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Abstract

The purpose of this paper is to provide an exposition of the Bombieri Vinogradov
Theorem with an intent to explain its importance and make it easier for a non-expert
to understand. The paper also discusses a few techniques from Sieve Theory and gives
a brief introduction to Analytic Number Theory as it provides the nomenclature and
the setting for proving the Bombieri-Vinogradov Theorem. Furthermore, the paper
would also briefly discuss about the Goldston-Yildrim-Pintz Theorem in relation with
the Bombieri-Vinogradov Theorem.

1 Introduction

In this section, we will most likely focus on the history behind the study of primes, and
also on the motivation or intuition behind the Bombieri-Vinogradov Theorem. We would
also like to note that most of the content in this paper has likely been adapted from various
textbooks and papers with an intent to clarify the difficult topics and make it easier for a
non-expert (preferably a beginner in Number Theory) to understand.

The Mystery of Primes.

Right from when the Greeks classified integers into various ways, prime numbers have
certainly been one of the most popular and puzzled studies of integers. The fact that they are
quite literally the building blocks of integers yet their indiscernible pattern has overwhelmed
mathematicians for centuries and the “Mystery of Primes” remains to be unsolved till date.
However, a significant amount of progress has been made since the Greeks and a huge effort
is being taken by modern-day mathematicians to uncover The Mystery of Primes.

It started with Euclid who proved that there are infinitely many primes in the IX book
of Euclid’s Elements. Then, mathematicians pondered whether there could be a formula
that could represent only primes and significant ideas born out of this were the Mersenne’s
conjecture and Fermat’s Conjecture. Mersenne conjectured that 2p − 1 is a prime where
p is also a prime while Fermat conjectured that 22

n
+ 1 is a prime for all integers n ≥ 1.

However, Mersenne’s conjecture holds true only for the first 24 primes and it is known to
give a composite number for all other values p ≤ 257. Fermat’s conjecture has also later
been disproved by Euler who found out that the number is composite for n = 5. Since then,
no primes have been discovered through Fermat’s formula for n > 4.
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Various mathematicians then considered to answer the question of how many primes
there are less than a given positive integer z, and Carl Friedrich Gauss (1777-1855) was
the first who looked at the proportion of primes. As a teenager, Gauss was obsessed with
primes and counted up to the first 3 million primes in hopes of finding patterns. We denote
this prime-counting step function as π(x) where all the primes up to x are counted. It was
later observed by Gauss that the slope of the graph for the prime-counting function looked
roughly similar to the graph of 1

log x
. Hence, Gauss conjectured that the number of primes

less than n was roughly equal to
∫

dn
logn

. In today’s notation, we denote this prime-counting

function as π(x) and show that Gauss’s conjecture is equal to

π(x) ∼
∫ x

2

dx

log x
∼ x

log x
. (1.1)

Eventually, Gauss’s conjecture was proved by Jacques Hadamard(1865-1963) and Charles
Jean de la Vellée Poussin(1866-1962) in 1896 and it is now famously known as the Prime
Number Theorem. Another early question that arose eventually concerning the distribution
of prime numbers was the distribution of primes within arithmetic progressions. Dirichlet’s
work was mainly focused on primes within arithmetic progressions and his studies included
a slightly modified version of π(x) that is denoted as

π(x; q, a) =
∑
p≤x

p≡a mod q

1.

π(x; q, a) counts the number of primes less than x in a given congruence class modulo
q where (a, q) = 1. Dirichlet’s theorem on primes in arithmetic progressions stated that
π(x; q, a) → ∞ as x→ ∞.

However, we are actually interested in obtaining a numerical estimate for primes in a
particular arithmetic progression rather than just showing the infinitude of primes in a par-
ticular arithmetic progression. To do so, we would expect all congruence classes to have
roughly the “same” number of primes and since there would be ϕ(q) congruence classes ac-
cording to Euler’s Totient Function(2.2)1, we would expect that π(x; q, a) is roughly equal

to π(x)
ϕ(q)

for some sufficiently large x. This version of Dirichlet’s theorem for primes in arith-
metic progressions is usually known as the Prime Number Theorem for primes in arithmetic
progressions and it is denoted as

π(x; q, a) ∼ π(x)

ϕ(x)
∼ 1

ϕ(q)

x

log x
(1.2)

While this seems to show everything about the Distribution of primes, the asymptotic
equality(2.11) is not quite sufficient and we would need to more information about 1.2.
Hence, we denote 1.2 using an error term through the little-oh(2.10) notation as

π(x; q, a) ∼ π(x)

ϕ(x)
∼ 1

ϕ(q)

x

log x
+ o

(
x

log x

)
.

1We will be discussing about ϕ(n) later in the paper but for now, we can note that ϕ(n) denotes the
number of positive integers ≥ 1 and ≤ n that are relatively prime to n.
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The goal of many results that we would discuss in this paper to prove the Bombieri-
Vinogradov Theorem is to replace this error term with a more precise big-oh(2.10) estimate.
Before moving on to that, however, we will introduce and discuss several functions and the-
orems that could be used to explain (or comprehend rather) these concepts in an alternative
way. Along the way, we will also introduce concepts from Sieve theory that play a vital
role in Analytic Number Theory and particularly in the proof of the Bombieri-Vinogradov
Theorem.

2 Elementary functions and theorems from Analytic

Number Theory

This section focuses on introducing various concepts from Analytic Number Theory which
involve the definitions, nomenclature, and theorems that pertain to the distribution of prime
numbers and the Bombieri-Vinogradov Theorem. The material in this section would likely
be referenced along various proofs as we advance through the paper and we would adapt the
explanation of the concepts from [Apo98]. We would also omit the proofs for most of the
theorems in this section since their knowledge is not directly related to the paper and we
can continue without the knowledge of the proof. However, an interested reader could find
a more robust explanation on these concepts from [Apo98], or preferably any textbook on
Analytic Number Theory ( [Dav13]; [Mur08]); as far as this section is concerned with. During
the end of this section, we will be expanding more about the “error term” we mentioned
about in the introduction.

2.1 Arithmetical Functions and their Properties.

Like many other branches of Mathematics, Number theory also deals with various se-
quences of complex or real numbers. These “number-theoretic” sequences are often called
as Arithmetical functions and are denoted as real or complex valued functions defined over
positive integers.

f := Z+ → R ∨ C

A widely studied question, property rather, of arithmetical functions is whether if it’s
Multiplicative. A nonzero arithmetical function is associated to be multiplicative if,
f(mn) = f(m)f(n) whenever (m,n) = 12 and is called a completely multiplicative function
if we have f(mn) = f(m)f(n) for all m,n. For the rest of this section, we will introduce
and study such multiplicative arithmetical functions that play an important role in the
distribution of primes.

We begin with two important examples, the Möbius function µ(n) and the Euler totient
function ϕ(n).

2(a, d) represent the gcd(Greatest Common Divisor) of a and d
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Definition 2.1. The Möbius function µ(n) is defined as,

µ(n) =


1 n = 1,
(−1)k if a1 = a2 = ··· = ak = 1,
0 otherwise.

where, n = pa11 pa22 ··· pakk for n > 1.

A very celebrated and fundamental property of the Möbius function in Number Theory
for n ≥ 1, is denoted by a simple formula.∑

d|n

µ(d) =

{
1 n = 1,
0 n > 1.

(2.1)

This formula is very obvious for n = 1 but for n > 1, we consider the prime power factori-
sation3 of n and prove the formula using the fact that the Möbius function is multiplicative.
Let F (n) =

∑
d|n µ(d). Then,

F (n) = F (pa11 )F (pa22 ) ···F (pakk ).

Since,

F (pk) =
∑
d|pk

µ(d) = µ(1) + µ(p) + ··· + µ(pk) = 1 + (−1) + 0 + ··· + 0 = 1− 1 = 0,

We therefore conclude that F (n) = 0 due to its multiplicative property. ■

Definition 2.2. The Euler’s totient function, ϕ(n), is defined to be the number of positive
integers not exceeding n, that are coprime to n. It can therefore defined as:

ϕ(n) = |K|.

where,K := {k : (n, k) = 1 ∀k ∈ Z≥1|k ≤ n}.

The Möbius Function arises in various places where a divisor sum is involved and a
fundamental relation of the Möbius function with Euler’s totient function is given below.
With the help of 2.1, we will state a formula that denotes ϕ(n) in a way that is much easier
to use in proofs.

Theorem 2.3. The Euler totient function is related to the Möbius function for n ≥ 1 through
the following formula:

ϕ(n) =
∑
d|n

µ(d)
n

d
. (2.2)

3Factorisation of an integer n of the form n = pa1
1 pa2

2 ··· pak

k where pi are primes
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Due to the popularity of the sums of the kind mentioned above, we denote them in a
whole different notation in Analytic Number Theory. For two arithmetical functions, f and
g, we say that their Dirichlet product is equal to the function h, defined by the equation,

h(n) =
∑
d|n

f(d)g
(n
d

)
.

Notation. We write (f ∗ g) for h and (f ∗ g)(n) for h(n) to denote the Dirichlet product
of two arithmetical functions f and g. We would also take note of the symbol N that denotes
the arithmetical function N(n) = n for all n.

In this notation, we therefore denote the formula in Theorem 2.3 as

ϕ = µ ∗N ϕ(n) = (µ ∗N) (n)

We will now describe a few properties of the Dirichlet Product that are actually quite
analogous to Matrix Multiplication, and introduce the Identity function in Dirichlet Prod-
ucts.

Theorem 2.4. For any arithmetical functions f, g, k,

f ∗ g = g ∗ f (Commutativity)

(f ∗ g) ∗ k = f ∗ (g ∗ k) (Associativity)

Furthermore, for all f, we have f ∗ I = I ∗ f = f , where the I is denoted as the identity
function,

I(n) =

[
1

n

]
=

{
1 if n = 1,
0 if n > 1.

