
THE GENERALIZED STOKES’ THEOREM

KAITLYN ZHANG

Abstract. This paper will go over the generalized Stokes’ Theorem and

provide a proof. We introduce the framework to understanding calculus on

manifolds, and show how the original Stokes’ Theorem, Divergence The-

orem, Green’s Theorem, and fundamental theorem of calculus can all be

combined into the ultimate generalized Stokes’ Theorem to which all of the

theorems listed are special cases of.
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1. Introduction to Stokes’ Theorem

The classical Stokes’ Theorem is a theorem in vector calculus on R3 which,
put briefly, states that the line integral of a vector field F over curve C, the
boundary of surface A, is equal to the flux of curl F through A. Despite bear-
ing the name of George Stokes, the original Stokes’ Theorem was first stated
in a letter from Lord Kelvin to George Stokes. It was then vastly generalized
in 1945 by Élie Cartan into its modern form, the generalized Stokes’ Theo-
rem, a result that spans several theorems of vector calculus, including Isaac
Newton’s fundamental theorem of calculus. The generalized Stokes’ Theorem
essentially generalizes the fundamental theorem of calculus to 2-dimensional
line integrals and 3-dimensional surface integrals, such that the classical theo-
rems ie. Divergence Theorem, Green’s Theorem, original Stokes’ Theorem all
become special cases beneath the overall umbrella of the generalized Stokes’
Theorem.

2. General definitions

This section will provide the conceptual definitions needed to understand
later theorems. Feel free to skip this section and refer to it later when particular
concepts are confusing.

2.1. Differentials.

Definition 2.1. Let f : U → R be a function on a domain U ⊂ V in a vector
space V . The function f is called differentiable at a point x ∈ U if there exists
a linear function l : Vx → R such that

f(x+ h)− f(x) = l(h) + o(||h||)
for any sufficiently small vector h, where o(t) is any function such that t→ 0

o(t)
t
→0

.

In more recognizable terms (ie. similar to how derivatives are defined),

Definition 2.2. f is differentiable at x ∈ U if for any h ∈ Vx there exists a
limit

l(h) = lim
t→0

f(x+ th)− f(x)

t
and the limit l(h) linearly depends on h.

(See later in this subsection if the linear dependency on h part does not
quite make sense, we discuss it in detail when covering how to conceptually
understand differentials).
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So far, differentials probably seem rather similar to derivatives: which, in
fact, is true. We can define differentials in terms of derivatives,

l(h) = dxf(h)

is called the directional derivative of f at point x in the direction of h. Recalling
the definition of directional derivatives from a calculus textbook [Ant16], we
see that differentials are probably quite familiar even to individuals who have
not encountered the exact term “differential” before.

Definition 2.3 (Directional derivative). If f(x, y) is differentiable at (x0, y0),
and if u = 〈u1, u2〉 is a unit vector, then the directional derivative Duf(x0, y0)
exists and is given by

Duf(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2

The definition in 3-space directly follows from the definition in 2-space (except
with one additional variable).

Examining the equation, we see that fx(x0, y0)u1 +fy(x0, y0)u2 is essentially
a differential equation: u1dx+ u2dy.

It may appear pointless to have “differentials” if they are, by definition,
derivatives: note, however, that derivatives and differentials conceptually mea-
sure different things. Derivatives measure the rate of change, while differentials
measure the change itself. For example, the rate of inflation is different from
the actual amount of inflation. This idea of differentials as measuring the
change itself is what we often use in integrals: the dx is, in essence, a small,
calculus-sized change in the x direction.

By now, hopefully differentials seem much more familiar than before. Let
us add in another definition that should be familiar from previous calculus
classes:

Definition 2.4 (Differentiability). If partial derivatives exist in a neighbor-
hood of point a and are continuous at point a then f is differentiable at point
a. The function f is called differentiable on the whole domain U if it is differ-
entiable at each point of U .

Returning to the idea of the limit l(h) (or the directional derivative) being
linearly dependent on h, let us conceptualize what differentiability indicates
physically. The differentiability of a function means that at a small (ie. calcu-
lus sized) scale near a point x the function behaves approximately like a linear
function, or the differential of the function at point x. This idea is essentially a
restatement of the concept behind linear approximation, that the tangent line
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becomes a good approximation of the curve when we zoom in enough. How-
ever, this linear function (the differential of f at x) varies from point to point,
so we call the family {dxf}x∈U of all these linear functions the differential of
f , and denote it df .

2.2. Smooth functions. Let us begin with the usual, common definition of
smoothness: a function is commonly taught as “smooth” if its partial deriva-
tives are continuous. In more formal terms, a C1 smooth function is a func-
tion with continuous first partial derivatives. In terms of differentials, f is C1

smooth if the differential dxf continuously depends on the point x ∈ U .
More generally, we arrive at the definition:

Definition 2.5. For k ≥ 1, a function f : U → R is called Ck smooth if all
its partial derivatives up to order k are continuous in U .

3. Defining Manifolds

3.1. Smooth manifolds. Definition 2.5 holds only when its domain is an
open set U : to adapt the concept of smoothness to more general spaces, we
give the following definition from [GP10].

Definition 3.1. A map f : X → Rm defined on an arbitrary subset X in Rn

is called smooth if it may be locally extended to a smooth map on open sets.

From this definition, smoothness is a local property: f : X → Rm is smooth
if it is smooth in a neighborhood of each point of X.

3.2. Manifolds. A manifold is a topological space that is locally Euclidean;
i.e., the neighborhood around every point is topologically the same as the open
unit ball in Rn. To better conceptualize this idea of a manifold, consider the
Earth as a manifold. The controversy over the shape of the Earth, particularly
the flat-earth theory which argues that the Earth is flat versus the modern
evidence that it is round, arises essentially from the fact that on the small
scales that we see, the Earth appears flat. Humans do not experience the
roundness of the Earth because we reside in tiny, zoomed in parts of the globe
that are “flat.” In general, any object that is nearly “flat” on small scales is
a manifold, so manifolds are in essence a generalization of all the objects we
could live on in which we would face the flat-round Earth problem. Figure 3.1
gives a visual representation of this local linearity (flatness).

Manifolds are one of the most important classes of spaces in mathematics,
spanning differential geometry, theoretical physics, and algebraic topology. In
this paper, we will limit ourselves to manifolds that are submanifolds (Defini-
tion 3.7) of Euclidean space Rn.
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Figure 3.1. Local linearity

A note on terminology: when we refer to “manifold” in this paper, we are
referring to a manifold with boundary. The two are not generally equivalent.

