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Abstract. In this paper, we will overview the fundamentals of Ehrhart theory, which
studies the number of lattice points contained by a polytope. Ehrhart theory is named
after Eugène Ehrhart, who showed in 1962 that number of lattice points contained by the
tth dilate of a d-dimensional polytope is a rational polynomial in t of degree d, called the
Ehrhart polynomial. We will examine the Ehrhart polynomials of some common polytopes
and the proof of Ehrhart’s theorem, as well as properties of Ehrhart polynomials and open
problems in the field.

1. Introduction

Oftentimes in mathematics, there is a clear distinction in the way we approach a field of
study: either continuously or discretely. Branches of mathematics like combinatorics and
number theory are generally studied as parts of discrete math whereas algebra and geometry
are usually continuous. However, there exists certain fascinating subjects in math that
connect the worlds of the discrete and the continuous. Ehrhart theory is one such subject.
Ehrhart theory, named after French mathematician Eugène Ehrhart, studies the relation-

ship between an object’s continuous volume — the “normal” or “intuitive” sense of volume
— and its discrete volume — a different sense of volume determined by the number of lattice
points inside the object, where a lattice point is a point whose coordinates are integers.
The history of Ehrhart theory very much has to do with lattice points. In the mathematics

of lattice points, perhaps the most well-known result is Pick’s theorem (Theorem 5.1), which
gives the area of a convex polygon with lattice-point vertices in terms of the number of lattice
points inside it and on its boundary. However, Pick’s theorem fails to generalize into higher
dimensions. For this purpose, Ehrhart devised a different approach.

Ehrhart instead studied how the number of lattice points inside an object changed as
the object was scaled up in size. For this purpose, he defined the lattice-point enumerator
function in t of an object, which counted the number of lattice points in the object after
being scaled up by a factor of t for positive integers t. He discovered the central theorem
of Ehrhart theory — that the lattice-point enumerator of convex polytopes (polygons and
polyhedra generalized to higher dimensions) with interger vertices is a rational polynomial
in t whose degree equals the dimensionality of the polytope. Today, this result is called
Ehrhart’s theorem (Theorem 6.1).

Connecting back to Pick’s theorem and volume, Ehrhart discovered that the leading co-
efficient of a polytope’s lattice-point enumerator always equaled the polytope’s volume. In
a sense, this served as a generalization of Pick’s theorem into higher dimensions. This re-
lationship between continuous volume and discrete lattice points connects continuous and
discrete mathematics and brings together many different branches of mathematics, including
combinatorics, geometry, and number theory.
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Ehrhart’s work was and still is being expanded upon by other mathematicians, eventually
developing into its own field of study, which we today call Ehrhart theory. One of the most
notable contributions to Ehrhart theory came from British mathematician Ian G. Macdon-
ald, who proved a relationship between the lattice-point enumerators of a polytope and its
interior, a theorem called Ehrhart-Macdonald Reciprocity (Theorem 7.2).
The aim of this expository paper is to explore the fundamentals of Ehrhart theory and

provide the reader an introduction to the basic ideas and main results. To do this, we will
follow the following structure:

We will begin in Section 2 by formally introducing polytopes and relevant terminology
so as to be able to discuss higher-dimensional objects. Then, in Section 3, we will more
precisely define the lattice-point enumerator and compute the lattice-point enumerators of
several common polytopes. Continuing in Section 4, we will explore the role that generating
functions play in Ehrhart theory, and define the Ehrhart series of a polytope. Next, we will
have an in-depth look at Pick’s theorem, provide a traditional proof of it, and further explore
its connections to Ehrhart theory in Section 5. In Section 6, we will get ready to discuss
the main results of Ehrhart theory, including Ehrhart’s theorem and Ehrhart-Macdonald
Reciprocity, by introducing and proving several lemmas that will be needed for our proof of
Ehrhart’s theorem. Then, in Section 7, we will derive the proof of Ehrhart’s theorem using
our preparation earlier, as well as formally state Ehrhart-Macdonald Reciprocity. Lastly, in
Section 8, we will examine Ehrhart positivity, an open area of research in Ehrhart theory.

2. Polytopes

We begin with the formal introduction to polytopes. Since Ehrhart theory is not restricted
to just shapes with low dimensionalities, we need to first define the mathematics of polytopes,
the higher-dimensional generalization of the 2-dimensional polygon or the 3-dimensional
polyhedron. In this paper, we will only be concerned with convex polytopes. In general,
there are two different yet equivalent ways to define convex polytopes: the vertex description
and the hyperplane description.

Using the vertex description, a convex polytope P ⊂ Rd is the convex hull of a finite set
of points {v1,v2, . . . ,vn} in Rd. We denote this by P = conv{v1,v2, . . . ,vn}.

Definition 2.1. For a finite set of points {v1,v2, . . . ,vn} in Rd, its convex hull is

conv{v1,v2, . . . ,vn}
:= {λ1v1 + λ2v2 + · · ·+ λnvn : λi ≥ 0 for 1 ≤ i ≤ n and λ1 + λ2 + · · ·+ λn = 1}.

If we instead use the hyperplane description, a convex polytope P ⊂ Rd is the bounded
intersection of finitely many d-dimensional half-spaces and (d− 1)-dimensional hyperplanes.