Theorem 2.5. For an arithmetical function f, where f(1) ̸= 0, there is a unique arithmetical
function f−1, called the Dirichlet inverse such that,

f ∗ f−1 = f−1 ∗ f = I

f−1 is given by the recursion formula as,

f−1(1) =
1

f(1)
, f−1 =

−1

f(1)

∑
d|n
d<n

f
(n
d

)
f−1(d) for n > 1

We will now look at a fundamental property of the Möbius function involved with the
Dirichlet Product.

With the help of the unit function N we discussed previously and the Identity function
I, we define 2.1 as

∑
d|n µ(d) = I(n). In the notation of Dirichlet convolution, we denote

this with the help of the unit function N as µ ∗ N = I Hence, with the help of 2.5, we say
that N and µ are Dirichlet inverses of each other.

N = µ−1 and µ = N−1

This remarkably simple property of the Möbius function and along with the properties of
Dirichlet product, we define the Möbius inversion formula in the next theorem which states
that every sum of the form f(n) =

∑
d|n g(d) can be denoted using the Möbius function µ.
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Theorem 2.6 (The Möbius Inversion Formula). The equation,

f(n) =
∑
d|n

g(d)

implies

g(n) =
∑
d|n

f(d)µ
(n
d

)
Proof. Using the unit function u, we can write f(n) as g ∗ u. Multiplying both sides by µ,
we note that

f ∗ µ = (g ∗ u) ∗ µ = g ∗ (u ∗ µ)
= g ∗ I = g.

■

Next, we introduce the von Mangoldt’s function Λ, Chebyshev’s ψ, and Chebyshev’s θ
functions (also called as Chebyshev’s first-order and second-order functions). These functions
play a very important role in the distribution of prime numbers.

Definition 2.7. The Mangoldt Function, Λ(n), for every integer n ≥ 1 is defined as:

Λ(n) =

{
log p if n = pm for some prime p and m ≥ 1,
0 otherwise.

For n ≥ 1, we have log n =
∑

d|n Λ(d). Although the Mangoldt’s function appears to be
“out of the blue”, it actually occurs naturally from the fundamental theorem of arithmetic.
For n > 1, we write

n =
r∏

k=1

pakk .

Taking logarithms on both sides, we have,

log n =
r∑

k=1

ak log pk.

Now consider the sum log n =
∑

d|n Λ(d). The only nonzero terms in this sum come from
the divisors of d of the form pmk for m = 1, 2, ..., ak and k = 1, 2, ..., r. Hence,

∑
d|n

Λ(d) =
r∑

k=1

ak∑
m=1

Λ(pmk ) =
r∑

k=1

ak∑
m=1

log pk =
r∑

k=1

ak log pk = log n,

showing that the von Mangoldt’s function occurs naturally.

Definition 2.8. Chebyshev’s ψ-function, ψ(x), for x > 0 is defined as:

ψ(x) =
∑
n≤x

Λ(n).
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Definition 2.9. Chebyshev’s θ-function, θ(x), for x > 0 is defined as:

θ(x) =
∑
p≤x

log p,

wherep runs over all the primes ≤ x.

Chebyshev’s ψ and θ functions are primarily concerned with the Prime Number Theorem
and it states the PNT in a slightly elementary manner. In the later subsections, we will
introduce how Chebyshev’s first-order and second-order functions can be replaced for π(x),
and expand more on the relation between Chebyshev’s functions and the Prime Number
Theorem. For now, we will observe that the Prime Number Theorem is also equivalent to
the asymptotic formula, ∑

n≤x

Λ(n) ∼ x as x→ ∞.

We will now look at the behaviour of these arithmetical functions for large values of n.
For example, consider the function ϕ(n). This function takes the value p − 1 whenever p
is a prime and also takes on arbitrarily lesser values for various composite numbers. This
sort of fluctuation, leaving numerous “gaps” if plotted, definitely makes it very difficult to
determine the behaviour of ϕ(n) for large values of n. Hence, it is sometimes more beneficial
to study the arithmetic mean of an arithmetical function f ,

f̃(n) =
1

n

n∑
k=1

f(k).

However, before studying the averages of arithmetical functions, we will first need a knowl-
edge of its partial sums

∑n
k=1 f(k). This is what we would mostly discuss upon throughout

this section as we define the average orders of Λ(n).
Firstly, we will define an important notation that would be used throughout this paper

and also while finding the average order of several arithmetical functions.

Definition 2.10 (The big oh and little oh notation). We say that f(x) is big oh of g(x) and

denote it as f(x) = O(g(x)) when g(x) > 0 for all x ≥ a to mean that f(x)
g(x)

is bounded for
x ≥ a by a constant M > 0 such that,

|f(x)| ≤Mg(x) for all x ≥ a.

However, we say that f(x) is little oh of g(x) and denote it as f = o(g(x)) when there exists
some k > 0 and c > 0 such that,

f(x) < cg(x) for all x ≥ k.

Note that if f(x) = o(g(x)), then f(x) = O(g(x))

Definition 2.11 (Asymptotic equality of functions). If,

lim
x→∞

f(x)

h(x)
= 1,

the function f(x) is said to be asymptotic to g(x) as x→ ∞. It is therefore denoted as,

f(x) ∼ g(x) as x→ ∞.
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To study the asymptotic value of a partial sum, we use the summation formula of Euler
to give the exact expression for the error term made in the approximation. In this formula
[t] denotes the greatest integer ≤ t. We will omit the proof of the following theorem since it
only serves as a tool for arithmetical functions as far as this paper is concerned. However,
we can look at [Apo98, Chapter 3] to know more about the proof.

Theorem 2.12 (Euler’s Summation formula). If f has a continuous derivative over the
interval [y, x], where 0 < y < x, then,∑

y<n≤x

f(n) =

∫ x

y

f(t)dt+

∫ x

y

(t− [t])f ′(t)dt+ f(x)([x]− x)− f(y)([y]− y). (2.3)

Now, we will find the weighted average of Λ(n).

Theorem 2.13 (Weighted averages of the Λ(n)). For x ≥ 1, we have∑
n≤x

Λ(n)
[x
n

]
= log [x]!

Proof. ∑
n≤x

Λ(n)
[x
n

]
=
∑
n≤x

∑
d|n

Λ(d) =
∑
n≤x

log n = log [x]!.

■

Considering f(t) = log t and using the Euler’s Summation formula, we obtain

log [x]! = x log x− x+O(log x)

Hence, we can finally write the weighted average of Λ(n) as

Λ(n) = x log x− x+O(log x). (2.4)

2.2 Dirichlet Characters

This subsection would focus on probably one of the most important topics in Multiplica-
tive number theory since it is almost impossible to evade the concept of Dirichlet Characters
while discussing about number theory. In this subsection, we will introduce Dirichlet charac-
ters and their properties, starting from the definition of Finite Abelian Groups. This subsec-
tion would also provide the associated mathematical nomenclature with Dirichlet Characters
that would be referenced throughout the paper.

Although the study of Dirichlet Characters can be undertaken without any knowledge
of groups, we would introduce a few elementary concepts from Group theory in order to
simplify and gain a greater understanding of the latter discussions pertaining to the theory
of Dirichlet Characters.

Firstly, we recall the definition of a group with a simple example: Z under group operation
of addition. The sum of two integers, is always an integer and it is trivial that the addition
of integers is Associative; satisfying the Closure and Associativity property of a Group. For
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Z under addition, 0 acts as an identity element and for every integer n. Furthermore, there
is always the negative of n, i.e, −n. When added, n+ (−n) = 0 = e, acting as the inverse of
n and satisfies the existence of inverse postulate. Therefore, we can note that any nonempty
set of elements associated with a group operation that combines any two elements of the set
to produce a third element of the set which satisfy the Closure, Associativity, Existence of
Identity, and Existence of Inverse postulates can be termed as a group G.

One particular type of group that the Dirichlet Characters are concerned with are Finite
Abelian groups. A group is characterised as an Abelian group when every pair of its elements
commute; that is, if ab = ba for all a and b in G and such a group is termed as a Finite
Abelian Group when G contains a finite number of elements.

Now, we will look into a particular set of functions defined over an arbitrary group that
are defined as Characters of a group and later discuss upon the orthogonality relations for
characters. Eventually, we will extend this discussion of Groups and Characters onto Dirich-
let Characters and prove the orthogonality relations for Dirichlet Characters analogously.

Definition 2.14 (Characters of a group). A complex-valued function f defined on an arbi-
trary group G is called a character of G if f has the multiplicative property f(ab) = f(a)f(b)
for all a, b in G, and if f(c) ̸= 0 for some c in G.

We will now discuss about the Orthogonal relations for characters. However, we will omit
the proof of this since the knowledge of the proof is not really essential in this paper.

Lemma 2.15 (Orthogonality relations for characters). For all the characters f1, f2, ···, fn of
a Finite Abelian Group G with the elements a1, a2, ···, an, we have

n∑
r=1

f̄r(ai)fr(aj) =

{
n if ai = aj,
0 if ai ̸= aj.

For defining the Dirichlet Characters, we will focus on a particular group of all the reduced
residue classes4 modulo k. We will then extend the discussion of the orthogonality relations
for characters to Dirichlet Characters.

Definition 2.16 (Dirichlet Characters). Let G be a group of reduced residue classes modulo
k. Corresponding to each character f of G, we define an arithmetical function χ = χf such
that

χ(n) = f(n̂) if (n, k) = 1,

where n̂ := {x : x ≡ a mod k}.

χ(n) = 0 if (n, k) > 1.

The function χ is called a Dirichlet Character modulo k. The principal character χ1 is that
which has the properties,

χ1 =

{
1 if (n, k) = 1,
0 if (n, k) > 1.

4Recall that a reduced residue system modulo k is a set of ϕ(k) integers {a1, a2, ..., aϕ(k)} incongruent
modulo k, each of which is relatively prime to k.
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A very important property of a Dirichlet Character modulo k that we will state below is
that they are periodic modulo k and that they are also completely multiplicative.

Using this result, we can also note that any completely multiplicative function defined on
N that is periodic for a fundamental period q and does not vanish everywhere can actually
be represented as a Dirichlet Character modulo q.