Let us now dive into the formal definitions of manifolds. Further details
regarding these definitions can be found at [LL03], [Mun91], and [Eli18].

Definition 3.2 (Defining manifolds). M is a topological manifold of dimension
k (topological k-manifold) if it has the following properties:

(1) M is a Hausdorff space: for every pair of distinct points p, q ∈ M ,
there are disjoint open subsets U, V ⊆M such that p ∈ U and q ∈ V .

(2) M is a second-countable space: there exists a countable basis for the
topology of M .

(3) M is locally Euclidean of dimension n: each point of M has a neigh-
borhood that is homeomorphic to an open subset of Rn.

Note: (1) essentially states that a Hausdorff space is a topological space
where for any 2 distinct points there exist neighborhoods of each which are
disjoint1 from each other.

Let us now define a homeomorphism, also known as a continuous transfor-
mation.

Definition 3.3 (Homeomorphism). A map f : U → U ′ is called a homeomor-
phism if it is a continuous one-to-one map (i.e., it is bijective) which has a
continuous inverse f−1 : U ′ → U .

A homeomorphism is essentially an equivalence relation and one-to-one cor-
respondence between points in two geometric figures or topological spaces.
Diffeomorphisms are a type of homeomorphism that will be of more interest
for us in this paper.

1Disjoint set have no element in common.
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Definition 3.4 (Diffeomorphism). A map f : U → U ′ is called a Ck-diffeomorpism,
k = 1, . . . ,∞, if it is a Ck-smooth, one-to-one map which has a Ck-smooth
inverse f−1 : U ′ → U .

A diffeomorphism is an isomorphism of smooth manifolds, an invertible
function (ex. f) that maps one differentiable manifold X to another (Y ) such
that both f and f−1 are differentiable. X and Y are diffeomorphic if such a
map exists and are, for our purposes, intrinsically equivalent.

Let us now formally define the boundary of manifolds.
We state the following theorem without proof2.

Theorem 3.5. Let M be a k-manifold in Rn, of class Cr. Let α0 : U0 → V0
and α1 : U1 → V1 be coordinate patches on M , with W = V0 ∩ V1 non-empty.
Let Wi = α−1i (W ). Then the map

α−1i ◦ α0 : W0 → W1

is of class Cr, and its derivative is non-singular.

The boundary of a manifold can then be defined as below.

Definition 3.6. Let M be a k-manifold in Rn; let p ∈ M . If there is a
coordinate patch α : U → V on M about p such that U is open in Rk, we say
p is an interior point of M . Otherwise, we say p is a boundary point of
M . We denote the set of boundary points of M by ∂M , and call this set the
boundary of M .

Figure 3.2 gives a visual representation of an interior point versus a boundary
point on manifold M .

After defining manifolds, we define a submanifold as below:

Definition 3.7 (Submanifolds). Let V be an n-dimensional vector space. A
subset A ⊂ V is called a k-dimensional submanifold of V , or simply a k-
submanifold of V , 0 ≤ k ≤ n, if for any points a ∈ A there exists a local
coordinate chart (Ua, u = (u1, . . . , un) → Rn) such that u(a) = 0 (i.e. the
point a is the origin in this coordinate system) and

A ∩ Ua = {u = (u1, . . . , un) ∈ Ua;uk+1 = · · · = un = 0}.

We can also define a submanifold with boundary (which, recall, is not equiv-
alent a submanifold):

2See [Mun91] for a proof.
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Figure 3.2. Manifold M with interior point a and boundary
point b

Definition 3.8 (Submanifold with boundary). A subset A ⊂ V is called a
k-dimensional submanifold of V , or simply a k-submanifold of V , 0 ≤ k ≤
n, if for any points a ∈ A there is a neighborhood Ua 3 a in V and local
(curvi-linear) coordinates (u1, . . . , un) in Ua with the origin at a if one of two
conditions is satisfied: the condition in Definition 3.7 or the following condition

A ∩ Ua = {u = (u1, . . . , un) ∈ Ua;u1 ≥ 0, uk+1 = · · · = un = 0}.

3.3. Orientation. The orientation of a manifold is likely not a new concept:
essentially, defining orientation is like defining the “direction” by which we
approach the manifold. Orientation is often introduced as “positive” or “neg-
ative” in calculus textbooks, but we may note that this so-called positiveness or
negativeness is a question of convention. For instance, “positive” orientation is
often defined as counter-clockwise orientation of the plane, but “counterclock-
wise” is dependent on which side we look at the plane. Thus, we must note
that orientation, as we usually know it, is a physical rather than mathematical
notion. We now give a mathematical definition of orientation.

Definition 3.9. Two bases v1, . . . , vk and w1, . . . , wk of a vector space V define
the same orientation of V if the matrix of the transformation from one base
to the other has a positive determinant.

Remark 3.10. From the above definition, we can derive that: if there are 3
bases, and the 1st and the 2nd define the same orientation, and the 2nd and
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the 3rd define the same orientation, then the 1st and the 3rd define the same
orientation. In other words, the law of transitivity but for orientation.

Note that the geometric idea behind this definition of orientation makes in-
herent sense. The determinant D of a matrix transforming one base of V to the
other (ie. matrix transforming the “coordinates”) essentially gives the “area
proportion constant” between the two bases of V . For example, in 2D, when
we change from the basis vectors i and j to another two basis vectors, the unit
square that i and j formed morphs into another unit (a rectangle, parallelo-
gram, etc. depending on the transformation). The consequent change in area
of this unit square is the determinant. So if the change of basis vectors caused
the new unit shape to be 2× the area of the i and j unit square, then the de-
terminant of the transformation matrix equals 2. A negative determinant thus
indicates a “flipping” of orientation from the original unit square. Therefore,
if two bases of V have a transformation matrix that yields a positive determi-
nant, no “flipping” from the original orientation has occurred (indicating that
they are of the same orientation, as the mapping from one to the other did
not require flipping).

