The Generalized Stokes' Theorem

Kaitlyn Zhang

kaitlynz@ohs.stanford.edu

July 9, 2022

Kaitlyn Zhang The Generalized Stokes' Theorem

Table of Contents

Introduction

Generalized Stokes' Theorem Manifolds Orientation Additional tools Proof

Connecting GST with Other Theorems

luction

Although the "generalized Stokes' theorem" may sound unfamiliar, most multivariable classes likely have introduced the original Stokes' theorem:

$$\oint_C \mathbf{F} \cdot \mathbf{T} \, ds = \iint_{\sigma} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \, dS$$

A bit of history on the original Stokes' Theorem: the theorem was actually first developed by Lord Kelvin, who communicated the result to George Stokes in a letter (1850).

(日) (四) (三) (三)

uction

Although the "generalized Stokes' theorem" may sound unfamiliar, most multivariable classes likely have introduced the original Stokes' theorem:

$$\oint_C \mathbf{F} \cdot \mathbf{T} \, ds = \iint_{\sigma} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \, dS$$

This is actually the "fake" Stokes' theorem! The generalized Stokes' theorem tells us much more than the original, spanning the three classical theorems of vector calculus.

< ロ > < 同 > < 三 > < 三 >

Generalized Stokes' Theorem

Connecting GST with Other Theorems

イロト イポト イヨト イヨト

The Generalized Stokes' Theorem

 $\int_{\partial A} \omega = \int_A d\omega$

where A is any compact-oriented k-dimensional manifold with boundary and ∂A is a k-1 dimensional manifold with the boundary orientation.

Note the similarities between the generalized Stokes' theorem and the Fundamental Theorem of Calculus (Newton-Leibniz formula):

$$f(b)-f(a)=\int_a^b f'(x)\,dx.$$

Generalized Stokes' Theorem

Connecting GST with Other Theorems

イロト イポト イヨト イヨト

The Generalized Stokes' Theorem

$$\int_{\partial A} \omega = \int_A d\omega$$

where A is any compact-oriented k-dimensional manifold with boundary and ∂A is a k-1 dimensional manifold with the boundary orientation.

Due to the theorem spanning most general manifolds, many definitions are made to cement the idea of a "manifold" and "orientation" among other concepts.

	Generalized Stokes' Theorem	Connecting GST with Other Theorems
	0	
	ŏ	
Manifolds		

Manifolds

Definition

A manifold is a topological space that is *locally* Euclidean.

- Surfaces are 2-dimensional manifolds
- "Locally euclidean"

The Earth as a manifold.

2

イロト イポト イヨト イヨト

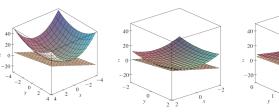
	Generalized Stokes' Theorem	Connecting GST with Other Theorems
	0	
Manifolds		

Manifolds

Definition

A manifold is a topological space that is *locally* Euclidean.

- Surfaces are 2-dimensional manifolds
- "Locally euclidean"



1

2 2

0

	Generalized Stokes' Theorem	Connecting GST with Other Theorems
	0	
	ŏ	
Manifolds		

Manifolds

Definition

A manifold is a topological space that is *locally* Euclidean.

- Surfaces are 2-dimensional manifolds
- "Locally euclidean"

Defining manifolds of all kinds gets rather complicated.

	Generalized Stokes' Theorem ○ ○ ● ○ ○	Connecting GST with Other Theorems
Orientation		

Orientation

- Defining the "direction" by which we approach the manifold
- More complicated than counterclockwise vs. clockwise
- Why is the orientation of a manifold relevant?

When M lacks an orientation, reparametrizing M may cause the solution of the integral to change sign. The integral over a manifold is only *well-defined* when M has an orientation.

	Generalized Stokes' Theorem ○ ○ ● ○ ○	Connecting GST with Other Theorems
Orientation		

Orientation

- Defining the "direction" by which we approach the manifold
- More complicated than counterclockwise vs. clockwise
- Why is the orientation of a manifold relevant?

Note: The wedge product is especially helpful in differential forms because it allows the wedge product to govern the orientation (due to being an alternating tensor).

伺 ト イヨト イヨト

Introduction Generalized Stokes' Theorem Connecting GST with Other Theorems

Additional tools used

- Wedge product: Anti-symmetric tensor
- Differential forms (which implement the wedge product)
- Doing calculus (i.e., doing derivatives and integrals) on differential forms

イロト イ団ト イヨト イヨト

Introduction Generalized Stokes' Theorem Connecting GST with Other Theorems

Proof of the Generalized Stokes' Theorem

The proof of the generalized Stokes' theorem is omitted for this presentation. Instead, an overview of how the generalized Stokes' theorem is a generalization of many other recognizable theorems in vector calculus is provided.

イロト イポト イヨト イヨト

Green's Theorem

Restating the generalized Stokes' theorem as reference:

$$\int_{\partial A} \omega = \int_A d\omega.$$

Consider the \mathbb{R}^2 case where ω is a differential 1-form. Let $\omega = P dx + Q dy$ and D be a region where $C = \partial D$ is the boundary curve.