Definition 2.2. A hyperplane H ⊂ Rd is a (d− 1)-dimensional subspace of a d-dimensional
space. A half-space H ⊂ Rd is the part of a d-dimensional space that lies on a given side of
a (d− 1)-dimensional hyperplane. Formally,

H := {x ∈ Rd : a · x = b}
for some a ∈ Rd and some constant b, and

H := {x ∈ Rd : a · x ≥ b} or {x ∈ Rd : a · x ≤ b}
for some a ∈ Rd and some constant b.
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We call a hyperplane H a supporting hyperplane of a polytope P if P is completely
contained in one of the two half-spaces H1 and H2 bounded by H, that is, P ⊂ H1 or
P ⊂ H2.

In addition, we can also define the surface regions of a polytope analogous to the surface
regions of a polyhedron. A face of a polytope P is the set of points P ∩ H, where H is
a supporting hyperplane of P . Note that a face of a d-dimensional polytope can have any
dimensionality less than or equal to d. In particular, the (d− 1)-dimensional faces are called
facets, the 1-dimensional (line segment) faces are called edges, and the 0-dimensional (point)
faces are called vertices.

Ehrhart theory is concerned with polytopes with integer or rational vertices. As such, we
define an integral polytope as a polytope whose vertices all have integer coordinates. Similarly,
if the vertices all have rational coordinates, then the polytope is a rational polytope.
Finally, Ehrhart theory also studies what happens when a polytope is scaled up in size.

A polytope P scaled up by a factor of t is called its tth dilate, denoted by tP .

Definition 2.3. For a positive integer t, the tth dilate of a polytope P ⊂ Rd is tP , and

tP = {(tx1, tx2, . . . , txd) : (x1, x2, . . . , xd) ∈ P}
= {tx : x ∈ P}.

With the fundamental language of polytopes, we can now explore the core of Ehrhart
theory.

3. Lattice-Point Enumeration

3.1. Lattice-Point Enumerators. The central theme of Ehrhart theory is counting the
number of lattice points — points with only integer coordinates — contained within a poly-
tope P . Specifically, we are interested in how the number of lattice points inside a polytope
changes as it is scaled up:

Question 3.1. What is the number of lattice points contained in tP in terms of t?

To answer this question, we define the lattice-point enumerator function, also called the
Ehrhart polynomial for reasons we will discuss later, of P , denoted by LP(t).

Definition 3.2. The lattice-point enumerator of P ⊂ Rd, which counts the number of lattice
points inside tP when evaluated at t, is

LP(t) =
∣∣tP ∩ Zd

∣∣ .
The value of LP(t) is also called the discrete volume of tP .
To better understand this function, we can examine a few examples.

3.2. The Unit d-Cube. One of the polytopes with the simplest lattice-point enumerators
is the unit d-cube, the generalization of the 2-dimensional unit square and the 3-dimensional
unit cube.

Definition 3.3. The unit d-cube, denoted by □d, is the polytope whose vertices are all of
the points in Rd such that every coordinate is either 0 or 1:

□d := conv{(x1, x2, . . . , xd) ∈ Rd : xi = 0 or 1 for 1 ≤ i ≤ d}
= {(x1, x2, . . . , xd) ∈ Rd : 0 ≤ xi ≤ 1 for 1 ≤ i ≤ d}.
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We can also consider strictly the interior of a polytope, denoted by P◦ for a polytope P .
The interior of the unit d-cube is

□◦
d = {(x1, x2, . . . , xd) ∈ Rd : 0 < xi < 1 for 1 ≤ i ≤ d}.

Figure 1. □2 and 4□2 on the Z2 lattice.

Figure 1 demonstrates that in the case of d = 2, it is apparent that L□2(t) = (t + 1)2.
In general, the lattice-point enumerators of the unit d-cube and its interior are given by the
following theorem.

Theorem 3.4. The lattice-point enumerator of the unit d-cube is

L□d
(t) = (t+ 1)d,

and the lattice-point enumerator of the interior of the unit d-cube is

L□◦
d
(t) = (t− 1)d.

Proof. A given lattice point (x1, x2, . . . , xd) in t□d can have xi = 0, 1, . . . , t for each 1 ≤ i ≤ d.
Since each of the d coordinates has t+1 possible values, the lattice-point enumerator of the
unit d-cube is L□d

(t) = (t+ 1)d.
For the interior of the d-cube, each of the coordinates of a lattice point in t□◦

d instead only
has t−1 possible values, so the lattice-point enumerator of the interior is L□◦

d
(t) = (t−1)d. ■

3.3. The Standard d-Simplex. Another common type of polytope is the simplex. A
simplex in higher dimensions is the generalization of the 2-dimensional triangle and the 3-
dimensional tetrahedron. The name “simplex” refers to the fact that the d-simplex is the
“simplest” polytope in d-dimensions, as the d-simplex has d + 1 vertices and d + 1 facets,
the minimum possible amounts.

In particular, we are interested in the standard d-simplex, defined as the convex hull of
the origin and the d unit vectors. Figure 2 shows dilates of the standard 2-simplex, which is
simply a right isosceles triangle.



EXPLORING EHRHART THEORY 5

Definition 3.5. The standard d-simplex, denoted by ∆d, is the polytope whose vertices
are the origin and the d unit vectors e1, e2, . . . , ed (specifically, ei is the point where the ith

coordinate is 1 and all other coordinates are 0):

∆d := conv{0, e1, e2, . . . , ed}
= {(x1, x2, . . . , xd) ∈ Rd : x1 + x2 + · · ·+ xd ≤ 1 and xi ≥ 0 for 1 ≤ i ≤ d}.

Figure 2. ∆2, 3∆2, and 6∆2 on the Z2 lattice.

Theorem 3.6 gives the lattice-point enumerator of ∆d.

Theorem 3.6. The lattice-point enumerator of the standard d-simplex is

L∆d
(t) =

(
d+ t

d

)
.