Now, let us define orientation for manifolds. Firstly, a remark to read (even
if it is the only thing you read beyond this point):

Remark 3.11. A bit of thought on why orientation of manifolds matters before
we go through all those definitions and think, for what reason are we going
through this in the first place?
First of all, the point, or at least our point, of formally defining just manifolds
in general (not even their orientation) is to be able to integrate over these
surfaces. Below is an integral of the type we hope to solve.∫

M

ω =

∫
Int U

α∗ω

However, if we have only defined manifolds in general (re: the definitions in
the subsections above), we run into an issue: this integral is invariant under
reparametrization only up to sign. In other words, reparametrizing the man-
ifold M may cause the solution of the integral to change sign. To have the
integral be well-defined, we need an extra condition on M : orientation.

Now that we have a basic understanding of why defining the orientation of
manifolds is important, let us dive into the actual definitions of orientation
and orientability.

We begin by formally defining orientability for manifolds [Mun91].
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Definition 3.12 (Orientability, formally defined). Let M be a k-manifold in
Rn. Given coordinate patches αi : Ui → Vi on M for i = 0, 1: they overlap
positively if the transition function α−11 ◦ α0 is orientation-preserving. If M
can be covered by a collection of coordinate patches each pair of which overlap
positively (if they overlap at all), then M is said to be orientable. Otherwise,
M is said to be non-orientable.

Before we delve into how to obtain orientation of manifolds, let us redefine
orientation in more formal terms.

Definition 3.13 (Orientation). Let M be a k-manifold in Rn. Suppose M is
orientable. Given a collection of coordinate patches covering M that overlap
positively, let us adjoin to this collection all other coordinate patches on M
that overlap these patches positively. It is easy to see that the patches in this
expanded collection overlap one another positively. This expanded collection
is called an orientation on M . A manifold M together with an orientation
of M is an oriented manifold.

To define the actual orientation of manifolds, we start with defining vector
bundles.

Definition 3.14 (Vector bundle). A vector bundle of rank r over a set A ⊂
V is a family of r-dimensional vector subspaces La ⊂ Va, parameterized by
points of A and continuously (Cm-smoothly) depending on a. Put precisely,
each point a ∈ A has a neighborhood U ⊂ A such that there exists linear
independent vector fields v1(a), . . . , vr(a) ∈ La which continuously depend on
a.

In different terms, a vector bundle is a topological construction where we
have a family of vector spaces parameterized by another space U (U can be
a topological space, a manifold, etc.): to every point u of the space U , we
associate a vector space Vu such that these vector spaces fit together to form
another space of the same kind as U , called a vector bundle over U .

We now define the tangent bundle of a submanifold, which is a more general
notion of a vector bundle.

Definition 3.15 (Tangent bundle). A collection of all tangent spaces {TaA}a∈A
to a submanifold A is called its tangent bundle and denoted by TA or T (A).

Another important vector bundle over a submanifold A is its normal bundle
NA = N(A).

Definition 3.16 (Normal bundle). A vector bundle of rank n− k formed by
orthogonal complements NaA = T⊥a A ⊂ Va of the tangent spaces TaA of A.
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Figure 3.3. Orientation of 2-manifold in R3 from [Ant16].
Note how the direction the head of the person (the normal
vector of the manifold) defines the orientation of the surface.

We assume here that V is Euclidean space.
We are now ready to define the orientation and co-orientation of a subman-

ifold k.

Definition 3.17 (Orientation of vector bundles). An orientation of a sub-
manifold k is the same as an orientation of its tangent bundle T (A). A
co-orientation of a k-submanifold A is an orientation of its normal bundle
N(A) = T ⊥ A in V .

Note that not all bundles are orientable: some bundles have no orienta-
tion. However, if L is orientable and A is connected, then L has exactly two
orientations.

Connecting the orientation of vector bundles to the orientation of manifolds
(surfaces):

Definition 3.18 (Orientation of surfaces, formally defined). A differentiable
manifold M is orientable if and only if its tangent bundle is orientable. The
orientation of the surface is induced by its co-orientation by the normal vector
n (or, for the entire surface, the unit normal vector field ofM). The orientation
of the boundary is induced by the orientation of the surface.

The idea of essentially the normal vectors defining the orientation can be
seen in simpler examples, such as the definition of orientation of a 2-manifold
in R3 in Figure 3.3 from a calculus textbook.

See Figure 3.4 for a visual idea of Definition 3.18.
Figures 3.5 and 3.6 give examples of non-orientable surfaces.
Before we close up this section, let us zoom out to review the ultimate

point of this section: to provide a formal definition of the surfaces which the
later theorems in this paper will integrate over. Hopefully, the general concepts
covered were not completely foreign (orientation, boundary of surfaces, tangent
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Figure 3.4. Orientation of the surface [Eli18]

Figure 3.5. Möbius strip, a 2-manifold in R3. Note how the
manifold has no continuous unit vector field. [Mun91]

Figure 3.6. Klein bottle, a 2-manifold in R3. Note how the
manifold, like the Möbius strip, has no continuous unit vector
field. [Mun91]

and normal vectors etc.), such that the formalization of certain concepts was
the more foreign aspect.

4. Differential forms

4.1. Tensors: the Wedge Product.

Tensors. Let us begin by defining the tensor product: given a k-linear function
φ and a l-linear function ψ, the tensor product of the functions φ and ψ φ⊗ψ
is a (k + l)-linear function. By definition,
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(4.1)
φ⊗ ψ(X1, . . . , Xk, Xk+1, . . . , Xk+l) := φ(X1, . . . , Xk) · ψ(Xk+1, . . . , Xk+l).

Applying this definition, the tensor product of two linear functions l1 and
l2 equals the bilinear function (ex. f(x, y) = xy is bilinear in that it combines
linear x and y) l1 ⊗ l2. Assuming U and V to be the inputs to l1 and l2
respectively,

(4.2) l1 ⊗ l2(U, V ) = l1(U) · l2(V ).

Symmetric and anti-symmetric tensors. We begin with the definitions.

Definition 4.1 (Symmetric tensor). A tensor is symmetric if it remains
unchanged under the transposition of any two of its arguments:

f(X1, . . . , Xi, . . . , Xj, . . . , Xk) = f(X1, . . . , Xj, . . . , Xi, . . . , Xk).

The above condition can also be written as

f(Xi1 , . . . , Xik) = f(X1, . . . , Xk)

for any permutation i1, . . . , ik of indices 1, ..., k.

Definition 4.2 (Anti-symmetric tensor). A tensor is anti-symmetric if it
changes its sign under the transposition of any two of its arguments:

f(X1, . . . , Xi, . . . , Xj, . . . , Xk) = −f(X1, . . . , Xj, . . . , Xi, . . . , Xk).

