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Introduction

Although the “generalized Stokes’ theorem” may sound unfamiliar,
most multivariable classes likely have introduced the original
Stokes’ theorem: ∮

C
F · T ds =

∫∫
σ

(curl F) · n dS

A bit of history on the original Stokes’ Theorem: the theorem was
actually first developed by Lord Kelvin, who communicated the
result to George Stokes in a letter (1850).

Kaitlyn Zhang

The Generalized Stokes’ Theorem 3 / 25



Introduction Generalized Stokes’ Theorem Connecting GST with Other Theorems

Introduction

Although the “generalized Stokes’ theorem” may sound unfamiliar,
most multivariable classes likely have introduced the original
Stokes’ theorem: ∮

C
F · T ds =

∫∫
σ

(curl F) · n dS

This is actually the “fake” Stokes’ theorem! The generalized
Stokes’ theorem tells us much more than the original, spanning the
three classical theorems of vector calculus.
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The Generalized Stokes’ Theorem

∫
∂A

ω =

∫
A
dω

where A is any compact-oriented k-dimensional manifold with
boundary and ∂A is a k − 1 dimensional manifold with the
boundary orientation.

Note the similarities between the generalized Stokes’ theorem and
the Fundamental Theorem of Calculus (Newton-Leibniz formula):

f (b)− f (a) =

∫ b

a
f ′(x) dx .
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The Generalized Stokes’ Theorem

∫
∂A

ω =

∫
A
dω

where A is any compact-oriented k-dimensional manifold with
boundary and ∂A is a k − 1 dimensional manifold with the
boundary orientation.

Due to the theorem spanning most general manifolds, many
definitions are made to cement the idea of a “manifold” and
“orientation” among other concepts.
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Manifolds

Manifolds

Definition
A manifold is a topological space that is locally Euclidean.

I Surfaces are 2-dimensional manifolds

I “Locally euclidean”

The Earth as a manifold.
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Manifolds

Definition
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Manifolds

Manifolds

Definition
A manifold is a topological space that is locally Euclidean.

I Surfaces are 2-dimensional manifolds

I “Locally euclidean”

Defining manifolds of all kinds gets rather complicated.

Kaitlyn Zhang

The Generalized Stokes’ Theorem 9 / 25



Introduction Generalized Stokes’ Theorem Connecting GST with Other Theorems

Orientation

Orientation

I Defining the “direction” by which we approach the manifold

I More complicated than counterclockwise vs. clockwise

I Why is the orientation of a manifold relevant?

When M lacks an orientation, reparametrizing M may cause the
solution of the integral to change sign. The integral over a
manifold is only well-defined when M has an orientation.
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Orientation

Orientation

I Defining the “direction” by which we approach the manifold

I More complicated than counterclockwise vs. clockwise

I Why is the orientation of a manifold relevant?

Note: The wedge product is especially helpful in differential forms
because it allows the wedge product to govern the orientation (due
to being an alternating tensor).
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Additional tools

Additional tools used

I Wedge product: Anti-symmetric tensor

I Differential forms (which implement the wedge product)

I Doing calculus (i.e., doing derivatives and integrals) on
differential forms
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Proof

Proof of the Generalized Stokes’ Theorem

The proof of the generalized Stokes’ theorem is omitted for this
presentation. Instead, an overview of how the generalized Stokes’
theorem is a generalization of many other recognizable theorems in
vector calculus is provided.
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Green’s Theorem

Restating the generalized Stokes’ theorem as reference:∫
∂A

ω =

∫
A
dω.

Consider the R2 case where ω is a differential 1-form. Let
ω = P dx + Q dy and D be a region where C = ∂D is the
boundary curve.
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Interlude: A few computational rules

If a and b are differential 1-forms and f is a function:

d(a + b) = da + db

d(fa) = (df ) ∧ a + f da

d(dx) = d(dy) = d(dz) = 0

df = fx dx + fy dy + fz dz

Kaitlyn Zhang
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Green’s Theorem (cont.)