Proof. A lattice point (x1, x2, . . . , xd) in t∆d satisfies

(3.1) x1 + x2 + · · ·+ xd ≤ t

where xi is a nonnegative integer for all i. We can transform (3.1) into an equality by
introducing a slack variable xd+1 ∈ Z≥0, which represents the difference between the left
hand side and the right hand side of (3.1). This gives

(3.2) x1 + x2 + · · ·+ xd + xd+1 = t.

Counting the number of solutions to (3.2) is equivalent to the classical combinatorial prob-
lem of counting the number of ways to place n indistinguishable objects into k distinguishable
bins, and in this case we have n = t and k = d+ 1. By the well-known Stars and Bars (also
called Sticks and Stones, etc.) method, there are(

n+ k − 1

k − 1

)
ways to place the objects.

Making the substitution n = t and k = d + 1 gives that
(
d+t
d

)
is the number of solutions

to (3.2) and (3.1) as well as the number of lattice points in t∆d. ■
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3.4. The d-Cross-Polytope. The last common polytope we will examine in this section
is the cross-polytope, also called the orthoplex. It is the simplest nontrivial polytope that is
symmetric about the origin, as shown by Figure 3 for the case of d = 2.

Definition 3.7. The d-cross-polytope, denoted by ♢d, is the polytope whose vertices are
the d unit vectors e1, e2, . . . , ed and their negatives:

♢d := conv{±e1,±e2, . . . ,±ed}
= {(x1, x2, . . . , xd) ∈ Rd : |x1|+ |x2|+ · · ·+ |xd| ≤ 1}.

Figure 3. ♢2 and 3♢2 on the Z2 lattice.

The lattice-point enumerator of the d-cross-polytope is given by the following theorem.

Theorem 3.8. The lattice-point enumerator of the d-cross-polytope is

L♢d
(t) =

d∑
k=0

2k
(
d

k

)(
t

k

)
.

Proof. Since a given lattice point (x1, x2, . . . , xd) in t♢d satisfies

(3.3) |x1|+ |x2|+ · · ·+ |xd| ≤ t,

L♢d
(t) counts the number of integer solutions to (3.3).

Using casework, we consider the case where exactly k of the xi’s are nonzero. Because all
of the xi’s are symmetric to each other, we can WLOG assume that x1, x2, . . . , xk ̸= 0 and
xk+1, xk+1, . . . , xd = 0. Additionally, since all of the xi’s are inside absolute values, we can
without loss of generality assume that x1, x2, . . . , xk > 0.
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With these assumptions, (3.3) becomes

(3.4) x1 + x2 + · · ·+ xk ≤ t

where x1, x2, . . . , xk ∈ Z>0. Note that (3.4) is very similar to (3.1) for the standard d-simplex.
We can transform it into a inequality we are already familiar with by making the substitution
xi = x′

i + 1, x′
i ∈ Z≥0 for all i. (3.4) then becomes

(x′
1 + 1) + (x′

2 + 1) + · · ·+ (x′
k + 1) ≤ t

x′
1 + x′

2 + · · ·+ x′
k ≤ t− k.

Now, using the technique of adding a slack variable x′
k+1 ∈ Z≥0, we get

(3.5) x′
1 + x′

2 + · · ·+ x′
k + x′

k+1 = t− k.

Applying the Stars and Bars formula, we get that (3.5) has
(
(t−k)+(k+1)−1

(k+1)−1

)
=
(
t
k

)
solutions.

To account for the two assumptions made, we note that there are
(
d
k

)
ways of selecting

which xi’s were nonzero, and that there are 2k ways to assigning signs to each selected xi

since each xi can be either positive or negative. Multiplying everything together gives that
there are

2k
(
d

k

)(
t

k

)
solutions to (3.3) in the case that k of the xi’s are nonzero. Summing over all possible
0 ≤ k ≤ d gives the desired formula for L♢d

(t). ■

4. Ehrhart Series

Oftentimes in lattice-point enumeration, instead of analyzing the lattice-point enumerator
function directly, it can be more useful to analyze its generating function — the polytope’s
Ehrhart series.

Definition 4.1. The generating function of an infinite sequence a0, a1, a2, . . . is the power
series

f(z) = a0 + a1z + a2z
2 + · · · =

∑
k≥0

akz
k.

Definition 4.2. The Ehrhart series of a polytope P , denoted EhrP(z), is the generating
function of LP(t) — precisely, of the infinite sequence LP(0), LP(1), LP(2), . . . — where

EhrP(z) := 1 +
∑
t≥1

LP(t)z
t

or simply

EhrP(z) :=
∑
t≥0

LP(t)z
t

if using the convention that LP(0) = 1 for all polytopes P .

As examples, the following are the Ehrhart series for □d and ∆d.

Example. The Ehrhart series of □d is

Ehr□d
(z) =

∑
t≥0

L□d
(t)zt =

∑
t≥0

(t+ 1)dzt =
∑
t≥1

tdzt−1 =
1

z

∑
t≥1

tdzt.
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Example. The Ehrhart series of ∆d is

Ehr∆d
(z) =

∑
t≥0

L∆d
(t)zt =

∑
t≥0

(
d+ t

d

)
zt.

However, in the case of ∆d, we can actually find a simpler expression for Ehr∆d
(z) by

solving for it directly without first finding L∆d
(t).

Recall Equation (3.2):

x1 + x2 + · · ·+ xd + xd+1 = t,

and recall that L∆d
(t) equals the number of nonnegative integer solutions to (3.2).