Theorem 2.17 (Orthogonality relations for Dirichlet Characters). Let χ1, ..., χϕ(k) denote
the ϕ(k) Dirichlet characters modulo k. Let m and n be two integers, with (n, k) = 1. Then
we have

ϕ(k)∑
r=1

χr(m)χ̄r(n) =

{
ϕ(k) if m ≡ n (mod k) ,
0 if m ̸≡ n (mod k) .

Now, we further define various properties of Dirichlet Characters that generalize them
and introduce the notation that would be used throughout this paper. These properties of
Dirichlet Characters generalize Character Sums and introduce the conditions for the Sepa-
rability of Gaussian Sums that would be discussed in the next subsection.

Definition 2.18 (Induced Modulus). For some Dirichlet character, χ mod k, let d be any
positive divisor of k. The number d is called an induced modulus for χ if we have,

χ(a) = 1 whenever (a, k) = 1 and a ≡ 1 (mod d).

Definition 2.19 (Primitive Characters). A Dirichlet character χ mod k is said to be primi-
tive mod k if it has no induced modulus d < k. In other words, χ is primitive mod k if, and
only if, for every divisor d of k, 0 < d < k, there exists an integer a ≡ 1 (mod d) , (a, k) = 1,
such that χ(a) ̸≡ 1.

Definition 2.20 (Conductor of a character). The smallest induced modulus d for a Dirichlet
character χ mod k is called the conductor of χ.

2.3 Gaussian Sums and the Pólya-Vinogradov Inequality

In this subsection, we will first take a look at how periodic arithmetical functions can
be interpreted as a linear combination of Finite Fourier Series, and then extend the same
discussion to Dirichlet Characters. We wish to represent the Finite Fourier Series of Dirichlet
Characters using Gaussian Sums and discuss their properties. The end result of this section
would be the Pólya-Vinogradov Inequality.

Before introducing the Finite Fourier Series for periodic arithmetical functions, we will
go through some notation. We will say that an arithmetical function f is periodic modulo
k if f(n + k) = f(n). We note that any function similar to f can be expressed in the way∑

m c(m)e2πimn/k where the summation is also periodic mod k for every choice of coefficients
c(m).

Theorem 2.21 (Finite Fourier Expansion of periodic arithmetical functions). For a periodic
arithmetical function f mod k, there is a uniquely determined arithmetical function g periodic
mod k, such that

f(m) =
k−1∑
n=0

g(n)e2πimn/k.
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In fact, g is given by the formula

g(n) =
1

k

k−1∑
m=0

f(m)e−2πimn/k.

Note that the Ramanujan Sum is defined as the sum over the nth powers of the primitive
kth roots of unity for a fixed positive integer n. It is therefore denoted as

ck(n) =
∑

m mod k
(m,k)=1

e2πimn/k (2.5)

We will now shift our discussion for the rest of this subsection onto Gaussian Sums and
their properties.

Definition 2.22 (Gaussian Sums). For any Dirichlet Character χ mod k, the Gaussian Sum
associated with χ is denoted as,

G(n, χ) =
k∑

m=1

χ(m)e2πimn/k

Definition 2.23 (Separability of Gaussian Sums). The Gaussian Sum G(n, χ) is said to be
separable if,

G(n, χ) = χ̄(n)G(1, χ).

Lemma 2.24. For any Dirichlet Character χ mod k,

G(n, χ) = χ̄(n)G(1, χ) whenever (n, k) = 1.

Theorem 2.25 (Separability of Gaussian Sums of primitive Dirichlet characters). For a
primitive Dirichlet character χ mod k, the following conditions hold true:

(a) G(n, χ) = 0 for every n with (n, k) > 1.

(b) G(n, χ) is separable for every n.

(c) |G(1, χ)|2 = k.

Using the knowledge of Gaussian Sums and the Finite Fourier series of periodic arith-
metical functions, we can now work on the Finite Fourier Expansion of a primitive Dirichlet
Character.

Theorem 2.26 (Finite Fourier expansion of a primitive Dirichlet Character). The finite
Fourier expansion of a primitive Dirichlet Character χ mod k has the form,

χ(m) =
τk(χ)√
k

k∑
n=1

χ̄(n)e−2πimn/k

where,

τk(χ) =
G(1, χ)√

k
=

1√
k

k∑
m=1

χ(m)e2πim/k.
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One application of the Gaussian Sums is the following fundamental inequality about
character sums. The Pólya-Vinogradov Inequality was established by George Pólya and I.M.
Vinogradov (not to be confused with A.I. Vinogradov who is concerned with the Bombieri-
Vinogradov Theorem) in 1918 which improves the inequality∣∣∣∣∣∑

m≤x

χ(m)

∣∣∣∣∣ ≤ ϕ(k)

for any Dirichlet Character χ mod k to a great margin. The Pólya-Vinogradov Theorem will
also play a major rule as we progress through the next couple of sections.

Theorem 2.27 (Pólya-Vinogradov Inequality). For any primitive Dirichlet Character
χ mod k, ∣∣∣∣∣∑

m≤x

χ(m)

∣∣∣∣∣ < √
k log k

for all x ≥ 1.

Proof. We will first express χ(m) by its finite Fourier expansion as

χ(m) =
τk(χ)√
k

k∑
n=1

χ̄(n)e−2πimn/k,

and sum over all m ≤ x to obtain

∑
m≤x

χ(m) =
τk(χ)√
k

k−1∑
n=1

χ̄(n)
∑
m≤x

e−2πimn/k.

Taking the absolute value on both sides of the above equation and multiplying it by
√
k, we

obtain
√
k

∣∣∣∣∣∑
m≤x

χ(m)

∣∣∣∣∣ ≤
k−1∑
n=1

∣∣∣∣∣∑
m≤x

e−2πimn/k

∣∣∣∣∣ =
k−1∑
n=1

|f(n)| (2.6)

where we denote f(n) =
∑

m≤x e
−2πimn/k. Considering that |f(k − n)| = |f(n)|, we can write

2.6 as
√
k

∣∣∣∣∣∑
m≤x

χ(m)

∣∣∣∣∣ ≤∑
n≤ k

2

|f(n)|.

From the aforementioned definition of f(n), we represent f(n) =
∑r

m=1 y
m and consider

f(n) as a geometric sum of the form f(n) =
∑r

m=1 y
m where r = [x] and y = e−2πin/k. We

further represent y = z2 where z = e−πin/k to obtain the following result using the sum of
geometric series formula.

f(n) = y
yr − 1

y − 1
= zr+1 z

r − z−r

z − z−1

12



Taking absolute values,

|f(n)| =
∣∣∣∣zr − z−r

z − z−1

∣∣∣∣ = ∣∣∣∣e−πrn/k − eπrn/k

e−πin/k − eπin/k

∣∣∣∣ =
∣∣sin πrn

k

∣∣∣∣sin πn
k

∣∣ ≤ 1

sin πn
k

.

Using the fact that sin t ≥ 2t/π which is valid for 0 ≤ t ≤ π/2,

|f(n)| ≤ k

2n
.

Using this result in 2.6, we get the following inequality,

√
k

∣∣∣∣∣∑
m≤x

χ(m)

∣∣∣∣∣ ≤ k
∑
n≤ k

2

1

n
≤ k log k.

Hence, we get ∣∣∣∣∣∑
m≤x

χ(m)

∣∣∣∣∣ < √
k log k,

and we complete the proof of the Pólya-Vinogradov Theorem. ■

2.4 Primes in Arithmetic Progressions

As the name suggests, this subsection would mainly focus on the distribution of prime
numbers in Arithmetic Progressions and we will state the Siegel-Walfiz Theorem by the end
of this section. The mathematical foundation for most of the part discussed during the
Introduction on the History of Prime Numbers would be worked upon in this subsection and
the properties of Chebyshev’s first-order and second-order functions that we would discuss
upon will play a major role in the proofs of The Large Sieve Inequality and the Barban-
Davenport-Halberstam Theorem as we advance through the paper.

We first state a very important theorem that lets us replace ψ(x) with θ(x) which in turn
can be used to replace the prime-counting functions, π(x) and π(x; q, a).

Theorem 2.28. For x > 0, we have

lim
x→∞

(
ψ(x)

x
− θ(x)

x

)
= 0.

Now, we will extend our definitions 2.8 and 2.9 of Chebyshev’s functions to primes in
arithmetic progressions and we note that the properties of Chebyshev’s functions which
hold for primes also hold for Chebyshev’s functions associated with primes in arithmetic
progressions.

Definition 2.29. Chebyshev’s ψ and θ functions extended over primes in arithmetic pro-
gressions

ψ(x; q, a) =
∑
n ≤ x

n ≡ a mod q

Λ(n),

θ(x; q, a) =
∑
p ≤ x

p ≡ a mod q

log n.

13



The reason why we can replace π(x) with θ(x) is because they both essentially mean the
same thing since pi takes a step of 1 while θ takes a step of log p. These properties also hold
true for π(x; q, a), θ(x; q, a), and ψ(x; q, a).

We will now show an important relation between the ψ function, a Dirichlet Character
χ modulo q, and the Λ function.

Definition 2.30. For a Dirichlet Character χ modulo q, we define,

ψ(x, χ) =
∑
n≤x

Λ(n)χ(n)

We will now look at an expansion of ψ(x; d, a)

Theorem 2.31. For any d ≤ z and 1 ≤ a ≤ d with (a, d) = 1, we observe that

ψ(x; d, a) =
1

ϕ(d)

∑
χ mod d

χ̄(a)ψ(x, χ), (2.7)

where
∑

χ mod d is over Dirichlet Characters χ modulo d.

An important estimate for the error term of π(x; q, a) is given by the following theorem
and we would be referencing it as we go through the proof of the Bombieri-Vinogradov
Theorem.