Calculating dω:

dω = d(P dx + Q dy) = d(P dx) + d(Q dy)

= (dP) ∧ dx + P · d(dx) + (dQ) ∧ dy + Q · d(dy)

= (Px dx + Py dy) ∧ dx + (Qx dx + Qy dy) ∧ dy

= Py dy ∧ dx + Qx dx ∧ dy

= (Qx − Py ) dx ∧ dy

Kaitlyn Zhang
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Green’s Theorem (cont.)

We now plug the values defined and derived in the previous slides
into the generalized Stokes’ theorem,∫

C
P dx + Q dy =

∫
D

(Qx − Py ) dx ∧ dy . (3.1)

3.1 is also known as the Green’s Theorem.

Remark
Green’s Theorem is actually a specific case of the original Stokes’
theorem.
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Divergence Theorem

Consider a differential 2-form ω in R3. Let
ω = P dy ∧ dz + Q dz ∧ dx + H dx ∧ dy and G ⊂ R3 be a
domain bounded by a smooth surface S where S = ∂G (G is the
closed solid enclosed by S).

Similar to the previous example, we now proceed to calculating dω.
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Divergence Theorem (cont.)

dω = d(P dy ∧ dz + Q dz ∧ dx + H dx ∧ dy)

= (dP) dy ∧ dz + (dQ) dz ∧ dx + (dH) dx ∧ dy

= (Px dx + Py dy + Pz dz) dy ∧ dz

+ (Qx dx + Qy dy + Qz dz) dz ∧ dx

+ (Hx dx + Hy dy + Hz dz) dx ∧ dy

= Px dx ∧ dy ∧ dz + Qy dy ∧ dz ∧ dx + Hz dz ∧ dx ∧ dy

= (Px + Qy + Hz) dx ∧ dy ∧ dz

= div F

where F = 〈P,Q,H〉.
Kaitlyn Zhang
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Divergence Theorem (cont.)

Recall the generalized Stokes’ theorem:∫
∂A

ω =

∫
A
dω.

Plugging values into the generalized Stokes’ theorem:∫
S
P dy ∧ dz + Q dz ∧ dx + H dx ∧ dy =

∫
G

div F, (3.2)

a formula also known as the Divergence Theorem.
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(Original) Stokes’ Theorem

Assume ω to be a differential 1-form in R3. Let
ω = P dx + Q dy + H dz and S ⊂ R3 be a surface with boundary
curve C (C = ∂S).

Note that
dω = curl F

where F = 〈P,Q,H〉.

We will not prove this result here, the process is rather similar to
the previous examples.
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(Original) Stokes’ Theorem (cont.)

We can now plug values into the generalized Stokes’ theorem:∫
C
P dx + Q dy + H dz =

∫
S

curl F. (3.3)

3.3 is commonly called the (original) Stokes’ theorem.
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Fundamental Theorem of Calculus

We will now show how the fundamental theorem of calculus can be
viewed as a specific case of the generalized Stokes’ theorem.

Consider the case where ω is a 0-form in R1. Under these
conditions, let ω be some function f and I be the interval [a, b]
whilst ∂I consists of the two endpoints, {a, b}. Assume the
orientation of a to be negative and b to be positive.

Kaitlyn Zhang

The Generalized Stokes’ Theorem 23 / 25



Introduction Generalized Stokes’ Theorem Connecting GST with Other Theorems

Fundamental Theorem of Calculus (cont.)

Applying the generalized Stokes’ theorem,∫
{−a,b}

f =

∫
[a,b]

df .

Expanding, we get:

f (b)− f (a) =

∫ b

a
f ′(x) dx ,

or the fundamental theorem of calculus (also called the
Newton-Leibniz formula).
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Conclusion

Thank you very much for listening to this presentation! Feel free
to read my paper for additional details and proofs :).
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