The above condition can also be written as

f(Xi1 , . . . , Xik) = (−1)inv(i1...ik)f(X1, . . . , Xk)

for any permutation i1, . . . , ik of indices 1, ..., k, where inv(i1 . . . ik) is the num-
ber of inversions in the permutation i1, . . . , ik.

Anti-symmetric tensors are of more interest to us in this paper, for reasons
that will become clear when we define the wedge product. Before we do that,
however, let us review how to create symmetric or anti-symmetric tensors from
arbitrary tensors.

Let f(X1, . . . , Xk) be a k-tensor. Set . . .

Definition 4.3 (Constructing symmetric tensors).

f sym(X1, . . . , Xk) :=
∑

(i1...ik)

f(Xi1 , . . . , Xik)
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Definition 4.4 (Constructing anti-symmetric tensors).

f asym(X1, . . . , Xk) :=
∑

(i1...ik)

(−1)inv(i1...ik)f(Xi1 , . . . , Xik)

Remark 4.5. Hint: note how the construction formulas for symmetric and
anti-symmetric tensors relate to the definitions if they are confusing.

Wedge product. We now define the wedge product3 [Eli18].

Remark 4.6. “Exterior k-forms” is another name for skew-symmetric k-linear
functions

Definition 4.7 (Wedge product). Let φ be an exterior k-form and ψ an ex-
terior l-form. The exterior (k + l)-form ψ ∧ ψ, the wedge product of φ and ψ,
is defined as

φ ∧ ψ :=
1

k!l!
(φ⊗ ψ)asym.

Expanded,
φ ∧ ψ(X1, . . . , Xk, Xk+1, . . . , Xk+l)

=
1

k!l!

∑
i1...ik+l

(−1)inv(i1...ik+l) φ(X1, . . . , Xk)ψ(Xk+1, . . . , Xk+l).

where the sum is taken over all permutations of indices 1, . . . , k + l.

Let us now briefly go over a few properties of the wedge product as an
operation.

Remark 4.8. For any exterior k-form φ and exterior l form ψ, the wedge prod-
uct has the following basic properties:

• φ ∧ ψ = (−1)klψ ∧ φ
• (φ1 + φ2) ∧ ψ = φ1 ∧ ψ + φ2 ∧ ψ
• (λφ) ∧ ψ = λ(φ ∧ ψ)
• Associativity: (φ ∧ ψ) ∧ ω = φ ∧ (ψ ∧ ω)

We will not prove these properties in this paper, see [Eli18] or [GP10] for
proofs of the above properties.

Understanding the wedge product. Now that we have covered the definition
of the wedge product, let us take a look at what the wedge product means
conceptually. We begin this discussion of the wedge product’s conceptual
meaning with a few more theorems regarding its properties.

Remark 4.9. Two more properties of the wedge product:

3Also known as the exterior product.
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(1) u ∧ v = −v ∧ u
(2) u ∧ u = 0

Theorem 4.10. The product u ∧ v determines the area of the parallelogram
spanned by u and v, as well as the plane containing these vectors when there
is a unique such plane.

Do these properties of the wedge product appear familiar? Recall the prop-
erties listed below of the cross product in R3:

Theorem 4.11 (Properties of the cross product). If u and v are any vectors
in 3 space,

u× v = −v × u
u× u = 0

Compare Remark 4.9 with Theorem 4.11.

Theorem 4.12 (Area of a parallelogram from 2 vectors). The area A of the
parallelogram with u and v as adjacent sides is

A = ||u× v||

Remark 4.13. Cross product also defines a plane when given two vectors u and
v on this plane (given that they are not parallel): u × v defines the normal
vector to the plane, and n & a point (provided by either vector) define a plane.
If n = u× v = 〈A,B,C〉 and the point on the plane = 〈u1, u2, u3〉,

Plane in R3: A(x− u1) +B(y − u2) + C(z − u3) = 0.

Compare Theorem 4.10 with Theorem 4.12 and Remark 4.13.
Thus, we see that the wedge product is in a sense a parallel of the cross

product in higher dimensions. The similarity between the wedge product and
the cross product can be further seen through a comparison of their formulas
in R3.
Wedge product in R3:

〈a, b, c〉 ∧ 〈d, e, f〉 =
1

2

 0 ae− bd af − cd
bd− ae 0 bf − ce
cd− af ce− bf 0


Note the similarities of the wedge product with the cross product in R3:

〈a, b, c〉 × 〈d, e, f〉 = 〈bf − ce, cd− af, ae− bd〉
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Remark 4.14. Whilst the majority of this section focuses on the similarities
between the cross product and the wedge product in R3 so as to give the
wedge product more conceptual meaning, they do share fundamental differ-
ences: namely, the wedge product produces a matrix and the cross product
produces a vector. With this note, we continue our discussion of the wedge
product’s cross product like nature in terms of physical meaning.

Here, we will use differential forms, which are defined in the next subsection
(so feel free to jump there and then jump back). However, the idea of the
wedge product should be conveyed through the next few lines even without
much background in differential forms. Differential forms and their integration
over a surface is the ultimate reason this paper covers the wedge product, so
we will end this section on the wedge product with an application of it in
differential forms.

Firstly, a bit of context on differential forms (refer to 4.2 for details). A
1-form is an expression that can be integrated over a curve, ex. f dx; a 2-form
is an expression that can be integrated over a surface, ex. g dx ∧ dy.
We can convert a vector field F = f i + gj + hk into a 1-form:

(4.3) f i + gj + hk⇒ f dx+ g dy + h dz

We can also convert F into a 2-form:

(4.4) f i + gj + hk⇒ f dy ∧ dz + g dx ∧ dz + h dx ∧ dy

In the 2-form above, we convert i into dy ∧ dz, j into dx ∧ dz, and k into
dx ∧ dy. Here, ∧ essentially acts as the cross product: i = the cross product
of dy and dz. Similarly, to go from a 2-form to a vector, we can replace dx,
dy, and dz with i, j, and k and then take the cross products of i j k.

Remark 4.15. Hopefully, the above discussion offered a somewhat better con-
ceptual understanding of the wedge product. We will now progress to our
main application of the wedge product: differential forms.

4.2. Defining differential forms. Although the term differential forms may
sound unfamiliar, any introductory calculus class has likely used differential
forms before, especially the integration of them. Let us begin our discussion
of differential forms with an example that is probably rather recognizable.