Theorem 2.32 (Siegel-Walfiz Theorem). Let A be a real fixed constant and (a, q) = 1, where
q ≤ (log x)A, then there exists a constant C(A) depending only on A such that,

ψ(x; q, a) =
x

ψ(q)
+O(xe−C(A)

√
log x). (2.8)

We will omit the proof of the above theorem since it is quite deep but all we can generalize
the the result from the above theorem to give a decent estimate for the error term in the
PNT for primes in arithmetic progressions. The theorem mentioned below shows a few
other variations of the Siegel-Walfiz Theorem that would be used in the latter sections of
this paper.

Theorem 2.33. For a Dirichlet Character χ mod q whose principal character mod q is
denoted as χ0 and is induced by a primitive character χ1 mod r,where 1 < r < q, the
following two relations hold:

ψ(x, χ0) = x+ xe−c
√
log x.

|ψ(x, χ)− ψ(x, χ1)| ≤ (log qx)2.
(2.9)

for some constant, c > 0.
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3 Results from Sieve Theory

Results from The Large Sieve are of key importance in proving the Bombieri-Vinogradov
Theorem. In this section, we will first give a brief introduction to Sieve Theory and eventually
work through The Large Sieve Inequality; from which we will deduce The Large Sieve. By the
end of this section, we would establish the Barban-Davenport-Halberstam Theorem, which
is a key result of the Large Sieve Inequality and an important portion of the Bombieri-
Vinogradov Theorem. Various theorems and their proofs presented in this section have been
adapted from [CM+06] and [Ten15]. An interested reader in Sieve Theory can refer to [Ten15]
or [CM+06] for a more detailed introduction to Sieve Theory and their applications.

3.1 Not your typical household sieving

In simple words, the fundamental goal of Sieve Theory is to estimate the size of a partic-
ular set of sifted elements. A major role of sieves such as the sieve of Eratosthenes, Selberg’s
Sieve, and the Large Sieve in analytic number theory is to estimate the size of the distribution
of prime numbers. In this subsection, we will first discuss the fundamental Sieve problem
and give a brief idea about Sieves. On the latter part, we will introduce a few identities that
would be used in proving The Large Sieve Inequality and the Barban-Davenport-Halberstam
Theorem eventually.

Definition 3.1 (The Sieve Problem). For a finite set of objects A, let P be an index set of
primes such that to each p ∈ P we have associated a subset Ap of A. The Sieve Problem is
to estimate, the size of the set

S(A,P) := A\ ∪p∈P Ap. (3.1)

For example, if we consider a finite set of positive integers ≤ x, A, and let Ap be a subset
of A which contains the numbers in A divisible by p ∈ P where P is the set of all primes,
S(A,P) gives all the primes ≤ x. The Sieve Problem would be to estimate this size of set and
there are numerous types of techniques followed in Sieve Theory for this type of estimations.

By the inclusion-exclusion principle , we get a more explicit formula of 3.1 as

#S(A,P) =
∑
I⊆A

(−1)#I#AI .

The example of a Sieve Problem we looked at above is in fact famously known as the
Sieve of Eratosthenes and is considered to be the foundation of Sieve Theory. We describe
below a variation of the Sieve of Eratosthenes developed by A.M. Legendre.

Φ(x, z) := #{n ≤ x : n is not divisible by any prime < z}
A more formal definition of Φ(x, z) that was described with the help of the Möbius

Function by A.M. Legendre is stated below.

Φ(x, z) =
∑
n≤x

∑
d|(n,Pz)

µ(d) =
∑
d|Pz

µ(d)
[x
d

]
= x

∑
d|Pz

µ(d)

d
+O (2z) = x

∏
p<z

(
1− 1

p

)
+O (2z)
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where,

Pz :=
∏
p<z

p.

Now that we have a decent amount of understanding of Sieve Theory and Sieve Principles,
we move onto discussing a few fundamental theorems that would be referenced throughout
the next couple of subsections as we start discussing about the Large Sieve. We will also omit
the proofs of the following theorems since the rest of the paper will only be discussing their
applications which can be done without the knowledge of the proof. However, an interested
reader can refer to [CM+06].

Theorem 3.2 (Cauchy-Schwarz Inequality). For sequences of complex numbers ai and bi
where 1 ≤ i ≤ n, the following inequality holds true,∣∣∣∣∣ ∑

1≤i≤n

aibi

∣∣∣∣∣
2

≤

( ∑
1≤i≤n

|ai|2
)( ∑

1≤i≤n

|bi|2
)
.

Theorem 3.3 (Parseval’s Identity). For a sequence of complex numbers an≥1 and a positive
integer x, we have the following Fourier Series,

∑
n≤x

|an|2 =
∫ 1

0

∣∣∣∣∣∑
n≤x

ane
2πinα

∣∣∣∣∣
2

dα.

3.2 The Large Sieve

In this subsection, we will discuss about The Large Sieve, which was introduced by
Yuri Linnik (1915-72) in 1941 and subsequently improved by many other mathematicians
including Enrico Bombieri during 1965. We will deduce this sieve from the The Large
Inequality whose significant application is the Bombieri-Vinogradov Theorem.

Before we start with the Large Sieve Inequality, we will begin with the following Lemma
that would help us prove the Large Sieve Inequality.

Lemma 3.4. Let F : [0, 1] → C be a differentiable function with continuous derivative,
extended by periodicity to all R with period 1. Let z be a positive integer. Then∑

d≤z

∑
1≤a≤d
(a,d)=1

∣∣∣F (a
d

)∣∣∣ ≤ z2
∫ 1

0

|F (α)| dα +

∫ 1

0

|F ′(α)| dα.

Proof. By looking at the inequality, we can use the fundamental theorem of calculus to
present F (a

d
) using integrals in the form of an inequality. Since

−F
(a
d

)
=

(∫ α

a
d

F ′(t)dt

)
− F (α),∣∣∣F (a

d

)∣∣∣ ≤ |F (α)|+
∫ α

a
d

|F ′(t)|dt.
(3.2)
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where, d ≤ z, a ∈ [1, d] ∩ N with (a, d) = 1, and α ∈ [0, 1].
Let

I
(a
d

)
:=
(a
d
− δ,

a

d
+ δ
)

for some δ > 0 so that the intervals I
(
a
d

)
are contained in [0, 1]. We now integrate 3.2 over

I(a/d) with respect to α, and obtain

2δ
∣∣∣F (a

d

)∣∣∣ ≤ ∫
I(a

d)
|F (α)|dα +

∫
I(a

d)

∫ α

a
d

|F ′(t)| dt dα. (3.3)

Since α ∈ I
(
a
d

)
and t ∈

[
a
d
, α
]
, we can imply that t ∈ I

(
a
d

)
. We can now simplify the

right hand side of the above inequality as,

≤
∫
I(a

d)
|F (α)|dα +

∫
I(a

d)

∫
I(a

d)
|F ′(t)| dt dα

=

∫
I(a

d)
|F (α)|dα + 2δ

∫
I(a

d)
|F ′(α)| dα

Hence, we can simplify 3.3 as

2δ
∣∣∣F (a

d

)∣∣∣ ≤ ∫
I(a

d)
|F (α)|dα + 2δ

∫
I(a

d)
|F ′(α)| dα. (3.4)

Now, we consider δ = 1
z2

and sum 3.4 over all intervals I(a/d) to get,

1

z2

∑
d≤z

(≤a,d)=1

∑
1≤a≤d
(a,d)

∣∣∣F (a
d

)∣∣∣ ≤ ∑
I(a

d)

∫
I(a

d)
|F (α)|dα +

1

z2

∑
I(a

d)

∫
I(a

d)
|F ′(α)| dα

1

z2

∑
d≤z

(≤a,d)=1

∑
1≤a≤d
(a,d)

∣∣∣F (a
d

)∣∣∣ ≤ ∫ 1

0

|F (α)|dα +
1

z2

∫ 1

0

|F ′(α)| dα.

This completes the proof of the lemma. ■

Theorem 3.5 (The Large Sieve Inequality). Let (an)n≥1 be a sequence of complex numbers
and let x, z be positive integers. Then

∑
d≤z

∑
1≤a≤d
(a,d)=1

∣∣∣∣∣∑
n≤x

ane
2πina/d

∣∣∣∣∣
2

≤
(
z2 + 4πx

)∑
n≤x

|an|2 .

Proof. Now, to prove the Large Sieve Inequality, we consider

F (α) = S(α)2, F ′(α) = 2S(α)S ′(α)

where,

S(α) :=
∑
n≤x

ane
2πinα.
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By 3.4, we get the inequality,

∑
d≤z

∑
1≤a≤d
(a,d)=1

∣∣∣S (a
d

)∣∣∣2 ≤ z2
∫ 1

0

|S(α)|2 dα + 2

∫ 1

0

|S(α)S ′(α)| dα.

Using Parseval’s Identity (3.3), and Cauchy-Schwarz Inequality (3.2), we simplify the
right-hand side of the above inequality and obtain

∑
d≤z

∑
1≤a≤d
(a,d)=1

∣∣∣S (a
d

)∣∣∣2 ≤ z2
∫ 1

0

|S(α)|2 dα + 2

∫ 1

0

|S(α)S ′(α)| dα

≤ z2
∑
n≤x

|an|2 + 2

(∫ 1

0

|S(α)|2 dα
)1/2(∫ 1

0

|S ′(α)|2 dα
)1/2

≤ z2
∑
n≤x

|an|2 + 2

(∑
n≤x

|an|2
)1/2(∫ 1

0

∑
n≤x

4π2n2 |an|2
(
e2πinα

)2
dα

)1/2

≤ z2
∑
n≤x

|an|2 + 2

(∑
n≤x

|an|2
)1/2(

4π2x2
(∫ 1

0

|S(α)|2 dα
))1/2

≤ z2
∑
n≤x

|an|2 + 4πx

(∑
n≤x

|an|2
)1/2(∑

n≤x

|an|2
)1/2

Simplifying the value on the left hand side of the inequality using the value of S(α) gives us

∑
d≤z

∑
1≤a≤d
(a,d)=1

∣∣∣∣∣∑
n≤x

ane
2πina/d

∣∣∣∣∣
2

≤
(
z2 + 4πx

)∑
n≤x

|an|2 .