Each of the xi’s can be any nonnegative integer, so they all have generating functions∑
k≥0

zk = 1 + z + z2 + z3 + · · · .

The generating function of a sum is the product of the generating functions of each sum-
mand variable. As such, the generating function for x1 + x2 + · · ·+ xd + xd+1 is

(1 + z + z2 + · · · )d+1.

The coefficient of zk in this generating function, when expanded fully, equals the number of
ways to choose nonnegative integers x1, x2, . . . , xd, xd+1 such that x1+x2+· · ·+xd+xd+1 = k.
Thus, (1+z+z2+· · · )d+1 is the generating function of L∆d

(t) and the lattice-point enumerator
of ∆d.

To further simplify this, we use the formula for an infinite geometric series in place of the
infinite sum:

(1 + z + z2 + · · · )d+1 =

(
1

1− z

)d+1

=
1

(1− z)d+1
.

This gives the following theorem.

Theorem 4.3. The Ehrhart series of ∆d is

Ehr∆d
(z) =

∑
t≥0

(
d+ t

d

)
zt =

1

(1− z)d+1
.

Since the coefficients of a polytope’s Ehrhart series encodes the values of its lattice-point
enumerator function, we can learn a lot about a polytope by simply analyzing its Ehrhart
series. We will see this in use in the later sections.

For a more in-depth introduction to generating functions, see [3].

5. Pick’s Theorem

One of the most famous theorems involving lattice-point enumeration is Pick’s theorem,
published by Austrian mathematician Georg Alexander Pick in [5] in 1899.

Theorem 5.1 (Pick’s theorem). Given a convex integral polygon P, let the number of lattice
points strictly interior to P be I, and let the number of lattice points on the boundary of P
be B. Then, the formula

A = I +
B

2
− 1

gives the area A of P.
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First, we will prove Pick’s theorem using a traditional method. Then, we will derive a
relationship between Pick’s theorem and Ehrhart theory.

Before we begin to formally prove Pick’s theorem, we first need to prove several lemmas
that will serve as pieces for the main proof.

Lemma 5.2. Given a convex integral polygon P, it is always possible to decompose P into
integral triangles (triangulation), that is, find a set of integral triangles whose interiors are
disjoint and whose union is P.

Proof. Let the vertices of P be V1, V2, . . . , Vk in clockwise order. Since P is convex, we can
then construct the segments V1V3, V1V4, . . . , V1Vk−1, as shown in Figure 4.

V4

V5

V6

V7

V8

V1

V2

V3

Figure 4. Triangulation of an octagon.

Then, let Ti = △V1ViVi+1 for 2 ≤ i ≤ k − 1. Clearly, the Ti’s only intersect on the edges
V1V3, V1V4, . . . , V1Vk−1, so their interiors are disjoint.

The union of the Ti’s is obviously P , since they completely cover P , as Figure 4 shows.
Lastly, since we did not create any new vertices, the vertices of all of the Ti’s are the

vertices of P , so the Ti’s must be integral.
Therefore, we have a valid integral triangulation of P , which proves the lemma. ■

Lemma 5.3. Given a convex integral polygon P, let a line intersecting the boundary of P
at lattice points divide P into integral polygons P1 and P2. Then,

(1) if Pick’s theorem holds for P1 and P2, it also holds for P.
(2) if Pick’s theorem holds for P and P1, it also holds for P2.

Proof. Let A, I,B be the area of P , the number of lattice points stricty inside P , and the
number of lattice points on the boundary of P , respectively.

Similarly, let Ai, Ii, Bi be the area of Pi, the number of lattice points stricty inside Pi, and
the number of lattice points on the boundary of Pi, respectively, for i = 1, 2.

Obviously,

(5.1) A = A1 + A2.
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Then, if we let the number of lattice points on the common edge of P1 and P2 be E, we
have

(5.2) I = I1 + I2 + E − 2

because the common edge is part of the interior or P , but we have to subtract 2 to remove
the two vertices of the common edge.

We also have

(5.3) B = B1 +B2 − 2E + 2

because the common edge is not part of the boundary of P . Since it is included once in B1

and once in B2, we have to subtract it twice. Lastly, we have to add back 2 to account for
the two vertices of the common edge which we removed.

In part (1), we assume that Pick’s theorem holds for P1 and P2, so we have

A1 = I1 +
B1

2
− 1,

A2 = I2 +
B2

2
− 1.

This combined with (5.1), (5.1), and (5.3) gives

A = A1 + A2

= I1 +
B1

2
− 1 + I2 +

B2

2
− 1

= I1 + I2 +
B1 +B2

2
− 2

= I1 + I2 + E − 2 +
B1 +B2 − 2E + 2

2
− 1

= I +
B

2
− 1,

which proves part (1).
In part (2), we assume that Pick’s theorem holds for P and P1, so we have

A = I +
B

2
− 1,

A1 = I1 +
B1

2
− 1.

This combined with (5.1), (5.1), and (5.3) gives

A2 = A− A1

= I +
B

2
− 1− I1 −

B1

2
+ 1

= I − I1 +
B −B1

2

= I2 + E − 2 +
B2 − 2E + 2

2

= I2 +
B2

2
− 1,

which proves part (2). ■
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Lemma 5.4. Pick’s theorem holds for all integral rectangles R whose sides are parallel to
the axes.

Proof. Let the width of R be w and the height of R be h. Then, without loss of generality
let the bottom-left vertex of R be (0, 0) and the top-right vertex of R be (w, h). Use the
usual definitions of A, I, and B, so we have

(5.4) A = wh.