イロト イボト イヨト イヨト

Generalized Stokes' Theorem 0 0 0 0

Interlude: A few computational rules

If a and b are differential 1-forms and f is a function:

$$d(a + b) = da + db$$
$$d(fa) = (df) \land a + f da$$
$$d(dx) = d(dy) = d(dz) = 0$$
$$df = f_x dx + f_y dy + f_z dz$$

Green's Theorem (cont.)

Calculating $d\omega$:

$$d\omega = d(P dx + Q dy) = d(P dx) + d(Q dy)$$

= $(dP) \land dx + P \cdot d(dx) + (dQ) \land dy + Q \cdot d(dy)$
= $(P_x dx + P_y dy) \land dx + (Q_x dx + Q_y dy) \land dy$
= $P_y dy \land dx + Q_x dx \land dy$
= $(Q_x - P_y) dx \land dy$

æ

・ロト ・四ト ・ヨト ・ヨト

Green's Theorem (cont.)

We now plug the values defined and derived in the previous slides into the generalized Stokes' theorem,

$$\int_C P \, dx + Q \, dy = \int_D (Q_x - P_y) \, dx \wedge dy. \tag{3.1}$$

3.1 is also known as the Green's Theorem.

Remark

Green's Theorem is actually a specific case of the original Stokes' theorem.

イロト イポト イヨト イヨト

Divergence Theorem

Consider a differential 2-form ω in \mathbb{R}^3 . Let $\omega = P \, dy \wedge dz + Q \, dz \wedge dx + H \, dx \wedge dy$ and $G \subset \mathbb{R}^3$ be a domain bounded by a smooth surface S where $S = \partial G$ (G is the *closed solid* enclosed by S).

Similar to the previous example, we now proceed to calculating $d\omega$.

イロト イボト イヨト イヨト

Divergence Theorem (cont.)

$$d\omega = d(P \, dy \wedge dz + Q \, dz \wedge dx + H \, dx \wedge dy)$$

= $(dP) \, dy \wedge dz + (dQ) \, dz \wedge dx + (dH) \, dx \wedge dy$
= $(P_x \, dx + P_y \, dy + P_z \, dz) \, dy \wedge dz$
+ $(Q_x \, dx + Q_y \, dy + Q_z \, dz) \, dz \wedge dx$
+ $(H_x \, dx + H_y \, dy + H_z \, dz) \, dx \wedge dy$
= $P_x \, dx \wedge dy \wedge dz + Q_y \, dy \wedge dz \wedge dx + H_z \, dz \wedge dx \wedge dy$
= $(P_x + Q_y + H_z) \, dx \wedge dy \wedge dz$
= div **F**

where
$$\mathbf{F} = \langle P, Q, H \rangle$$
.

Kaitlyn Zhang

æ

・ロト ・四ト ・ヨト ・ヨト

Generalized Stokes' Theorem 0 0 0 0 Connecting GST with Other Theorems ${\scriptstyle 000000000000}$

Divergence Theorem (cont.)

Recall the generalized Stokes' theorem:

$$\int_{\partial A} \omega = \int_A d\omega.$$

Plugging values into the generalized Stokes' theorem:

$$\int_{S} P \, dy \wedge dz + Q \, dz \wedge dx + H \, dx \wedge dy = \int_{G} \operatorname{div} \mathbf{F}, \quad (3.2)$$

a formula also known as the Divergence Theorem.

(Original) Stokes' Theorem

Assume ω to be a differential 1-form in \mathbb{R}^3 . Let $\omega = P \, dx + Q \, dy + H \, dz$ and $S \subset \mathbb{R}^3$ be a surface with boundary curve $C \ (C = \partial S)$.

Note that

$$d\omega = \operatorname{curl} \mathbf{F}$$

where $\mathbf{F} = \langle P, Q, H \rangle$.

We will not prove this result here, the process is rather similar to the previous examples.

イロト イボト イヨト イヨト

Generalized Stokes' Theorem 0 0 0 0

(Original) Stokes' Theorem (cont.)

We can now plug values into the generalized Stokes' theorem:

$$\int_{C} P \, dx + Q \, dy + H \, dz = \int_{S} \operatorname{curl} \mathbf{F}.$$
 (3.3)

3.3 is commonly called the (original) Stokes' theorem.

Generalized Stokes' Theorem 0 0

Fundamental Theorem of Calculus

We will now show how the fundamental theorem of calculus can be viewed as a specific case of the generalized Stokes' theorem.

Consider the case where ω is a 0-form in \mathbb{R}^1 . Under these conditions, let ω be some function f and I be the interval [a, b] whilst ∂I consists of the two endpoints, $\{a, b\}$. Assume the orientation of a to be negative and b to be positive.

イロト イポト イヨト イヨト

Generalized Stokes' Theorem

Fundamental Theorem of Calculus (cont.)

Applying the generalized Stokes' theorem,

$$\int_{\{-a,b\}} f = \int_{[a,b]} df$$

Expanding, we get:

$$f(b)-f(a)=\int_a^b f'(x)\,dx,$$

or the **fundamental theorem of calculus** (also called the Newton-Leibniz formula).

(日) (四) (三) (三)

Introd	

Conclusion

Thank you very much for listening to this presentation! Feel free to read my paper for additional details and proofs :).

イロト イ団ト イヨト イヨト