This completes the proof of the theorem and we establish The Large Sieve Inequality. ■

From this Inequality, we will now deduce the Large Sieve Method where we consider
A to be a set of positive integers n ≤ x and P to be a set of primes. For some positive
integers ≤ z, The Sieve Problem of the Large Sieve Method is to estimate the set of positive
integers n ∈ A such that n is incongruent to the set {w1,p, w2,p, ···, wω(p),p}, ω(p) residue
classes modulo p where p ∈ P and p ≤ z.

S(A,P , z) := {n ∈ A : n ̸≡ wi,p(modp)∀1 ≤ i ≤ ω(p),∀p < z}

Hence, the sieve problem is to give an estimate of |S(A,P , z)|. In simple words, we can
note that the Large Sieve Problem is to provide an estimate for the positive integers n which
do not occur in the form of pn+ (p− 1) where p ∈ P .
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We will omit the proof of the following inequality which gives an estimate on The Large
Sieve Problem since we will not really require it while proving the Bombieri-Vinogradov The-
orem as it is mainly concerned with the Large Sieve Inequality and the Barban-Davenport-
Halberstam Theorem. An interested reader could always refer to [CM+06, Chapter 8.2] for
the proof of the following inequality.

|S(A,P , z)| ≤ z2 + 4πx∑
d≤z µ

2(d)
∏

p|d
ω(p)

p−ω(p)

,

We will now introduce the modified versions of The Large Sieve Inequality that are given
through Character Sums.

Theorem 3.6 (First Modified Large Sieve Inequality). For a sequence of complex numbers
an≥1 and positive integers x, z, we have

∑
d≤z

d

ϕ(d)

∑
χ∗mod d

∣∣∣∣∣∑
n≤x

anχ(n)

∣∣∣∣∣
2

≤
(
z2 + 4πx

)∑
n≤x

|an|2 ,

where,
∑

χ∗mod d is the sum over primitive characters χ modulo k.

Proof. Using the representation of Finite Fourier Series for primitive Dirichlet Characters
from 2.26, we multiply the expansion by an, sum it over n ≤ x, and square it out to represent
the left-hand side of the desired inequality.∣∣∣∣∣∑

n≤x

anχ(n)

∣∣∣∣∣
2

=
1

d

∣∣∣∣∣ ∑
1≤a≤d

χ̄(a)
∑
n≤x

ane
2πina/d

∣∣∣∣∣
2

,

where, we consider χ to be a primitive character modulo d for some fixed d ≤ z and consider
n be relatively prime to d.

Now, we sum the above equation over all primitive characters χ∗ modulo d.

∑
χ∗ mod d

∣∣∣∣∣∑
n≤x

anχ(n)

∣∣∣∣∣
2

=
1

d

∑
χ∗ mod d

∣∣∣∣∣ ∑
1≤a≤d

χ̄(a)
∑
n≤x

ane
2πina/d

∣∣∣∣∣
2

≤ 1

d

∑
χ mod d

∣∣∣∣∣ ∑
1≤a≤d

χ̄(a)
∑
n≤x

ane
2πina/d

∣∣∣∣∣
2

≤ 1

d

∑
χ mod d

∑
1≤a≤d

χ̄(a)
∑
n≤x

ane
2πina/d

∑
1≤b≤d

χ(b)

(∑
n≤x

ane2πinb/d

)

≤ 1

d

∑
1≤a≤d

∑
1≤b≤d

(∑
n≤x

ane
2πina/d

)(∑
n≤x

ane2πinb/d

) ∑
χ mod d

χ̄(a)χ(b),

where z̄ is the complex conjugate of z.
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Now, using Theorem 2.17, we note that
∑

χ mod d χ̄(a)χ(b) = ϕ(d) since a ≡ b mod d.
We also reduce the right-hand side of the aforementioned inequality into a single Fourier
expansion using the properties of Complex numbers and we get

∑
χ∗ mod d

∣∣∣∣∣∑
n≤x

anχ(n)

∣∣∣∣∣
2

≤ ϕ(d)

d

∑
1≤a≤d
(a,d)=1

∣∣∣∣∣∑
n≤x

ane
2πina/d

∣∣∣∣∣
2

.

Therefore, we get

ϕ(d)

d

∑
χ∗ mod d

∣∣∣∣∣∑
n≤x

anχ(n)

∣∣∣∣∣
2

≤
∑

1≤a≤d
(a,d)=1

∣∣∣∣∣∑
n≤x

ane
2πina/d

∣∣∣∣∣
2

.

By summing this result over
∑

d≤z and applying the Large Sieve Inequality, Theorem
3.6, we can get the final result,∑

d≤z

ϕ(d)

d

∑
χ∗ mod d

∣∣∣∣∣∑
n≤x

anχ(n)

∣∣∣∣∣
2

≤
(
z2 + 4πx

)∑
n≤x

|an|2 .

■

An immediate consequence of applying the Cauchy-Schwarz Inequality for the First Mod-
ified Large Sieve Inequality in the theorem mentioned previously is the equation∑

d≤z

d

ϕ(d)

∑
χ∗ mod d

∣∣∣∣∣∑
n≤x

∑
m≤y

anbmχ(nm)

∣∣∣∣∣
≤
(
z2 + 4πx

)1/2 (
z2 + 4πy

)1/2(∑
n≤x

|an|2
)1/2(∑

m≤y

|bm|2
)1/2

,

where
∑

χ∗ mod d is the sum over all primitive characters χ modulo d, an≥1 and bn≥1

are complex number sequences and x, y, z are positive integers. The second Modified Large
Sieve Inequality that we would look at below is actually a variation of this inequality and the
second modified Large Sieve Inequality would be very useful while working on the Bombieri-
Vinogradov Theorem during the next section. However, we will omit the proof of the fol-
lowing theorem since it is slightly complicated and we can continue using it proving the
Bombieri-Vinogradov Theorem without the knowledge of the proof.

Theorem 3.7 (Second Modified Large Sieve Inequality). For sequences of complex numbers
an≥1 and bn≥1 and positive integers x, y and z, we have

∑
ds≤z

d

ϕ(d)

∑
χ∗mod d

max
u

∣∣∣∣∣∣∣
∑
n≤x

∑
m≤y
nm≤u

anbmχ(nm)

∣∣∣∣∣∣∣
≪
(
z2 + x

)1/2 (
z2 + y

)1/2(∑
n≤x

|an|2
)1/2(∑

m≤y

|bm|2
)1/2

log(2xy).

where,
∑

χ∗mod d is the sum over primitive characters χ modulo k.
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3.3 Barban-Davenport-Halberstam Theorem

In this subsection, we will look at a very important result deduced by Barban, Davenport,
and Halberstam about the error term in the Prime Number Theorem for Primes in Arithmetic
Progressions. We will use the fact from 2.4 that π(x; d, a) can be replaced by ψ(x; d, a) and
hence, we will focus on the function ψ(x; d, a) rather than π(x; d, a).

Theorem 3.8 (The Barban-Davenport-Halberstam Theorem). For any A > 0 and for any
z satisfying x/ (log x)A ≤ z ≤ x, we have

∑
d≤z

∑
1≤a≤d
(a,d)=1

∣∣∣∣ψ(x; d, a)− x

ϕ(d)

∣∣∣∣2 ≤ xz log x. (3.5)

Proof. Using 2.7, we can write the error term ψ(x; d, a)− x
ϕ(d)

in a more convenient form as

ψ(x; d, a)− x

ϕ(d)
=

1

ϕ(d)

∑
χmod d
χ ̸=χ0

χ̄(a)ψ(x, χ) +
ψ(x, χ0)− x

ϕ(d)

By using orthogonality relations, we notice that∑
χ mod d
χ ̸=χ0

χ̄(a)ψ(x, χ) =
∑

χ mod d
χ ̸=χ0

ψ(x, χ).

We can now simplify the inequality 3.5 as∑
d≤z

∑
1≤a≤d
(a,d)=1

∣∣∣∣ψ(x; d, a)− x

ϕ(d)

∣∣∣∣2 ≪∑
d≤z

1

ϕ(d)

∑
χ mod d
χ ̸=χ0

|ψ(x, χ)|2 +
∑
d≤z

1

ϕ(d)
|ψ(x, χ0)− x|2 (3.6)

Now, we note that since the character χ ̸= χ0 modulo d is induced by some primitive
character χ1 modulo d1,

ψ(x, χ) = ψ(x, χ1) +O((log x)(log d)).

Hence, from 2.9, we have
ψ(x, χ1)− ψ(x, χ) ≪ (log xd)

Using the above mentioned inequality, we can further simplify 3.6 as

≪
∑
d≤z

1

ϕ(d)

∑
χ mod d
χ ̸=χ0

|ψ(x, χ1)|2 +
∑
d≤z

1

ϕ(d)
|ψ(x)− x|2 + z (log zx)2 (3.7)

Recall from 2.8 that ψ(x) can be estimated as ψ(x) = x+O(xe−c
√
log x). Thus,∑

d≤z

1

ψ(d)
|ψ(x)− x|2 ≪ x2 log z

(log x)A
≪ xz log x, (3.8)
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where A > 0 is as in the statement of the theorem.
Since the term z (log zx)2 is negligible compared to the desired final estimate of xz log x

and comparing the inequality of 3.8 with 3.7 and 3.5, we can see that in order to prove the
theorem, it now suffices to show that∑

d≤z

1

ϕ(d)

∑
χ mod d
χ ̸=χ0

|ψ(x, χ1)|2 ≪ xz log x. (3.9)

For χ modulo d where χ ̸= χ0, let χ1 modulo d1 be its associated primitive character and
let d = d1k be the induced modulus for some positive integer k. We have∑

d≤z

1

ϕ(d)

∑
χ mod d
χ ̸=χ0

|ψ(x, χ1)|2 =
∑
d1≤z

∑
χ1 mod d1

|ψ(x, χ1)|2
∑
k≤ z

d1

1

ϕ(d1k)

=
∑
d≤z

∑
χ∗ mod d

|ψ(x, χ)|2
∑
k≤ z

d

1

ϕ(dk)

where,
∑

χ∗mod d is the sum over primitive characters χ modulo d.