The lattice points strictly inside R form a rectangular grid with bottom-left vertex (1, 1)
and top-right vertex (w − 1, h− 1), so we have

(5.5) I = (w − 1)(h− 1).

The horizontal edges of R each have length w, so they contain w + 1 lattice points each.
Likewise, the vertical edges each have length h, so they contain h + 1 lattice points each.
This gives that

(5.6) B = 2(w + 1) + 2(h+ 1)− 4 = 2w + 2h.

We need to subtract 4 since otherwise we would count the vertices twice.
Putting together (5.4), (5.5), and (5.6), we have

I +
B

2
− 1 = (w − 1)(h− 1) +

2w + 2h

2
− 1

= wh− w − h+ 1 + w + h− 1

= wh = A,

as desired. ■

Lemma 5.5. Pick’s theorem holds for all integral right triangles T whose legs are parallel
to the axes.

Proof. Let the legs of T have lengths w and h. Then, without loss of generality let the
vertices of T be (0, 0), (w, h), and (w, 0). Again, use the usual definitions of A, I, and B, so
we have

(5.7) A =
wh

2
.

Let H be the number of lattice points on the hypotenuse of T . Then, if we use the same
definition of rectangle R as in the proof of Lemma 5.4, we see that the number of internal
lattice points of T is half the number of internal lattice points of R that do not lie on the
hypotenuse of T . This then gives

(5.8) I =
(w − 1)(h− 1)−H + 2

2

because we need to add 2 in the numerator to account for the vertices.
For the boundary, the horizontal and vertical legs contain w + 1 and h+ 1 lattice points,

respectively. The hypotenuse contains H lattice points by definition. Summing and sub-
tracting 3 to account for the vertices gives

(5.9) B = (w + 1) + (h+ 1) +H − 3 = w + h+H − 1.
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Putting together (5.7), (5.8), and (5.9) gives

I +
B

2
− 1 =

(w − 1)(h− 1)−H + 2

2
+

w + h+H − 1

2
− 1

=
(w − 1)(h− 1)−H + 2 + w + h+H − 1− 2

2

=
wh− w − h+ 1 + w + h− 1

2

=
wh

2
,

as desired. ■

With these lemmas, we can piece together the proof of Pick’s theorem.

Proof of Theorem 5.1. Since P is convex, by Lemma 5.2, we can decompose P into a set of
integral triangles the combine to form P . Then, by part (1) of Lemma 5.3, if Pick’s theorem
holds for each of the triangles, then it must also hold for P because we only split P along
its diagonals in the triangulation. Therefore, it suffices to proof Pick’s theorem for integral
triangles.

As a further simplification, notice that every integral triangle can be inscribed inside an
integral rectangle whose sides are parallel to the coordinate axes, as shown in Figure 5.
By part (2) of Lemma 5.3, this means that it suffices to prove Pick’s theorem for integral
rectangles whose sides are parallel to the axes and integral right triangles whose legs are
parallel to the axes.

Figure 5. The two types of inscribed triangles in rectangles from [1].

Since we already know that Pick’s theorem holds for those two types of polygons by
Lemma 5.4 and Lemma 5.5, we can conclude that Pick’s theorem must hold for any convex
integral polygon, finishing the proof. ■

With Pick’s theorem, we can actually derive the general form of the lattice-point enumer-
ator for all convex integral polygons. We have the following theorem.

Theorem 5.6. Given a convex integral polygon P, let its area be A and let the number of
lattice points on its boundary be B. Then,

LP(t) = At2 +
B

2
t+ 1.
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Proof. Consider tP , the tth dilate of P . Let its area be At, the number of lattice points
strictly in its interior be It, and the number of lattice points on its boundary be Bt.
By definition, we have

(5.10) LP(t) = It +Bt.

Then, since tP is P under a dilation by a factor of t, we have that the area increases by
a factor of t2. This gives

(5.11) At = At2.

Next, suppose that P has n edges, and let them have b1, b2, . . . , bn lattice points, respec-
tively. This gives us

(5.12) B =
n∑

k=1

bk − n,

where we have subtracted n from the sum to correct for counting each vertex twice.
Continuing, let the edges of tP have bt,1, bt,2, . . . , bt,n lattice points, in the same order as

in P . For a given 1 ≤ i ≤ n, we have

bt,i = tbi − t+ 1.

This is because dilating an edge by a factor of t is equivalent to joining together t copies of
the original edge. Since there are t− 1 points where the edges are joined together, we must
subtract t − 1 from tbi to correct for overcounting. Summing together all of the bt,i’s with
correcting for overcounting and using (5.12) gives the following expression for Bt.

Bt =
n∑

k=1

bt,k − n

=
n∑

k=1

(tbk − t+ 1)− n

=
n∑

k=1

tbk − nt+ n− n

= t
n∑

k=1

bk − nt = t

(
n∑

k=1

bk − n

)
= Bt.(5.13)

To finish, Pick’s theorem combined with (5.10), (5.11), and (5.13) gives

At = It +
Bt

2
− 1,

At = It +Bt −
Bt

2
− 1,

At = LP(t)−
Bt

2
− 1,

LP(t) = At +
Bt

2
+ 1,

LP(t) = At2 +
B

2
t+ 1,

concluding the proof. ■
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6. Preparations for Main Results

Now that we have a deeper understanding of lattice-point enumerators and Ehrhart series,
are ready to discuss why the lattice-point enumerator is called the Ehrhart polynomial in
the first place.

Because all four of the lattice-point enumerators we have seen are polynomials in t, we
might make the guess that the reason is that the lattice-point enumerator is always a poly-
nomial for the classes of polytopes Ehrhart theory is interested in. The following theorem
provides a precise answer.