Say we have a 1D manifold [a, b] with “positive” orientation, i.e., a < b.
Then ∫ b

a

f(x) dx

is the integral of the differential 1-form f(x) dx over [a, b].
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Another example of a differential form has already appeared in this paper:
vector fields can be rewritten as differential 1-forms and differential 2-forms,
as seen in Equation 4.3 and 4.4.

Now that we have a general understanding of what differential forms are,
we state the following formal definition from [GP10]

Definition 4.16 (k-forms, formally defined). Let M be a smooth manifold
with or without boundary. A k-form on M is a function ω that assigns to each
point m ∈M an alternating k-tensor ω(x) on the tangent space of M and m;
ω(x) ∈ Λk[Tm(M)∗].

We can list a few more differential forms:∑
i

fi dxi∑
i<j

fij dxi ∧ dxj∑
i<j<k

fijk dxi ∧ dxj ∧ dxk

Following this pattern, any differential k-form can be expressed as:∑
1≤ii<i2···<ik≤n

fi1...ik dxi1 ∧ · · · ∧ dxik

Before we move on, let us note why differential forms are important and
relevant to this paper. Firstly, we zoom out from this subsection and connect
differential forms with exterior forms and the wedge product.
For our purposes, we will simply define the exterior form in an informal fashion.
See [Eli18] for greater detail regarding them.

Definition 4.17 (Exterior form, informally defined). The exterior form is the
result of exterior products (i.e., wedge products).

Now, we provide another definition of differential forms in terms of exterior
forms.

Definition 4.18 (Differential forms, defined in terms of exterior forms). Dif-
ferential k-forms are fields of exterior k-forms (similar to the relationship be-
tween vectors and vector fields).

After clarifying some terminology, let us dive into why differential forms are
relevant. Essentially, differential forms allow us to approach topics in calculus
in a way that is separate from coordinates. Differential forms, in essence,
measure some kind of infinitesimally small length, area, volume, . . . and so on
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in the kth dimension. A differential 0-form is simply an arbitrary real-valued
function on M .

Differential forms use the wedge product to keep track of the length, area,
volume, etc. while preserving the orientation of the manifold. Note that when
we integrate a differential 1-form over an interval [a, b], if we switch the order
of a and b (i.e., integrate over [b, a] instead), the result of the two integrals will
be equal in magnitude but with opposing sign. Written in equation form,

(4.5)

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

Recall that the wedge product is essentially an alternating (anti-symmetric)
tensor: this aspect of it allows the wedge product to govern the orientation and
order in which we take some integral. In other words, it preserves the notion
of the negation we see in Equation 4.5 after reversing orientation. Thus, the
wedge product can both track the length/area/volume etc. we measure whilst
preserving the orientation, allowing us to have a unified sense of what we are
measuring and keeping orientation in order. Instead of having to specify [a, b]
or [b, a], the wedge product allows us to have our integral such that when
we integrate over the same manifold but in a different orientation, our inte-
gral shows as measuring the same length/area/volume etc. while preserving
orientation.

Pulling back to differential forms: the ultimate idea is that differential forms
are able to work separate from the coordinate system due to the wedge prod-
uct. This attribute of differential forms allows them to be globally defined
on manifolds, and the global definition of integrands makes possible global
integration.

Example. We will now work on an example which uses differential forms and
should appear familiar (or at least be insightful, especially in our penultimate
section).
We begin with a differential 1-form: ω = F (x, y, z) dx+G(x, y, z) dy+H(x, y, z) dz.
Note that ω is essentially the vector field V = 〈F,G,H〉. We want to define its
exterior derivative (see next subsection for details) dω which will be a differ-
ential 2-form (k+1). Recall the following rules, where a and b are differential
1-forms and f is a function:

d(a+ b) = da+ db

d(fa) = (df) ∧ a+ fda

d(dx) = d(dy) = d(dz) = 0
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df = fx dx+ fy dy + fz dz where fx =
∂f

∂x
etc.

dω = d(F dx+Gdy +H dz) = d(F dx) + d(Gdy) + d(H dz)

= (dF ) ∧ dx+ Fd(dx) + (dG) ∧ dy +Gd(dy) + (dH) ∧ dz +Hd(dz)

= (Fx dx+ Fy dy + Fz dz) ∧ dx

+ (Gx dx+Gy dy +Gz dz) ∧ dy

+ (Hx dx+Hy dy +Hz dz) ∧ dz

= Fy dy ∧ dx+ Fz dz ∧ dx+Gx dx ∧ dy +Gz dz ∧ dy+

+Hx dx ∧ dz +Hy dy ∧ dz

= (Gx − Fy) dx ∧ dy + (Hy −Gz) dy ∧ dz + (Fz −Hx) dz ∧ dx

= ∇×V = curl V
(4.5)

Remark 4.19. We will continue to build on this discussion of differential forms
in the next sections, where we approach taking the derivative and integral of
differential k-forms.

5. Derivatives of differential forms: Exterior derivatives

The exterior derivative is essentially a derivative defined for deriving of
differential forms. We have already encountered this operation in this paper
(see Example 4.2). The exterior derivative in the current form was introduced

by Élie Cartan, and transforms a differential k-form is a (k+1)-form. We begin
this section with an example of the exterior derivative operator d turning a
differential 0-form into a 1-form.

Example. Let f be the differential 0-form (i.e., function) on Rn f(x1, . . . , xn).
Now, let us do a bit of brainstorming to find a d operator which would make
it such that:

(1) df is a differential 1-form
(2) To evaluate this 1-form, we would put in a point p ∈ Rn and a vector

v ∈ TpRn (in accordance with the general evaluation of differential
forms)

The directional derivative seems like a likely candidate, in that it both takes
derivative and needs the input of a point and a vector (see 2.3). Expanding
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on this idea,

(df)p(v) = Dvf
∣∣
x=p

= ∇f
∣∣
p
· v

=
∂f

∂x1
v1 + · · ·+ ∂f

∂xn
vn =

∂f

∂x1
dx1(v) + · · ·+ ∂f

∂xn
dxn(v).

We can then use the differential 0-form to 1-form case to generalize to differ-
ential k-forms: setting dxI = dxi1 ∧ dxi2 ∧ · · · ∧ dxik ,

d(f dxI) =
∂f

∂x1
dx1 ∧ dxI + · · ·+ ∂f

∂xn
dxn ∧ dxI .