We will omit the proof of this but we note that
∑

k≤ z
d

1
phi(dk)

≪ 1
phi(d)

log 2z
d
. Therefore,

in order to prove 3.9,we note that it suffices to show that∑
d≤z

1

ϕ(d)
log

2z

d

∑
χ∗mod d

|ψ(x, χ)|2 ≪ xz log x. (3.10)

Now, we turn onto the First Modified Large Sieve Inequality to prove 3.10. We choose
an := Λ(n) and we have∑

d≤z

d

ϕ(d)

∑
χ∗ mod d

|ψ(x, χ)|2 ≪
(
z2 + x

)
x log x, (3.11)

since we can easily observe that
∑

n≤x Λ(n)
2 ≪ x log x using the average order of Λ(n)

from 2.4
Now, we let D := D(x) be a parameter to be chosen later such that 1 < D ≤ z, and let

us divide the interval (D, z] into dyadic sub-intervals (U, 2U ] with U := z/2k, where k are
integers running from 1 to log (z − 2D/D). D together with partial summation in 3.11 leads
to ∑

U<d≤2U

1

ϕ(d)
log

(
2z

d

) ∑
χ∗ mod d

|ψ(x, χ)|2 ≪
(
x2

U
+ Ux

)
(log x) log

(
2z

U

)
for each interval (U, 2U ]. Summing over all intervals U = z/2k, we obtain∑

D<d≤z

1

ϕ(d)
log

(
2z

d

) ∑
χ∗ mod d

|ψ(x, χ)|2 ≪ x2

D
(log x)2 + zx log x.
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Now, we will choose D := (log x)A+1 and recall that x

(log x)A
≤ z ≤ x so that we can

reduce the above inequality to ≪ zx log x altogether. Now, we observe that it is enough to
show ∑

2≤d≤D

1

ϕ(d)
log

(
2z

d

) ∑
χ∗ mod d

|ψ(x, χ)|2 ≪ zx log x. (3.12)

in order to prove 3.9. To show that 3.11 holds true, we use an inequality followed from the
Siegel-Walfiz Theorem (2.8) which states that ψ(x, χ) ≪ xe−C(A)

√
log x.∑

2≤d≤D

1

ϕ(d)
log

(
2z

d

) ∑
χ∗ mod d

|ψ(x, χ)|2 ≪ D (log z)x2e−2C(A)
√
log x

Comparing the above inequality with 3.8, we note that D (log z)x2e−2C(A)
√
log x is similar to

O(
(
xe−2C(A)

√
log x
)2
). Hence, we can simplify the above inequality as

∑
2≤d≤D

1

ϕ(d)
log

(
2z

d

) ∑
χ∗ mod d

|ψ(x, χ)|2 ≪ x2

(log x)A

≪ zx log x.

This completes the proof of the theorem and we establish the Barban-Davenport-Halberstam
Theorem as we worked through 3.9, 3.10, and 3.12. ■

4 Bombieri-Vinogradov Theorem

We now move onto the crux of this paper, The Bombieri-Vinogradov Theorem. We will
first dedicate a small subsection which demonstrates the plan for the proof of the Bombieri-
Vinogradov Theorem and also introduces a few techniques that would be directly involved
in the proof of the Bombieri-Vinogradov Theorem. Then, we will prove the Bombieri-
Vinogradov Theorem using various tools that we’ve developed as we advanced throughout
the paper. Note that the following proof is considered as Vaughan’s method [Vau65] and it
has been adapted from [CM+06, Chapter 9].

4.1 The plan for the proof of Bombieri’s Theorem

We will be following a celebrated method derived by Vaughan to prove the Bombieri-
Vinogradov Theorem. However, since the proof is quite long and complex, we will be dividing
the proof of the theorem into a few lemmas which will contribute to the proof of the Bombieri-
Vinogradov Theorem on the big picture. In this subsection we will introduce the infamous
Vaughan’s Identity and denote the properties of a class of functions that will help us in the
next section which is dedicated to the proof of the Bombieri-Vinogradov Theorem.

We establish a class of functions,

D := {D : N → C :
∑
n≤x

|D(n)|2 = O(x(log x)α) for some α > 0},

and we will take note of the following basic properties for D ∈ D.
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1. For D ∈ D and θ ≥ 0, ∑
n≤x

|D(n)|
nθ

≪ x1−θ (log x)α

for some α > 0.

2. If D1, D2 ∈ D, then ∑
ef≤x

|D1(e)D2(f)| d(ef) ≪ x (log x)β

for some β > 0, and ∑
ef≤x

|D1(e)D2(f)|2 d(ef) ≪ x (log x)γ

for some γ > 0, where for a positive integer e, d(e) denotes the number of the divisors
of e.

Now, we will take note of a connection between normalized Dirichlet Series and the set
of functions defined above with a set of hypotheses that we would assume to be true. Using
these hypotheses, we will establish two fundamental inequalities (Lemma 4.1) in the next
subsection that would help us in proving the Bombieri-Vinogradov Theorem.

Let x, z be positive integers and let

A(s) =
∑
n≥1

a(n)

ns
, B(s) =

∑
n≥1

b(n)

ns

be normalized Dirichlet Series for which we write

A(s)

B(s)
=
∑
n≥1

c(n)

ns
,

1

B(s)
=
∑
n≥1

b̃(n)

ns

for some c(n), b̃(n) ∈ C. Followed from the half-plane of absolute convergence property of
Dirichlet Series, we assume that these series are convergent for Re(s) > σ0 for some σ0.
Furthermore, we assume that the they satisfy the following hypothesis, which partially gives
a relation between the class of functions D we studies earlier and the normalized Dirichlet
Series.

(H1) a(n)n≥1 is an increasing sequence of positive real numbers.

(H2) The functions b, b̃, c ∈ D.

(H3) There exists 0 ≤ θ < 1 and 0 ≤ γ < 1 such that, for any non-trivial Dirichlet character
chi modulo d, ∑

n≤x

b(n)χ(n) ≪ xθ
√
d log d+ xγ.

24



4.2 Proof of the Bombieri-Vinogradov Theorem

As discussed earlier, in this subsection, we will be working through a few lemmas first
that would eventually contribute to the proof of Bombieri’s Theorem. Assuming H(1), H(2),
and H(3) from the first subsection to be true, we will continue the same notation establish
Lemma 4.1. However, due to the complexity and the length of the proof of this lemma,
we will only briefly discuss about its proof by stating only the important equations which
progress towards proving the lemma.

Lemma 4.1. If z ≤ x
1−θ
3−θ ,

∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max
y≤x

∣∣∣∣∣∑
n≤y

c(n)χ(n)

∣∣∣∣∣
≪
(
z2x1/2 + x+ zx

5−θ
2(3−θ) + z2x

1−θ+2γ
3−θ + z5/2x

1+θ
3−θ a(x)

)
(log x)α

′
,

for some α′ > 0.

If z > x
1−θ
3−θ ,

∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max
y≤x

∣∣∣∣∣∑
n≤y

c(n)χ(n)

∣∣∣∣∣
≪
(
z2x1/2 + x+ z

9−4θ
2(3−2θ)x

2−θ
3−2θ a(x) (log z) + z

3−4θ+3γ
3−2θ x

2−2θ+γ
3−2θ (log z)

)
(log x)α

′′

for some α′′ > 0.

Proof. Continuing with the notation discussed in the first subsection, we set

F (s) :=
∑
n≤U

c(n)

ns
, G(s) :=

∑
n≤V

b̃(n)

ns

for some parameters U = U(x, z) and V = V (x, z), to be chosen later. We also note that F (s)
can be thought of as an approximation to the the normalized Dirichlet Series of A(s)/B(s)
and G(s) can be thought of as an approximation of 1/B(s). Using Vaughan’s Identity, we
observe that,

A(s)

B(s)
= F (s)−B(s)G(s)F (s) + A(s)G(s) +

(
A(s)

B(s)
− F (s)

)
(1−B(s)G(s)) . (4.1)

By comparing the coefficients of n−s on both sides of the normalized Dirichlet Series in
4.1, we can deduce that

c(n) = a1(n) + a2(n) + a3(n) + a4(n)

where

a1(n) :=

{
c(n) if n ≤ U,
0 if n > U,

(4.2)
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a2(n) := −
∑
efg=n
f≤V
g≤U

b(e)b̃(f)c(g), (4.3)

a3(n) :=
∑
ef=n
f≤V

a(e)b̃(f), (4.4)

a4(n) := −
∑
ef=n
e>U
f>V

c(e)
∑
gh=f
h≤V

b(g)b̃(h). (4.5)

Hence, we can use this expression of c(n) to obtain∑
n≤y

c(n)χ(n) =
∑
1≤i≤4

∑
n≤y

ai(n)χ(n), (4.6)

for any Dirichlet character χ modulo d. Furthermore, we denote the above mentioned equa-
tion as ∑

1≤i≤4

Si(y, x) :=
∑
1≤i≤4

∑
n≤y

ai(n)χ(n).

The proof of the theorem hereafter is concerned with estimating each of the sums∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max
y≤x

|Si(y, χ)| ,

for 1 ≤ i ≤ 4.

The estimate for S1(y, χ). Using equation 4.2 and hypothesis 2, (H2) together with
property 1 discussed in the aforementioned subsection, we obtain

|S1(y, χ)| =

∣∣∣∣∣∣∣
∑
n≤y
n≤U

c(n)χ(n)

∣∣∣∣∣∣∣≪
∑
n≤U

|c(n)| ≪ U (logU)α0

for some α0 > 0. Recalling that there are ϕ(d) Dirichlet Characters modulo d, we can obtain∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max y ≤ x |S1(y, χ)| ≪ z2U (logU)α0 , (4.7)

where the above bound is independent of y, χ mod d.

