Exploring Ehrhart Theory

Kevin Shi

July 8, 2022

	Shi	

< ∃ >

Image: A match a ma

What is Ehrhart Theory?

• Named in honor of French mathematician Eugène Ehrhart

	Shi	

э

What is Ehrhart Theory?

- Named in honor of French mathematician Eugène Ehrhart
- Counting lattice points in polytopes (higher-dimensional generalization of polygons and polyhedra)

イロト 不得 ト イヨト イヨト

What is Ehrhart Theory?

- Named in honor of French mathematician Eugène Ehrhart
- Counting lattice points in polytopes (higher-dimensional generalization of polygons and polyhedra)
- Relating discrete volume and continuous volume

イロト 不得 ト イヨト イヨト

Pick's Theorem

evin	

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

æ

Pick's Theorem

One of the most famous theorems involving lattice-point enumeration is *Pick's theorem*, published by Austrian mathematician Georg Alexander Pick in 1899.

Theorem (Pick's theorem)

Given a convex integral polygon \mathcal{P} , let the number of lattice points strictly interior to \mathcal{P} be I, and let the number of lattice points on the boundary of \mathcal{P} be B. Then, the formula

$$A = I + \frac{B}{2} - 1$$

gives the area A of \mathcal{P} .

Beyond Pick

Unfortunately, Pick's theorem fails to generalize to higher dimensions. For example, there is no "simple" formula for the volume of a polyhedron using just information about its lattice points.

イロン イヨン イヨン

э

Beyond Pick

Unfortunately, Pick's theorem fails to generalize to higher dimensions. For example, there is no "simple" formula for the volume of a polyhedron using just information about its lattice points.

Ehrhart developed Ehrhart theory as a way to generalize Pick's theorem using an alternative formulation.

(日)

Main Concepts

evin	

・ロト ・四ト ・ヨト ・ヨト

æ

The Central Question

The central theme of Ehrhart theory is counting the number of *lattice points* contained within a polytope \mathcal{P} . Specifically, we are interested in how the number of lattice points inside a polytope changes as it is scaled up:

< □ > < □ > < □ > < □ > < □ > < □ >

The Central Question

The central theme of Ehrhart theory is counting the number of *lattice points* contained within a polytope \mathcal{P} . Specifically, we are interested in how the number of lattice points inside a polytope changes as it is scaled up:

Question

What is the number of lattice points contained in $t\mathcal{P}$ in terms of t and the properties of \mathcal{P} ?

Lattice-Point Enumerators

To answer this question, we define the *lattice-point enumerator* function of \mathcal{P} , denoted by $L_{\mathcal{P}}(t)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

8/21

Lattice-Point Enumerators

To answer this question, we define the *lattice-point enumerator* function of \mathcal{P} , denoted by $L_{\mathcal{P}}(t)$.

Definition

The lattice-point enumerator of $\mathcal{P} \subset \mathbb{R}^d$, which counts the number of lattice points inside $t\mathcal{P}$ when evaluated at t, is

$$L_{\mathcal{P}}(t) = \left| t \mathcal{P} \cap \mathbb{Z}^d \right|.$$

evin	

Lattice-Point Enumerators

To answer this question, we define the *lattice-point enumerator* function of \mathcal{P} , denoted by $L_{\mathcal{P}}(t)$.

Definition

The lattice-point enumerator of $\mathcal{P} \subset \mathbb{R}^d$, which counts the number of lattice points inside $t\mathcal{P}$ when evaluated at t, is

$$L_{\mathcal{P}}(t) = \left| t \mathcal{P} \cap \mathbb{Z}^d \right|.$$

The value of $L_{\mathcal{P}}(t)$ is also called the *discrete volume* of $t\mathcal{P}$.

evin	

Ehrhart Series of Polytopes

Oftentimes in lattice-point enumeration, instead of analyzing the lattice-point enumerator function directly, it can be more useful to analyze its *generating function* — the polytope's *Ehrhart series*.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Ehrhart Series of Polytopes

Oftentimes in lattice-point enumeration, instead of analyzing the lattice-point enumerator function directly, it can be more useful to analyze its *generating function* — the polytope's *Ehrhart series*.

Definition

The Ehrhart series of a polytope \mathcal{P} , denoted $\text{Ehr}_{\mathcal{P}}(z)$, is the generating function of $L_{\mathcal{P}}(t)$ where

$$\mathsf{Ehr}_{\mathcal{P}}(z) \coloneqq \sum_{t \ge 0} L_{\mathcal{P}}(t) z^t.$$

	•		୬୯୯
Kevin Shi	Exploring Ehrhart Theory	July 8, 2022	9 / 21

The following is the most important fact about lattice-point enumerators:

Theorem (Ehrhart's theorem)

Given a convex integral polytope $\mathcal{P} \subset \mathbb{R}^d$, the lattice-point enumerator $L_{\mathcal{P}}(t)$ of \mathcal{P} is a rational polynomial of degree d.