The results of Example 5 should reflect into the following formal definition
of the exterior differential and its properties.

Definition 5.1. (Exterior derivative) If ω =
∑

i1<···<ik ai1...ik dxi1 ∧ · · · ∧dxik is
a smooth differential k-form on an open subset of Rn where ai1...ik are functions,
define:

dω :=
∑

i1<···<ik

dai1...ik ∧ dxi1 ∧ · · · ∧ dxik .

Note that this definition is independent of the choice of coordinate system; we
will omit the proof in this paper but see [Eli18] for details.

We now list the most important properties of this definition of the exterior
derivative:

Theorem 5.2. Define θ as a function and ω, ω1, and ω2 as differential k-
forms. The exterior differentiation operator d, defined on smooth forms on
the open U ⊂ Rn, possesses the following three properties:

(1) d(ω1 + ω2) = dω1 + dω2

(2) d(ω ∧ θ) = (dω) ∧ θ + (−1)kω ∧ dθ
(3) d(dω) = 0

To give an example of applying the exterior derivative operator d before we
close out this section, let us calculate completely the operator d in R3.
Differential 0-forms → 1-forms. If f is a function on R3, then

df = fx dx1 + fy dx2 + fz dx3

where 〈fx, fy, fz〉 = ∇f, the gradient vector field of f .
Differential 1-forms → 2-forms. This is the same computation process as
Example 4.2, so we will skip the process and directly state the result. If

ω = f1 dx1 + f2 dx2 + f3 dx3,

then
dω = g1 dx2 ∧ dx3 + g2 dx3 ∧ dx1 + g3 dx1 ∧ dx2,
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where

g1 =
∂f3
∂f2
− ∂f2
∂f3

, g2 =
∂f1
∂f3
− ∂f3
∂f1

, g3 =
∂f2
∂f1
− ∂f1
∂f2

.

Defining F and G to be the vector fields 〈f1, f2, f3〉 and 〈g1, g2, g3〉, G = curl
F.
Differential 2-forms → 3-forms. Let

ω = f1 dx2 ∧ dx3 + f2 dx3 ∧ dx1 + f3 dx1 ∧ dx2.

Then

dω = df1 ∧ dx2 ∧ dx3 + df2 ∧ dx3 ∧ dx1 + df3 ∧ dx1 ∧ dx2

=

(
∂f1
∂x1

+
∂f2
∂x2

+
∂f3
∂x3

)
dx1 ∧ dx2 ∧ dx3,

or (div F) dx1 ∧ dx2 ∧ dx3. This proof is given in more detail in the last
section.

Remark 5.3. Note how the classical operators of vector calculus in 3-space
(gradient, curl, and divergence) are really the exterior derivative d operator in
vector field form. In a similar vein, the condition d2 = 0 can also be shown
as equivalent to the famous formulas curl(grad f) = 0 and div(curl F) = 0,
although we will not prove these statements in this paper.

Figure 5.1 gives a visual representation of the exterior derivative operator d
in R3.

0-forms
d //

��

1-forms
d //

��

2-forms
d //

��

3-forms

��
Functions

∇ // Vector fields
∇× // Vector fields

∇· // Functions

Figure 5.1. Exterior derivative operator d

6. Integration of differential forms

In addition to taking the derivative of differential forms, we can also take
the integral of differential forms: in fact, forms were created for integration
in that they automatically transform correctly when coordinates change. We
now approach integrating differential forms, the last tool we construct before
arriving at the ultimate result of the paper, the generalized Stokes’ theorem.
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6.1. Integrating differential forms. Integration in single-variable calculus
can be split into three concepts: the indefinite integral

∫
f (also known as

the anti-derivative), the unsigned definite integral
∫
[a,b]

f(x) dx (used to find

area under a curve or mass of a 1D object of varying density), and the signed

definite integral
∫ b
a
f(x) dx (which would be used to find work required to move

a particle from a to b).
In single-variable calculus, these three integration concepts are rather sim-

ilar. F =
∫
f and

∫ b
a
f(x) dx are related by the fundamental theorem of

calculus: ∫ b

a

f(x) dx = F (b)− F (a)

and signed definite integrals and unsigned definite integrals are related by the
simple identity (valid when a ≤ b, flipped when a ≥ b)∫ b

a

f(x) dx = −
∫ a

b

f(x) dx =

∫
[a,b]

f(x) dx.

However, when the three integration concepts are moved into multivariable
calculus, they begin to diverge significantly from each other: the indefinite
integral generalizes to the notion of a solution to a differential equation; the
unsigned definite integral generalizes to integration on a measure space; the
signed definite integral generalizes to the integration of forms, the focus of this
section.

Integrating over differential 1-forms. The first (or among the first) integrals
learnt in calculus, the signed definite integral, can be viewed as the integration
of a differential 1-form f(x) dx. The line integral

W =

∫
C

F dx+Gdy +H dz

is also the integral of a 1-form (F dx+Gdy+H dz) except over a curve rather
than an interval.
We now generalize to integrating differential k-forms. More details can be
found at [Mun91].

Integrating over differential k-forms. First, let us treat the case where the
support of ω can be covered by a single coordinate patch.

Definition 6.1. Let M be a compact oriented k-manifold in Rn. Let ω be a
k-form defined in an open set of Rn containing M . Let C = M ∩ (Supportω);
then C is compact. Suppose there is a coordinate patch α : U → V on M
belonging to the orientation of M such that C ⊂ V . By replacing U by a
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smaller open set if necessary, we can assume that U is bounded. We define
the integral of ω over M by the equation∫

M

ω =

∫
int U

α∗ω.

Defining Int U quickly: Int U = U if U is open in Rk, and Int U = U ∩Hk
+ if U

is open in Hk but not in Rk. Note that Hk denotes the upper half-space in Rk,
consisting of x ∈ Rk for which xk ≥ 0; Hk

+ denotes the open upper half-space,
consisting of those x for which xk > 0.

To define
∫
M
ω in general, we use a partition of unity. Essentially, we split

M into small pieces and then integrate over those pieces.

Definition 6.2. Let M be a compact oriented k-manifold in Rn. Let ω be a
k-form defined in an open set of Rn containing M . Cover M by coordinate
patches belonging to the orientation of M ; then choose a partition of unity
φ, . . . , φl on M that is dominated by this collection of coordinate patches on
M . We define the integral of ω over M by the equation∫

M

ω =
l∑

i=1

[∫
M

φiω

]
.