The estimate for S2(y, χ). Using equation 4.3, we denote

S2(y, χ) = −
∑
efg≤y
f≤V
g≤U

b(e)b̃(f)c(g)χ(efg),

and split it into parts based on whether fg ≤ U or U < fg ≤ UV . We denote the first part
of sum obtained in this way as S ′

2(y, χ) and the second sum as S ′′
2 (y, χ).
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For S ′
2, we write

|S ′
2| ≤

∑
g≤U

|c(g)|
∑

f≤min (V,Ug )

∣∣∣b̃(f)∣∣∣
∣∣∣∣∣∣
∑
e≤ y

fg

b(e)χ(e)

∣∣∣∣∣∣ , (4.8)

and for S ′′
2 , we write∑

d≤z

d

ϕ(d)

∑
χ∗ mod d

max y ≤ x |S ′′
2 (y, χ)|

=
∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max y ≤ x

∣∣∣∣∣∣∣∣
∑
eh≤y

U<h≤UV

b(e)

 ∑
f≤V,g≤U

fg=h

b̃(f)c(g)

χ(eh)

∣∣∣∣∣∣∣∣ .
(4.9)

Now, we will work on the bounds independently for S ′
2(y, χ) and S

′′
2 (y, χ).

We will first deduce an estimate for the innermost sum of S ′
2(y, χ), using hypothesis

(H1). Then, by using hypothesis (H2) with property 1 of the class of functions defined in
the aforementioned subsection, we expand more on this estimate to finally obtain

S ′
2(y, χ) ≪ yθ

√
d(log d)U1−θ(logU)α3 + yγU1−γ(logU)α4 , (4.10)

for some α0, α1, α2, α3, α4 > 0. From the above equation (4.10), we deduce the estimate for
S ′
2(y, χ) as ∑

d≤z

d

ϕ(d)

∑
χ∗ mod d

max y ≤ x |S ′
2(y, χ)|

≪ xθz5/2(log z)U1−θ(logU)α3 + xγz2(log z)U1−γ(logU)α4 .

For finding the estimate of S ′′
2 , we start with using the second Modified Large Sieve

Inequality from the last subsection to obtain∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max y ≤ x |S ′′
2 (y, χ)|

=
∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max y ≤ x

∣∣∣∣∣∣∣∣
∑
eh≤y

U<h≤UV

b(e)

 ∑
f≤V,g≤U

fg=h

b̃(f)c(g)

χ(eh)

∣∣∣∣∣∣∣∣ .
However, as we can observe, we definitely overestimated the expression as we directly

considered the sequences

(b(e)) x
UV

< e ≤ x

U
and

(
b̃(f)c(g)

)
fg=h,2k<h≤2k+1

.

Hence, we will again divide the interval (U,UV ] into dyadic intervals (2k, 2k+1] with [log2 U <
k < log2 UV ] analogous to the proof of the Barban-Davenport-Halberstam Theorem in the
last subsection. Applying the modified large sieve inequality to each of the pair of sequences

(b(e)) x

2k+1<e≤ x

2k
and(b̃(f)c(g))fg=h,U<h≤UV ,
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for each [log2 U ] < k < [log2 UV ], we obtain that

∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max y ≤ x

∣∣∣∣∣∣∣∣
∑
eh≤y

2k<h≤2k+1

b(e)

 ∑
f≤V,g≤U

fg=h

b̃(f)c(g)

χ(eh)

∣∣∣∣∣∣∣∣
≪
(
z2 +

x

2k

)1/2 (
z2 + 2k

)1/2∑
e≤ x

2k

|b(e)|2
1/2

 ∑
2k<h≤2k+1

∣∣∣∣∣∣∣∣
∑

f≤V,g≤U
fg=h

b̃(f)c(g)

∣∣∣∣∣∣∣∣
2

1/2

(log x).

(4.11)

To further provide an accurate estimate of this bound, we use hypotheses (H2) to get∑
e≤ x

2k

|b(e)|2 ≪ x

2k

(
log

x

2k

)α5

,

for some α5 > 0. Furthermore, using the Cauchy-Schwarz inequality with hypothesis (H2)
and the second property (2) of the class of functions defined in the first subsection, we obtain

∑
2k<h≤2k+1

∣∣∣∣∣∣∣∣
∑

f≤V,g≤U
fg=h

b̃(f)c(g)

∣∣∣∣∣∣∣∣
2

≪ 2k
(
log 2k

)α6

for some α6 > 0. Using these above inequalities and plugging them into 4.11 and summing
the inequality over all k. We finally get the estimate for S ′′

2 (y, χ); that is,∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max y ≤ x |S ′′
2 (y, χ)|

≪
(
z2 +

zx1/2

U1/2
+ z(UV )1/2 + x1/2

)
x1/2(log x)

α5
2
+1(logUV )

α6
2
+1

(4.12)

The estimate for S3(y, χ) We begin by defining a step function A : R → R by A(t) =
a(1) if t ≤ 1, and , generally, A(t) = a(n)− a(n− 1) if n− 1 < t ≤ n. We then observe that
a(n) =

∫ n

0
A(t)dt and A is positive, since the sequence (a(n))n≥1 is increasing. Using 4.4,

we write
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|S3(y, χ)| =

∣∣∣∣∣∣
∑
f≤V

b̃(f)χ(f)
∑
e≤ y

f

a(e)χ(e)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
f≤V

b̃(f)χ(f)
∑
e≤ y

f

χ(e)

∫ e

0

A(t)dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ y

0

A(t)
∑
f≤V

b̃(f)χ(f)
∑

t≤e≤ y
f

χ(e)dt

∣∣∣∣∣∣
≤
∫ y

0

|A(t)|
∑
f≤V

∣∣∣b̃(f)∣∣∣
∣∣∣∣∣∣
∑

t≤e≤ y
f

χ(e)

∣∣∣∣∣∣ dt.
Using the Pólya-Vinogradov Theorem, we estimate one of the inner sum in the above equation
and obtain

S3(y, χ) ≪
√
d(log d)

∫ y

0

|A(t)|dt
∑
f≤V

|b̃(f)|

≪
√
d(log d)V (log V )α7a(y)

for some α7 > 0.
By observing that |A(t)| = A(t) and by using hypothesis (H1), we further obtain

∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max
y≤x

|S3(y, χ)| ≪ z5/2 (log z)V (log V )α7 max y ≤ x |a(y)|

= z5/2(log z)V (log V )α7a(x).

The estimate for S4(y, χ). To begin with, we use equation 4.5 to write∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max
y≤x

|S4(y, χ)|

=
∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max
y≤x

∣∣∣∣∣∣∣∣∣∣
∑
ef≤y
e>>U
f>V

c(e)

∑
gh=f
h≤V

b(g)b̃(h)

χ(ef)

∣∣∣∣∣∣∣∣∣∣
,

(4.13)

We can observe that the second modified large sieve inequality has been applied in the
above equation for the pair of sequences of complex numbers

(c(e))U<e< x
V
and

(
b(g)b̃(h)

)
gh=f,h≤V,V <f< x

U

.
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However, to be more precise with the estimate, we proceed in the same way as we did for
finding the estimate of S ′′

2 (y, χ). We will divide the interval (U, y/V ] into dyadic intervals
(2k, 2k+1] with [log2 U < k < log2 y/V ]. Applying the modified large sieve inequality to each
of the pair of sequences

(c(e))2k<e≤2k+1and(b(g)b̃(h))gh=f,h≤V,max(V, y

2k+1 )<f< y

2k
.

For each [log2 U ] < k < [log2 y/V ], we obtain that

∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max y ≤ x

∣∣∣∣∣∣∣∣∣∣∣∣
∑
ef≤y
e>U
f>V

2k<e≤2k+1

c(e)

∑
gh=f
h≤V

b(g)b̃(h)

χ(ef)

∣∣∣∣∣∣∣∣∣∣∣∣
≪
(
z2 + 2k

)1/2 (
z2 +

x

2k

)1/2 ∑
2k<e≤2k+1

|c(e)|2
1/2

 ∑
V <f≤ x

2k

∣∣∣∣∣∣∣∣
∑
gh=f
h≤V

b(g)b̃(h)

∣∣∣∣∣∣∣∣
2

1/2

(log x).

(4.14)

Again, we use hypotheses (H2) and Cauchy-Schwarz Inequality together with hypothesis
(H2) and property 2 mentioned in the first subsection to eventually get the inequalities∑

2k<e≤2k+1

|c(e)|2 ≪ 2k
(
log 2k

)α8

∑
V <f≤ x

2k

∣∣∣∣∣∣∣∣
∑
gh=f
h≤V

b(g)b̃(h)

∣∣∣∣∣∣∣∣
2

≪ x

2k

(
log

x

2k

)α9

for α8, α9 > 0. Finally we plug these inequalities into 4.14 and sum it over all k ≤ x to
obtain the following estimate for S4(y, χ),∑

d≤z

d

ϕ(d)

∑
χ∗ mod d

max y ≤ x |S4(y, χ)|

≪ ()x1/2
(
z2 +

zx1/2

U1/2
+
zx1/2

V 1/2
+ x1/2

)
x1/2(log x)

α8+α9
2

+2.

Now, we have completed estimating all the four sums Si(y, χ), for all 1 ≤ i < 4. By
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putting these estimates together, we obtain

∑
d≤z

d

ϕ(d)

∗∑
χ

max
y≤x

∣∣∣∣∣∑
n≤y

c(n)χ(n)

∣∣∣∣∣
≪z2U(logU)α0

+ xθz5/2(log z)U1−θ(logU)α3 + xγz2(log z)U1−γ(logU)α4

+

(
z2 +

zx1/2

U1/2
+ z(UV )1/2 + x1/2

)
x

1
2 (log x)

α5
2
+1(logUV )

α6
2
+1

+ z5/2(log z)V (log V )α7a(x)

+

(
z2 +

zx1/2

U1/2
+
zx1/2

V 1/2
+ x1/2

)
x

1
2 (log x)

α8+α9
2

+2.