The following is the most important fact about lattice-point enumerators:

Theorem (Ehrhart's theorem)

Given a convex integral polytope $\mathcal{P} \subset \mathbb{R}^d$, the lattice-point enumerator $L_{\mathcal{P}}(t)$ of \mathcal{P} is a rational polynomial of degree d.

Ehrhart's theorem was proved in 1962 by French mathematician Eugène Ehrhart, who made extensive contributions to lattice-point enumeration. As such, Ehrhart theory is named in his honor.

The following is the most important fact about lattice-point enumerators:

Theorem (Ehrhart's theorem)

Given a convex integral polytope $\mathcal{P} \subset \mathbb{R}^d$, the lattice-point enumerator $L_{\mathcal{P}}(t)$ of \mathcal{P} is a rational polynomial of degree d.

Ehrhart's theorem was proved in 1962 by French mathematician Eugène Ehrhart, who made extensive contributions to lattice-point enumeration. As such, Ehrhart theory is named in his honor.

Analyzing $\operatorname{Ehr}_{\mathcal{P}}(z)$ instead of analyzing $L_{\mathcal{P}}(t)$ directly is extremely important in the proof of Ehrhart's theorem, hence the importance of generating functions in Ehrhart theory.

The following is the most important fact about lattice-point enumerators:

Theorem (Ehrhart's theorem)

Given a convex integral polytope $\mathcal{P} \subset \mathbb{R}^d$, the lattice-point enumerator $L_{\mathcal{P}}(t)$ of \mathcal{P} is a rational polynomial of degree d.

Ehrhart's theorem was proved in 1962 by French mathematician Eugène Ehrhart, who made extensive contributions to lattice-point enumeration. As such, Ehrhart theory is named in his honor.

Analyzing $\operatorname{Ehr}_{\mathcal{P}}(z)$ instead of analyzing $L_{\mathcal{P}}(t)$ directly is extremely important in the proof of Ehrhart's theorem, hence the importance of generating functions in Ehrhart theory.

Because of this result, lattice-point enumerators are often called *Ehrhart polynomials*.

Return to Pick's — Ehrhart Polynomials of Polygons

With Pick's theorem, we can actually derive the general form of the Ehrhart polynomial for all convex integral polygons.

Return to Pick's — Ehrhart Polynomials of Polygons

With Pick's theorem, we can actually derive the general form of the Ehrhart polynomial for all convex integral polygons.

Theorem

Given a convex integral polygon \mathcal{P} , let its area be A and let the number of lattice points on its boundary be B. Then,

$$L_{\mathcal{P}}(t) = At^2 + \frac{B}{2}t + 1.$$

		《曰》《圖》《臣》《臣》	1
Kevin Shi	Exploring Ehrhart Theory	July 8, 2022	11 / 21

Return to Pick's — Ehrhart Polynomials of Polygons

With Pick's theorem, we can actually derive the general form of the Ehrhart polynomial for all convex integral polygons.

Theorem

Given a convex integral polygon \mathcal{P} , let its area be A and let the number of lattice points on its boundary be B. Then,

$$L_{\mathcal{P}}(t) = At^2 + \frac{B}{2}t + 1.$$

This result follows easily from Pick's Theorem after proving that the area of $t\mathcal{P}$ is At^2 and the number of lattice points on the boundary of $t\mathcal{P}$ is Bt.

ĸ	(evin	Shi
		5.0

An Example

evin	

3

The Unit *d*-Hypercube

One common type of polytope is the *hypercube*. A hypercube in higher dimensions is the generalization of the 2-dimensional square and the 3-dimensional cube. A *unit d-hypercube* is a *d*-hypercube with side length 1.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The Unit *d*-Hypercube

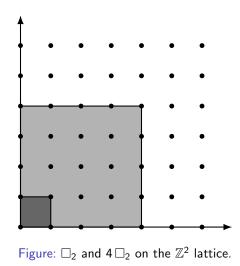
One common type of polytope is the *hypercube*. A hypercube in higher dimensions is the generalization of the 2-dimensional square and the 3-dimensional cube. A *unit d-hypercube* is a *d*-hypercube with side length 1.

Definition

We formally define the unit *d*-hypercube, denoted by \Box_d , as the polytope whose vertices are all of the points in \mathbb{R}^d such that every coordinate is either 0 or 1:

$$\begin{aligned} \exists_d \coloneqq \mathsf{conv}\{(x_1, x_2, \dots, x_d) \in \mathbb{R}^d : x_i &= 0 \text{ or } 1 \text{ for } 1 \leq i \leq d\} \\ &= \{(x_1, x_2, \dots, x_d) \in \mathbb{R}^d : 0 \leq x_i \leq 1 \text{ for } 1 \leq i \leq d\}. \end{aligned}$$

The Unit *d*-Hypercube



< 個 → < Ξ

< 3 >

æ

Ehrhart Polynomial of the Unit *d*-Hypercube

The following theorem gives the lattice-point enumerator of \Box_d .