Theorem 6.1 (Ehrhart’s theorem). Given a convex integral polytope P ⊂ Rd, the lattice-
point enumerator LP(t) of P is a rational polynomial of degree d.

This theorem was proved in 1962 by French mathematician Eugène Ehrhart in [2], who
made extensive contributions to lattice-point enumeration. As such, the Ehrhart polynomial
and Ehrhart theory are named in his honor.

As with Pick’s Theorem, we will state several helpful lemmas before proving Theorem 6.1.
We begin with the triangulation lemma for polytopes, a generalization of Lemma 5.2.

Definition 6.2. Let a triangulation of a convex polytope P ⊂ Rd be a finite collection T of
(d− 1)-simplices such that

P =
⋃
∆∈T

∆

and ∆1 ∩∆2 is a common face of ∆1 and ∆2 for every ∆1,∆2 ∈ T .

Theorem 6.3. Given a convex integral polytope P ⊂ Rd, it is always possible to triangulate
P using no new vertices.

Proof outline. We will outline the main ideas of a proof. The full proof of this theorem can
be found in [1, Theorem 3.1].

We can prove that a triangulation exists by constructing one. We begin by “lifting” P into
Rd+1. Letting the vertices of P be v1,v2, . . . ,vn, we then randomly choose h1, h2, . . . , hn ∈ R
and construct a new polytope Q ⊂ Rd+1 such that

Q = conv{(v1, h1), (v2, h2), . . . , (vn, hn)}.

Then, consider the lower hull of Q, the set of points (x1, x2, . . . , xd+1) ∈ Q such that there
does not exist a point (x1, x2, . . . , xd+1 − x) ∈ Q where x > 0.

Since the projection of the lower hull into Rd by removing the last coordinate of each point
is P , it suffices to prove that each face of the lower hull is a simplex and that ∆1 ∩∆2 is a
common face of ∆1 and ∆2 for the projections ∆1,∆2 of any two faces of the lower hull. ■

Then, we need to introduce the concept of cones and coning.

Definition 6.4. A cone K ⊂ Rd is a set of points of the form

K = {v + λ1w1 + λ2w2 + · · ·+ λnwn : λi ≥ 0 for 1 ≤ i ≤ n}

where v,w1,w2, . . . ,vn ∈ Rd, and there exists some hyperplane H such that H ∩ K = {v}.
Let v be called the apex of K and the wi’s be called the generators of K. Call K integral

if wi ∈ Zd, and likewise for rational. Lastly, call K simplicial if its generators are linearly
independent and n = d.
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Definition 6.5. Let P ⊂ Rd be a convex polytope, and let its vertices be v1,v2, . . . ,vn.
Then, consider w1,w2, . . . ,wn ∈ Rd+1, where wi = (vi, 1) for 1 ≤ i ≤ n. With this, define
the cone over P as

cone(P) := {λ1w1 + λ2w2 + · · ·+ λnwn : λi ≥ 0 for 1 ≤ i ≤ n}.

Continuing, we define the multivariate generating function of some set S ⊂ Rd called the
integer-point transform.

Definition 6.6. Given a set S ⊂ Rd, let the integer-point transform of S be

σS(z) = σS(z1, z2, . . . , xd) :=
∑

m∈S∩Zd

zm,

where for a = (a1, a2, . . . , ad) and b = (b1, b2, . . . , bd) we have ab = ab11 a
b2
2 · · · abdd .

As an example, for some set S ⊂ Rd, we can evaluate σS(z) at z = (1, 1, . . . , 1) to retrieve
the number of lattice points in S:

Example. For a bounded S ⊂ Rd, we have

σS(1, 1, . . . , 1) =
∑

m∈S∩Zd

1 =
∣∣S ∩ Zd

∣∣ .
Now, we need the following theorem involving cones and their integer-point transforms.

Theorem 6.7. Let K be an integral simplicial d-cone with generators w1,w2, . . . ,wd. Then,
for some v ∈ Rd, the integer-point transform of v +K is

σv+K(z) =
σv+Π(z)

(1− zw1)(1− zw2) · · · (1− zwd)
,

where

Π := {λ1w1 + λ2w2 + · · ·+ λdwd : 0 ≤ λi < 1 for 1 ≤ i ≤ d}

is the fundamental parallelepiped of K.

Proof. Let m ∈ (v +K) ∩ Zd be a lattice point in v +K. By definition, we have

(6.1) m = v + λ1w1 + λ2w2 + · · ·+ λdwd

for some unique λ1, λ2, . . . , λd ≥ 0.
Then, we can decompose each of the λi’s into its integer and fractional parts by letting

λi = ⌊λi⌋+ {λi} for all i. Then, (6.1) becomes

(6.2) m = (v + {λ1}w1 + {λ2}w2 + · · ·+ {λd}wd) + (⌊λ1⌋w1 + ⌊λ2⌋w2 + · · ·+ ⌊λd⌋wd).

We can set

p = v + {λ1}w1 + {λ2}w2 + · · ·+ {λd}wd,

and note that p ∈ (v + Π) ∩ Zd because both m and ⌊λ1⌋w1 + ⌊λ2⌋w2 + · · · + ⌊λd⌋wd are
integral, and {λi} < 1 for all i.
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Therefore, we can rewrite (6.2) as

(6.3) m = p+ k1w1 + k2w2 + · · ·+ kdwd

for some unique p ∈ (v+Π)∩Zd and some unique k1, k2, . . . , kd ∈ Z≥0. From (6.3), we have
that the generating function whose coefficients are all of the m ∈ (v +K) ∩ Zd is ∑

p∈(v+Π)∩Zd

zp

(∑
k1≥0

zk1w1

)
· · ·

(∑
kd≥0

zkdwd

)
= σv+Π(z)

(
1

1− zw1

)
· · ·
(

1

1− zw1

)

=
σv+Π(z)

(1− zw1)(1− zw2) · · · (1− zwd)
.