6.2. Fubini’s Theorem. Before we give and prove the more general Fubini’s
theorem, let us review the version that is taught in a typical multivariable
calculus class.

Theorem 6.3 (Fubini’s Theorem, simpler version). Let R be the rectangle
defined by the inequalities

a ≤ x ≤ b, c ≤ y ≤ d.

If f(x, y) is continuous on this rectangle, then∫∫
R

f(x, y) dA =

∫ d

c

∫ b

a

f(x, y) dx dy =

∫ b

a

∫ d

c

f(x, y) dy dx.

Theorem 6.3 is used to switch the order of integration in double integrals over
rectangular regions. We can actually generalize this specific case of Fubini’s
theorem to other more complex regions.

Theorem 6.4. Fubini’s Theorem, generalized Suppose that a function f :
P → R is integrable over P . Given a point x ∈ P1 let us define a function
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fx : P2 → R by the formula fx(y) = f(x, y), y ∈ P2. Then∫
P

f dVn =

∫
P1

(∫
P2

fx dVn−k

)
dVk =

∫
P1

(∫
P2

fx dVn−k

)
dVk.

In particular, if the function fx is integrable for all (or almost all) x ∈ P1 then
one has ∫

P

f dVn =

∫
P1

(∫
P2

fx dVn−k

)
dVk.

Proof. Choose any partition φ1 of P1 and φ2 of P2. We will denote elements
of the partition φ1 by P j

1 and elements of the partition φ2 by P i
2 . Therefore,

products of P j, i = P j
1 × P I

2 form a partition φ of P = P1 × P2. Let us denote

Ī(x) :=

∫
P2

fx, I(x) :=

∫
P2

fx, x ∈ P1.

Let us now show that

L(f, φ) ≤ L(I, φ1) ≤ U(Ī , φ1) ≤ U(f, φ)

Note that we have

(6.1) L(f, φ) =
∑
j

∑
I

mi,j(f)VolnP
i,j .

The first sum in 6.1 is taken over all multi-indices j of the partition φ1, and
the second sum is taken over all multi-indices of i of the partition φ2. On the
other hand,

L(I, φ1) =
∑
j

inf
x∈P j

1

(∫
P2

fx dVn−k

)
VolkP

j
1

Note that for every x ∈ P j
1 we have∫

P2

fx dVn−k ≥ L(fx; φ2) =
∑
i

mi(fx) Voln−k(P
i
2) ≥

∑
i

mi,j(f) Voln−k(P
i
2),

and hence

inf
x∈P j

1

∫
P2

fx dVn−k ≥
∑
i

mi,j(f) Voln−k(P
i
2).

Therefore,

L(I, φ1) ≥
∑
j

∑
i

mi,j(f)Voln−k
(
P i
2

)
Volk

(
P j
1

)
=
∑
j

∑
i

mi,j(f)Voln
(
P i,j

)
= L(f, φ).

Similarly, one can check that U(Ī , φ1) ≤ U(f, φ). With an obvious inequality
L(I, φ1) ≤ U(Ī , φ1), we have proved 6.1. Thus, we have

max(U(Ī , φ1)−L(Ī , φ1), U(I, φ1)−L(I, φ1)) ≤ U(Ī , φ1)−L(I, φ1) ≤ U(f, φ)−L(f, φ)
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By assumption for appropriate choices of partitions, the right side is < ε a
priori ε > 0. This implies the integrability of the function I(x) and Ī(x) over
φ1. We can then write ∫

P1

I(x) dVn−k = lim
δ(φ1)→0

L(I;φ1)

and ∫
P1

Ī(x) dVn−k = lim
δ(φ1)→0

U(Ī;φ1).

We also have

lim
δ(φ)→0

L(f ;φ) = lim
δ(P )→0

U(f ;φ) =

∫
P

f dVn.

Hence, the inequality 6.1 implies that∫
P

f dVn =

∫
P1

(∫
P2

fx dVn−k

)
dVk =

∫
P1

(∫
P2

fx dVn−k

)
dVk.

�

Note how a basic idea of “switching” occurs in both versions of Fubini’s
Theorem.

Remark 6.5. We now progress to the generalized Stokes’ theorem.

7. The Generalized Stokes’ Theorem

Theorem 7.1. Let A be any compact-oriented k-dimensional manifold with
boundary, so ∂A is a k−1 dimensional manifold with the boundary orientation.
If ω is any smooth (k − 1) form on A, then∫

∂A

ω =

∫
A

dω

Proof. We will prove only the case when A is a manifold with boundary without
corners. Feel free to venture into [Mun91] and [GP10] to see other proofs of
the theorem for general manifolds.

First, let us cover A by coordinate neighborhoods such that in each neigh-
borhood, A is given either by 3.7 or 3.8. If we can prove the generalized Stokes’
theorem holds for each ωj, then it also holds for ω. Essentially, we are splitting
the manifold A into parts and approaching each part (or rather, each type of
part) individually as if the parts abide by the generalized Stokes’ theorem, so
does the whole.

We now need to parameterize ω, as we do for integrating over surfaces
in usual calculus classes. Let us assume that ω is supported in one of the



THE GENERALIZED STOKES’ THEOREM 25

coordinate neighborhoods. Consider the corresponding parameterization

φ : G→ U ⊂ V, G ⊂ Rn

with coordinates u1, . . . , un. Note now that A∩U = φ(G∩L), where L is equal
to the subspace Rk = {uk+1 = · · ·un = 0} in the case 3.7 and the upper-half
space Rk ∩ {u1 ≥ 0}. By definition, we then have∫

A

dω =

∫
U

dω =

∫
G∩L

φ∗ dω =

∫
G∩L

dφ∗ω

Although the form ω̃ = φ∗ω
∣∣
G∩L (parameterized ω) is defined only on G ∩ L,

we can extend it to a smooth form on the entirety of L by setting it equal to
0 outside its neighborhood. With this extension, we have∫

G∩L
dω̃ =

∫
L

dω̃.

The (k − 1)-form ω̃ can be written in coordinates u1, . . . , uk as

ω̃ =

j∑
1

fj(u) du1 ∧ · · ·
j

ˆ · · · ∧ duk

Taking the integral of the derivative of each side (essentially keeping the
equation the “same” by the fundamental theorem of calculus),∫

G∩L
dω̃ =

∫
L

(
k∑
1

∂fj
∂uj

)
du1 ∧ · · · ∧ duk.