		- 《曰》《卽》《臣》《臣》 - 3	E 996
Kevin Shi	Exploring Ehrhart Theory	July 8, 2022	15 / 21

Ehrhart Polynomial of the Unit *d*-Hypercube

The following theorem gives the lattice-point enumerator of \Box_d .

Theorem

The lattice-point enumerator of the unit d-cube is

 $L_{\Box_d}(t) = (t+1)^d.$

	Shi

Ehrhart Polynomial of the Unit *d*-Hypercube

The following theorem gives the lattice-point enumerator of \Box_d .

Theorem

The lattice-point enumerator of the unit d-cube is

 $L_{\Box_d}(t) = (t+1)^d.$

Proof.

In $t \square_d$, each coordinate of a lattice point must be an integer in the interval [0, t]. There are t + 1 such integers and d coordinates, so there are $(t + 1)^d$ lattice points.

Discrete and Continuous Volume

< □ > < 同 > < 回 > < 回 > < 回 >

э

Volume in Higher Dimensions

We can think of volume in higher dimensions as tiling a polytope with d-hypercubes.

Volume in Higher Dimensions

We can think of volume in higher dimensions as tiling a polytope with *d*-hypercubes.

Intuitively, we let the *d*-hypercube with side length *s* have volume s^d . Then, the volume of a polytope is approximated by the volume of the tiling hypercube multiplied by the number of hypercubes.

Volume in Higher Dimensions

We can think of volume in higher dimensions as tiling a polytope with *d*-hypercubes.

Intuitively, we let the *d*-hypercube with side length *s* have volume s^d . Then, the volume of a polytope is approximated by the volume of the tiling hypercube multiplied by the number of hypercubes.

As s approaches 0, the hypercubes approach points and the approximation approaches the actual (continuous) volume.

		CI .
Ke	evin.	Shi

The Leading Coefficient

What is the actual relationship between a polytope's discrete and continuous volumes? The answer lies in the Ehrhart polynomial of the polytope.

< □ > < □ > < □ > < □ > < □ > < □ >

The Leading Coefficient

What is the actual relationship between a polytope's discrete and continuous volumes? The answer lies in the Ehrhart polynomial of the polytope.

Theorem

For a given convex integral polytope $\mathcal{P} \subset \mathbb{R}^d$, let its Ehrhart polynomial be

$$L_{\mathcal{P}}(t) = a_d t^d + a_{d-1} t^{d-1} + \dots + a_1 t + 1.$$

Then, a_d equals the volume of \mathcal{P} .

Open Problems

evin	

・ロト ・四ト ・ヨト ・ヨト

3

For what classes of polytopes does L_P(t) have all positive coefficients? (Ehrhart positivity)

э

- For what classes of polytopes does L_P(t) have all positive coefficients? (Ehrhart positivity)
 - For example, unit *d*-hypercubes have Ehrhart positivity

< ロ > < 同 > < 回 > < 回 > < 回 > <

- For what classes of polytopes does L_P(t) have all positive coefficients? (Ehrhart positivity)
 - For example, unit *d*-hypercubes have Ehrhart positivity
- 2 For what classes of polytopes is $L_{\mathcal{P}}(t)$ symmetric in d and t?

< □ > < □ > < □ > < □ > < □ > < □ >

- For what classes of polytopes does L_P(t) have all positive coefficients? (Ehrhart positivity)
 - For example, unit *d*-hypercubes have Ehrhart positivity
- **2** For what classes of polytopes is $L_{\mathcal{P}}(t)$ symmetric in d and t?
 - However, unit *d*-hypercubes do not have this property

< □ > < □ > < □ > < □ > < □ > < □ >

- For what classes of polytopes does L_P(t) have all positive coefficients? (Ehrhart positivity)
 - For example, unit *d*-hypercubes have Ehrhart positivity
- **2** For what classes of polytopes is $L_{\mathcal{P}}(t)$ symmetric in d and t?
 - However, unit *d*-hypercubes do not have this property
- There does not exist a standard algorithm for determining either of these properties — proving these properties often uses very different methods for different polytopes.

イロト イヨト イヨト ・

- For what classes of polytopes does L_P(t) have all positive coefficients? (Ehrhart positivity)
 - For example, unit *d*-hypercubes have Ehrhart positivity
- **2** For what classes of polytopes is $L_{\mathcal{P}}(t)$ symmetric in d and t?
 - However, unit *d*-hypercubes do not have this property
- There does not exist a standard algorithm for determining either of these properties — proving these properties often uses very different methods for different polytopes.
- Of course there are many other open problems

イロト イヨト イヨト ・

Thank you!

	Shi

・ロト ・四ト ・ヨト ・ヨト

æ