■

For the last piece of the puzzle we need before we can prove Ehrhart’s theorem, we have
the following theorem.

Theorem 6.8. For a convex integral polytope P ⊂ Rd, its Ehrhart series can be written as

EhrP(z) = σcone(P)(1, 1, . . . , 1, z).

Proof. To begin, we create cone(P), the cone over P . Note that the intersection of cone(P)
and the hyperplane xd+1 = 1 is P itself. More generally, the intersection of cone(P) and the
hyperplane xd+1 = t for some positive integer t is tP .
Now, consider σcone(P). We can decompose cone(P) into layers, where each layer is the

intersection of P and a hyperplane of the form xd+1 = t for some positive integer t. This
means that we can rewrite σcone(P) in terms of the σtP ’s. Because the points in layer t all
have xd+1 = t and all are in tP , we have

σcone(P)(z1, z2, . . . , zd+1) = 1 + σP(z1, z2, . . . , zd)zd+1 + σ2P(z1, z2, . . . , zd)z
2
d+1 + · · ·

= 1 +
∑
t≥1

σtP(z1, z2, . . . , zd)z
t
d+1.

Using the fact that σP(1, 1, . . . , 1) =
∣∣P ∩ Zd

∣∣ = LP(1), this gives

σcone(P)(1, 1, . . . , 1, zd+1) = 1 +
∑
t≥1

σtP(1, 1, . . . , 1)z
t
d+1

= 1 +
∑
t≥1

LP(t)z
t
d+1

= EhrP(zd+1),

which completes the proof. ■

7. Main Results

Finally, we are ready to prove Ehrhart’s theorem.

Proof of Theorem 6.1. Given a convex integral polytope P ⊂ Rd, we can triangulated it by
Lemma 6.3. Because simplices in our triangulation intersect in lower-dimensional simplices,
LP(t) must be a sum and difference of lattice-point enumerators of simplices. Therefore, it
suffices to prove Ehrhart’s theorem for simplices.
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Then, we use the result [7, Corollary 4.3.1] from Enumerative Combinatorics :

Lemma. For some f : Z≥0 → C and some nonnegative integer d, the following are equiva-
lent:

(1)
∑

t≥0 f(t)z
t = g(z)

(1−z)d+1 and deg g ≤ d.

(2) f is a polynomial of degree d if and only if g(1) ̸= 0.

By this lemma, it suffices to prove that

(7.1) Ehr∆(z) =
g(z)

(1− z)d+1

for some simplex ∆ ⊂ Rd, where g has degree at most d and g(1) ̸= 0.
Since ∆ is a d-simplex, it has exactly d + 1 vertices, which we can call v1,v2, . . . ,vd+1.

This means that cone(∆) is simplicial, and we can call its generators w1,w2, . . . ,wd+1. By
Theorem 6.7, we have

(7.2) σcone(∆)(z) =
σΠ(z)

(1− zw1)(1− zw2) · · · (1− zwd+1)

where Π is the fundamental parallelepiped of cone(∆).
Now, if we let z = (1, 1, . . . , 1, zd+1) and have wi = (vi, 1) = (vi,1, vi,2, . . . , vi,d, 1), we get

that zwi = (1vi,1)(1vi,2) · · · (1vi,d)(z1d+1) = zd+1. This means that (7.2) becomes

(7.3) σcone(∆)(1, 1, . . . , 1, zd+1) =
σΠ(1, 1, . . . , 1, zd+1)

(1− zd+1)(1− zd+1) · · · (1− zd+1)
=

σΠ(1, 1, . . . , 1, zd+1)

(1− zd+1)d+1

By Theorem 6.8, (7.3) becomes

(7.4) Ehr∆(zd+1) =
σΠ(1, 1, . . . , 1, zd+1)

(1− zd+1)d+1

Now, because (7.4) matches (7.1) in form, we have that by the lemma, it remains to prove
that σΠ(1, 1, . . . , 1, zd+1) is a polynomial of degree at most d and σΠ(1, 1, . . . , 1, 1) ̸= 0. The
latter is obvious because

σΠ(1, 1, . . . , 1, 1) =
∣∣Π ∩ Zd+1

∣∣
and Π contains the origin.

For the former, recall the definition of the integer-point transform:

σS(z) =
∑

m∈S∩Zd

zm.

We can let S = Π, z = (1, 1, . . . , 1, zd+1), and expand m as (m1,m2, . . . ,md+1), so we have

σΠ(1, 1, . . . , 1, zd+1) =
∑

m∈Π∩Zd

(1, 1, . . . , 1, zd+1)
(m1,m2,...,md+1)

=
∑

m∈Π∩Zd

(1m1)(1m2) · · · (1md)(zd+1)
md+1

=
∑

m∈Π∩Zd

(zd+1)
md+1 .

Therefore, it remains to prove that the md+1 ≤ d for every m ∈ Π ∩ Zd.
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From the definition of the fundamental parallelepiped, we have

Π = {λ1w1 + λ2w2 + · · ·+ λd+1wd+1 : 0 ≤ λi < 1 for 1 ≤ i ≤ d+ 1}.