(4.15)

It only remains for us to choose the parameters U and V appropriately to prove the
lemma. We look for U and V such that, V = xθU1−θ. To do so, we begin with analyzing
the expression

E(x, z, U) :=
zx

U1/2
+ zU

(
z3/2xθU θ + x

1+θ
2 U− θ

2

)
.

If
z ≤ x

1−θ
3 U

θ
3 , (4.16)

E(x, z, U) ≪ zx

U1/2
+ zx

1+θ
2 U

2−θ
2 .

Hence, we choose U such that
zx

U1/2
= zx

1+θ
2 U

2−θ
2 .

Therefore, we define U := x
1−θ
3−θ and substituting this choice of U in 4.16 implies that

z ≤ x
1−θ
3−θ . With this choice of U , we attain the first desired inequality.

Similarly, if

z3/2xθU−θ > x
1+θ
2 U− θ

2 ,

we proceed to choose U such that

zx

U1/2
= z5/2xθU1−θ.

Therefore, we define

U :=
x

2(1−θ)
3−2θ

z
3

3−2θ

and substituting this choice of U in 4.16 gives us the second desired inequality of this lemma.

With this choice of U , we also get that z > x
1−θ
3−θ . ■

We will now look at one of the main ingredient need in Vaughan’s proof of the Bombieri-
Vinogradov Theorem that is actually a particular case of the inequalities we discussed in
this section.
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Lemma 4.2. Let x and z be arbitrary positive integers. Then∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max
y≤x

∣∣∣∣∣∑
n≤y

Λ(n)χ(n)

∣∣∣∣∣≪ (
z2x1/2 + x+ zx5/6

)
(log z) (log x)α (4.17)

for some α > 0, where the summation
∑

χ∗ mod d is over primitive characters χ modulo d and
Λ(n) denotes the von Mangoldt function.

Proof. Using the notation introduced in Lemma 4.1, we set

A(s) := −ζ ′(s) =
∑
n≥1

log n

ns
, B(s) := ζ(s) =

∑
n≥1

1

ns
.

Hence, for any n ≥ 1, we use Vaughan’s Identity and denote

a(n) = log n, b(n) = 1, c(n) = Λ(n), b̃(n) = µ(n).

We also note that hypothesis (H1) and hypothesis (H2) are satisfied. Using the definition of
b(n) = 1 from above, and the Pólya-Vinogradov Theorem, we can say that∑

n≤x

b(n)χ(n) =
∑
n≤x

χ(n) ≪
√
d log d,

which satisfies hypothesis (H3) as well. Thus, with θ = 0 = γ, we obtain from lemma 4.1
that if x ≤ x1/3 ∑

d≤z

d

ϕ(d)

∑
χ∗ mod d

max y ≤ x

∣∣∣∣∣∑
n≤y

Λ(n)χ(n)

∣∣∣∣∣
≪
(
z2x1/2 + x+ zx5/6 + z5/2x1/3

)
(log z)(log x)α

′

for some α′ > 0. If z > x1/3, we obtain the other inequality∑
d≤z

d

ϕ(d)

∑
χ∗ mod d

max y ≤ x

∣∣∣∣∣∑
n≤y

Λ(n)χ(n)

∣∣∣∣∣
≪
(
z2x1/2 + x+ z3/2x2/3

)
(log z)(log x)α

′′

for some α′′ > 0. Combining the two equations mentioned above, we get the desired inequal-
ity and hence, we complete the proof of this lemma. ■

An immediate consequence of the previous lemma is the inequality∑
D<d≤z

d

ϕ(d)

∑
χ∗ mod d

max
y≤x

∣∣∣∣∣∑
n≤y

Λ(n)χ(n)

∣∣∣∣∣
≪
(
zx1/2 +

x

z
+
x

D
+ x5/6 log z

)
(log z)(log x)α,

(4.18)

where x, z,D are positive integers such that z > D and α > 0.
Using the above mentioned lemma and the other main ingredient of Vaughan’s proof,

the Barban-Davenport-Halberstam Theorem (3.5), we will now complete the proof of the
Bombieri-Vinogradov Theorem.
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Theorem 4.3 (The Bombieri-Vinogradov Theorem). For A > 0, there exists B = B(A) > 0
such that ∑

d≤ x1/2

(log x)B

max
y≤x

max
(a,d)=1

∣∣∣∣π(y; d, a)− li y

ϕ(d)

∣∣∣∣≪ x

(log x)A
, (4.19)

where li(y) is the logarithmic integral of y.

Proof. Firstly, we note that proving 4.18 is the same as proving∑
d≤ x1/2

(log x)B

max
y≤x

max
(a,d)=1

∣∣∣∣ψ(y; d, a)− y

ϕ(d)

∣∣∣∣≪ x

(log x)A
(4.20)

From 4.20, we can observe that the Bombieri-Vinogradov Theorem likely gives a stronger
estimate than the Barban-Davenport-Halberstam theorem. Hence, we will start the proof
from the Barban-Davenport-Halberstam Theorem and expand it using the lemmas we dis-
cussed in this section to obtain a stronger estimate. We notice that

max
(a,d)=1

∣∣∣∣ψ(y; d, a)− y

ϕ(d)

∣∣∣∣ ≤ 1

ϕ(d)

∑
χ mod d
χ ̸=χ0

|ψ(y, χ)|+ ψ(y, χ0)− y

ϕ(d)
(4.21)

We consider that the character χ ̸= χ0 modulo d is induced by some primitive character
χ1 modulo d1. using 2.5 which states that ψ(y, χ1)− ψ(y, χ) ≪ (log y)(log d) and summing
over d ≤ z and taking the max y ≤ x, we get∑

d≤z

max
y≤x

max
(a,d)=1

∣∣∣∣ψ(y; d, a)− y

ϕ(d)

∣∣∣∣≪∑
d≤z

1

ϕ(d)

∑
χ mod d
χ ̸=χ0

max
y≤x

|ψ(y, χ1)|

+
∑
d≤z

1

ϕ(d)
max
y≤x

|ψ(y)− y|+ z(log y)(log d),

(4.22)

where z = z(x) is a positive real number, depending on x, that we will specify soon. To
estimate the second term in the above equation, we use an estimate from the prime number
theorem which states that∑

d≤z

1

ϕ(d)
max
y≤x

|ψ(y)− y| ≪ x log z

(log x)A+1
. (4.23)

Since the rightmost part of the inequality in 4.22, z(log y)(log d) is negligible, it only now
suffices to estimate the first term to prove the theorem.

We first write each modulus d as d = d1k for some positive integer k and note that∑
d≤z

1

ϕ(d)

∑
χ mod d
χ ̸=χ0

max
y≤x

|ψ(y, χ1)| =
∑
d1≤z

∑
k≤ z

d1

1

ϕ(d1k)

∑
χ1 mod d1

max
y≤x

|ψ(y, χ1)|

≪
∑
d≤z

1

ϕ(d)
log

2z

d

∑
χ∗ mod d

|ψ(y, χ)| ,
(4.24)
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where we used the estimate ∑
k≤ z

d

1

ϕ(dk)
≪ 1

ϕ(d)
log

2z

d
.

Now, to complete the proof of the theorem, we need to choose z of the form z =
x1/2/(log x)B for some constant B = B(A) to show that∑

d≤z

1

ϕ(d)

∑
χ∗ mod d

max
y≤x

|ψ(y, χ)| ≪ x

(log x)A
.

Since the Siegel-Walfiz Theorem states that there exists B = B(A) > 0 such that, if
d ≤ (log x)B and χ ̸= χ0 is a character modulo d, then

ψ(y, χ) ≪ x

(log x)A+1
.

Therefore, we deduce that∑
d≤(log x)B

1

ϕ(d)

∑
χ∗ mod d

max
y≤x

|ψ(y, χ)| ≪ x

(log x)A
. (4.25)

Now, we choose

z :=
x1/2

(log x)B

and use equation 4.18 together with partial summation to obtain∑
(log x)B<d≤z

1

ϕ(d)

∑
χ∗ mod d

max
y≤x

|ψ(y, χ)| ≪ x

(log x)A
. (4.26)

From 4.23, 4.25, and 4.26, we can conclude that∑
d≤ x1/2

(log x)B

max
y≤x

max
(a,d)=1

∣∣∣∣π(y; d, a)− li y

ϕ(d)

∣∣∣∣≪ x

(log x)A
.

Hence, we complete the proof the Bombieri-Vinogradov Theorem. ■

4.3 What does all of this mean?

In this subsection, we will look at certain applications of the Bombieri-Vinogradov theo-
rem and we will establish its prominence in research concerning the distribution of primes.

We can now observe that the Bombieri-Vinogradov Theorem actually provides a more
precise estimate than the Siegel-Walfiz Theorem on the Error term for the Prime number
theorem on primes in Arithmetic Progressions. To show this, we first represent

E(x; q) = max
(a,q)=1

sup
y≤x

∣∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣∣
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as the maximum possible error term in the Prime Number Theorem for primes in arithmetic
progressions for any congruence class modulo q.

If we observe closely, The Bombieri-Vinogradov Theorem actually establishes a very
precise estimate for the error term. We will not be discussing about the Generalized Riemann
Hypothesis since it is quite deep and complex to understand. However, the Generalised
Riemann is considered to be this huge sorts of unsolved problem in Analytic Number Theory
and is often assumed to be true in various proofs. Assuming the GRH, the Siegel-Walfiz
Theorem we discussed previously is proved and it also gives a big-oh estimate of O(x1/2)
for the error term. A very prominent result of the Bombieri-Vinogradov Theorem is that it
gives a much more precise estimate of the error term without assuming the GRH to be true.

Other major applications of the Bombieri-Vinogradov Theorem include the Titchmarsh
Divisor Problem [CM+06, Chapter 9.3], and the Elliot-Halberstam Conjecture. We will
not be discussing about these topics since they are quite deep but an interested reader can
refer [Sou06] for more information regarding the Elliot-Halberstam Conjecture and studies
concerning the Gaps between primes.
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