kr1
1 · · · krm

m NoK/Q(ϕ) is an
algebraic integer, and since it is also rational it is a rational integer, hence

(9.9)
∣∣kr1

1 · · · krm
m NoK/Q(ϕ)

∣∣ ≥ 1.

From (i) in Theorem 8.1. we have that the terms in

Q(ζ1, . . . , ζm) =

r1∑
i1=0

· · ·
rm∑

im=0

Qi1,...,im(α, . . . , α)(ζ1 − α)i1 · · · (ζm − α)im

are equal to zero whenever

i1
r1

+ · · ·+ im
rm

< µ− η.

For the non-zero terms we have

∣∣(ζ1 − α)i1 · · · (ζm − α)im
∣∣ < (qi11 · · · qimm )−κ

=
[
q
i1/r1
1 (q

r2/r1
2 )i2/r2 · · · (qrm/r1

m )im/rm
]−r1κ

≤
(
q
i1/r1
1 · · · qim/rm

m

)−r1κ

< q
−r1κ(µ−η)
1 ,

where the first inequality follows from our assumption of ζ1, . . . , ζm as solutions to (9.1), and
the third inequality follows from (8.5). By (iii) in Theorem 8.1

|ϕ| < (r1 + 1) · · · (rm + 1)B1+3δ
1 (1 + b1)

mr1q
−r1κ(µ−η)
1

< B1+5δ
1 q

−r1κ(µ−η)
1 ,

and by using it once again together with Theorem 4.2 we get

∣∣kr1
1 · · · krm

m NoK/Q(ϕ)
∣∣ < kr1

1 · · · krm
m |ϕ|

∣∣∣ϕ′
∣∣∣ · · · ∣∣ϕ(N)

∣∣ < B1+5δ
1 q

−r1κ(µ−η)
1 B

(N−1)(1+5δ)
1

×
m∏
i=1

{
ki

N∏
j=1

(1 +
∣∣∣ζ(j)i

∣∣∣)}ri

< B
N(1+5δ)
1 q

−r1κ(µ−η)
1

m∏
i=1

(6Nqi)
ri .

In proof of Theorem 8.1 it was shown that

2r1+···+rm < Bδ
1,

so 6N(r1+···+rm) < qδNr1
1 and by combining all terms we get
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∣∣kr1
1 · · · krm

m NoK/Q(ϕ)
∣∣ < q

δNr1(1+5δ)+δNr1+mr1−r1κ(µ−η)
1

< q
δNr1(2+5δ)+mr1(1+δ)−r1κ(µ−η)
1 .

This together with (9.9) implies that

δN(2 + 5δ) +m(1 + δ) > κ(µ− η),

or

κ <
δN(2 + 5δ) +m(1 + δ)

µ− η
,

which contradicts (9.4). This proof is thus completed.
□
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ematische Annalen, 39(2):279–284, 1891.

[Ish08] Daniel Ishak. The thue–siegel–roth theorem, 2008.
[LeV56] William J LeVeque. Topics in Number Theory, volumes I and II. Addison-Wesley Publishing Com-

pany, Inc, 1956.
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