Because wi = (vi, 1) for all i, for any m = (m1,m2, . . . ,md+1) ∈ Π ∩ Zd we have

md+1 = λ1 + λ2 + · · ·+ λd+1

where 0 ≤ λi < 1 for all i. This gives

md+1 < 1 + 1 + · · ·+ 1 = d+ 1.

Sincemd+1 must be an integer, it is at most d, implying that the degree of σΠ(1, 1, . . . , 1, zd+1)
is at most d. This concludes our proof of Ehrhart’s theorem. ■

Regarding Ehrhart polynomials, we also have the following important theorem that builds
upon Ehrhart’s theorem.

Theorem 7.1. For a given convex integral polytope P ⊂ Rd, let its Ehrhart polynomial be

LP(t) = adt
d + ad−1t

d−1 + · · ·+ a1t+ 1.

Then, ad equals the volume of P.

Proof. In higher dimensions, the volume of a polytope P ⊂ Rd, denoted by volP , can be
thought of as the number of unit d-cubes needed to completely tile P . As such, a rough
approximation of volP can be found by simply taking the number of unit d-cubes in P .
This approximation can be improved by reducing the size of the cubes. If we are tiling P

with d-cubes of side length s (which then intuitively have volume sd), then the approximation
becomes the amount of smaller cubes in the tiling multiplied by the volume of each small
cube.

If we take the limit as the side length of the d-cubes approaches 0, we approach the precise
value of volP . This is equivalent to counting the number of lattice points inside P on with
a smaller and smaller lattice. As such, we can define

volP := lim
t→∞

1

td

∣∣∣∣∣P ∩
(
1

t
Z
)d
∣∣∣∣∣ .

Since shrinking the lattice by a factor of t is equivalent to expanding P by a factor of t, we
can rewrite this definition as

volP := lim
t→∞

1

td
∣∣tP ∩ Zd

∣∣ = lim
t→∞

1

td
LP(t).

Using this definition, we have

volP = lim
t→∞

adt
d + ad−1t

d−1 + · · ·+ a1t+ 1

td

= lim
t→∞

(ad + ad−1t
−1 + · · ·+ a1t

−d+1 + t−d)

= ad.

■
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Another important result relates the Ehrhart polynomials of a polytope P and its interior,
P◦.

The definition of LP(t) makes intuitive sense for nonnegative values of t. However, since
it is possible to evaluate LP(t) at the negative integers, we can ask what happens when we
do so.

The following remarkable result was proved by British mathematician Ian G. Macdonald
in 1971.

Theorem 7.2 (Ehrhart-Macdonald Reciprocity). Given a convex integral polytope P ⊂ Rd,
evaluating LP(t) at the negative integers yields

LP(−t) = (−1)dLP◦(t).

Recall Theorem 3.4, where we found the Ehrhart polynomials of the unit d-cube and its
interior:

L□d
(t) = (t+ 1)d,

L□◦
d
(t) = (t− 1)d.

Using Ehrhart-Macdonald Reciprocity, we can find L□◦
d
(t) directly from L□d

(t):

Example. Evaluating L□d
(t) at the negative integers gives

L□d
(−t) = (−1)dL□◦

d
(t),

L□◦
d
(t) = (−1)d · L□d

(−t),

L□◦
d
(t) = (−1)d · (−t+ 1)d,

L□◦
d
(t) = (−(−t+ 1))d,

L□◦
d
(t) = (t− 1)d,

as expected.

The full original proof of Ehrhart-Macdonald Reciprocity can be found in [4], and an
alternative proof by Steven V Sam can be found in [6].

8. Ehrhart Positivity

We conclude with an open field of research in Ehrhart theory — Ehrhart positivity. A
convex integral polytope P is said to have Ehrhart positivity or be Ehrhart positive if LP(t)
has all positive coefficients. This gives the central question of this field of research:

Question 8.1. Which classes of convex integral polytopes have Ehrhart positivity?

It turns out that many simple classes of polytopes have Ehrhart positivity, including the
unit d-cube and the standard d-simplex. We have the following theorems.

Theorem 8.2. The unit d-cube □d is Ehrhart positive.

Proof. By Theorem 3.4, we have L□d
(t) = (t+ 1)d. Since (t+ 1) has all positive coefficients

and d is a positive integer, (t+ 1)d clearly has positive coefficients as well. ■

Theorem 8.3. The standard d-simplex ∆d is Ehrhart positive.
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Proof. By Theorem 3.6, we have L∆d
(t) =

(
d+t
d

)
. By the definition of a binomial coefficient,

we have (
d+ t

d

)
=

(d+ t)!

d! · t!

=
(d+ t)(d+ t− 1) · · · (t+ 1)

d!
.(8.1)

Since d! is just a positive constant, we can ignore the denominator of (8.1). Then, in the
numerator, each factor is a linear binomial with positive coefficients (the constant term ranges
from 1 to d). Therefore,

(
d+t
d

)
, written as a polynomial, must have positive coefficients. ■

Of course, there are many other classes of polytopes that are Ehrhart positive. However,
in general, it is significantly more difficult to prove or determine Ehrhart positivity for those
classes of polytopes.

For example, the d-cross-polytope ♢d introduced earlier in this paper is Ehrhart positive.
However, proving this fact requires us to first find Ehr♢d

(z), its Ehrhart series, as its Ehrhart
polynomial L∆d

(t) is hard to work with.
Additionally, the methods needed to prove Ehrhart positivity for different Ehrhart positive

classes of polytopes are often distinct from one another. This means that there is not yet
any form of a standard procedure for determining or proving Ehrhart positivity. As such,
Ehrhart positivity remains as a fascinating open area of research in Ehrhart theory.
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