Let us now choose a sufficiently R > 0 so that the cube I = {|ui| ≤ R, i =
1, . . . , k} contains the support of ω.

Here, we split the proof to analyze the two cases of submanifolds (pieces
of the whole manifold) separately: 3.7 (submanifolds) and 3.8 (submanifolds
with boundary).

We begin with case 3.7.

∫
G∩L

dω̃ =
k∑
1

∫
Rk

∂fj
∂uj

dV =
k∑
1

∫ R

−R
· · ·
∫ R

−R

∂fj
∂uj

du1 · · · dun

=
1∑
k

∫ R

−R
· · ·
(∫ R

−R

∂fj
∂uj

duj

)
du1 · · · duj−1 duj+1 · · · dun

= 0(7.1)
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because∫ R

−R

∂fj
∂uj

= fj(u1, . . . , ui−1, R, u1, . . . , un)−fj(u1, . . . , ui−1,−R, u1, . . . , un) = 0.

Note that in this case, the support of ω does not intersect the boundary of
A, and thus

∫
∂A
ω = 0. Therefore, we have shown that the generalized Stokes’

theorem holds in this case.
Moving onto the second case (3.8),

∫
G∩L

dω̃ =
k∑
1

∫
{u1≥0}

∂fj
∂uj

dV

=
k∑
1

∫ R

0

(∫ R

−R
· · ·
∫ R

−R

∂fj
∂uj

dun · · · du2
)
du1

=

∫ R

−R

(∫ R

−R
· · ·
∫ R

0

∂f1
∂u1

du1 · · · dun−1
)
dun

= −
∫ R

−R
· · ·
∫ R

−R
f1(0, u2, . . . , un) du2 · · · dun.(7.2)

Note that all terms in the sum with j > 1 are equal to 0 by the same argument
as in 7.1.

We now move onto the other side of the generalized Stokes’ theorem for this
case. ∫

∂A

ω =

∫
{u1=0}

φ∗ ω =

∫ ∫
{u1=0}

f1(0, u2, . . . , un) du2 ∧ · · · ∧ dun

= −
∫ R

−R
· · ·
∫ R

−R
f1(0, u2, . . . , un) du2 · · · dun.(7.3)

Remark 7.2. The minus sign is due to the induced orientation on the space
{u1 = 0} as the boundary of the upper-half space {u1 ≥ 0} is opposite to the
orientation defined by the volume form du2 ∧ · · · ∧ dun.

Comparing 7.2 and 7.3, we conclude that
∫
A
dω =

∫
∂A
ω, thus proving the

generalized Stokes’ theorem.
�
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8. Connecting the Generalized Stokes’ Theorem with other
theorems

We now attempt to end this paper where it started, backtracking from the
generalized Stokes’ theorem to the more specific cases that are classical theo-
rems in vector calculus after going through the means of generalizing them.

We begin with the R2 case where ω is a differential 1-form. Let ω = P dx+
Qdy and D be a region where C = ∂D is the boundary curve.

Calculating dω:

dω = d(P dx+Qdy) = d(P dx) + d(Qdy)

= (dP ) ∧ dx+ P · d(dx) + (dQ) ∧ dy +Q · d(dy)

= (Px dx+ Py dy) ∧ dx+ (Qx dx+Qy dy) ∧ dy

= Py dy ∧ dx+Qx dx ∧ dy

= (Qx − Py) dx ∧ dy

Restating the generalized Stokes’ theorem which we proved earlier:∫
∂A

ω =

∫
A

dω.

Plugging the values into the generalized Stokes’ theorem,∫
C

P dx+Qdy =

∫
D

(Qx − Py) dx ∧ dy,

also known as the Green’s Theorem.

Remark 8.1. Green’s Theorem is actually a specific case of the original Stokes’
theorem.

Altering the problem slightly, we begin with a differential 2-form ω in R3.
Let ω = P dy ∧ dz+Qdz ∧ dx+H dx ∧ dy and G ⊂ R3 be a domain bounded
by a smooth surface S where S = ∂G (G is the closed solid enclosed by S).
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Again, we calculate dω:

dω = d(P dy ∧ dz +Qdz ∧ dx+H dx ∧ dy)

= (dP ) dy ∧ dz + (dQ) dz ∧ dx+ (dH) dx ∧ dy

= (Px dx+ Py dy + Pz dz) dy ∧ dz + (Qx dx+Qy dy +Qz dz) dz ∧ dx

+ (Hx dx+Hy dy +Hz dz) dx ∧ dy

= Px dx ∧ dy ∧ dz +Qy dy ∧ dz ∧ dx+Hz dz ∧ dx ∧ dy

= (Px +Qy +Hz) dx ∧ dy ∧ dz

= div F

where F = 〈P,Q,H〉.
Plugging values in,∫

S

P dy ∧ dz +Qdz ∧ dx+H dx ∧ dy =

∫
G

div F,

also known as the Divergence Theorem.
Altering the problem again, assume ω to be a differential 1-form in R3. Let

ω = P dx + Qdy + H dz and S ⊂ R3 be a surface with boundary curve C
(C = ∂S).

We will state directly dω without proof due to already going through the
process in 4.5:

dω = curl F

where F = 〈P,Q,H〉.
We can now plug values in:∫

C

P dx+Qdy +H dz =

∫
S

curl F,

commonly called the (original) Stokes’ theorem.
Lastly, we use the generalized Stokes’ theorem to derive a result that is

fundamental to calculus.
Consider the case where ω is a 0-form in R1. Under these conditions, let

ω be some function f and I be the interval [a, b] whilst ∂I consists of the
two endpoints, {a, b}. Assume the orientation of a to be negative and b to be
positive.

Applying the generalized Stokes’ theorem,∫
{−a,b}

f =

∫
[a,b]

df.
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Expanding, we get:

f(b)− f(a) =

∫ b

a

f ′(x) dx,

or the fundamental theorem of calculus (also called the Newton-Leibniz
formula).

9. Conclusion

This paper focused on building the foundational tools up to proving the
generalized Stokes’ theorem. There are several additional topics regarding the
generalized Stokes’ theorem and its applications which should be interesting
to explore for the reader, such using the theorem to relate integration and
mappings. The generalized Stokes’ theorem also has many applications in
physics.
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