Rogers-Ramanujan Identities

Jinfei Huang <jhuang929@student.fuhsd.org>

Jinfei Circle

July 11, 2022

EXISTENT

重

A partition λ is a tuple of positive integers $(\lambda_1, \lambda_2, \ldots, \lambda_k)$ in nonincreasing order, i.e. $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k > 0$. If $\lambda_1 + \cdots + \lambda_k = n$, we say λ is a *partition of n*, and write $|\lambda| = n$. We call the λ_i 's the *parts* of λ . Let $\ell(\lambda)$ be the number of parts, in this case k.

イロト イ母 トイヨ トイヨ トー

A partition λ is a tuple of positive integers $(\lambda_1, \lambda_2, \ldots, \lambda_k)$ in nonincreasing order, i.e. $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k > 0$. If $\lambda_1 + \cdots + \lambda_k = n$, we say λ is a *partition of n*, and write $|\lambda| = n$. We call the λ_i 's the *parts* of λ . Let $\ell(\lambda)$ be the number of parts, in this case k.

Example

 $\lambda = (8, 5, 4, 3, 2, 2, 1)$ is a partition of 25. We write $8 + 5 + 4 + 3 + 2 + 2 + 1$ for $(8, 5, 4, 3, 2, 2, 1)$.

イロト イ押 トイヨ トイヨ トーヨ

Sets of partitions

Definition

Let $P(n)$ denote the set of all partitions of n.

Sets of partitions

Definition

Let $P(n)$ denote the set of all partitions of n.

Example

$$
5 = 5
$$

= 4 + 1
= 3 + 2
= 3 + 1 + 1
= 2 + 2 + 1
= 2 + 1 + 1 + 1
= 1 + 1 + 1 + 1 + 1

Young diagrams are one of the main ways to represent partitions graphically.

The conjugate of a partition λ is the partition given by reflecting its young diagram $[\lambda]$ across the line $y = -x$.

Figure: $\lambda = (6, 4, 3, 1)$

イロト イ団 トイ ヨト イヨト 一番

Young diagrams are one of the main ways to represent partitions graphically.

The conjugate of a partition λ is the partition given by reflecting its young diagram $[\lambda]$ across the line $y = -x$.

Figure: $\lambda = (6, 4, 3, 1)$

Figure: $\lambda' = (4, 3, 3, 2, 1, 1)$

We see that the conjugate of a partition is also a well-defined partition. Also, conjugation is an involution on the set of partitions.

Let $\mathcal{D}(n)$ denote the set of partitions of *n* having distinct parts, and $\mathcal{D} = \bigcup_n \mathcal{D}(n).$

Let $\mathcal{D}(n)$ denote the set of partitions of n having distinct parts, and $\mathcal{D} = \bigcup_n \mathcal{D}(n).$

Definition

Let $\mathcal{B}(n)$ be the set of partitions of n with parts that differ by at least 2, let $\mathcal{B}'(n)$ be the set of partitions of n with parts differing by at least 2 and smallest part at least 2. Define $B=\bigcup_n\mathcal{B}(n)$ and $\mathcal{B}'=\bigcup_n\mathcal{B}'(n)$.

イロト イ押 トイヨ トイヨ トー

Let $\mathcal{D}(n)$ denote the set of partitions of n having distinct parts, and $\mathcal{D} = \bigcup_n \mathcal{D}(n).$

Definition

Let $\mathcal{B}(n)$ be the set of partitions of n with parts that differ by at least 2, let $\mathcal{B}'(n)$ be the set of partitions of n with parts differing by at least 2 and smallest part at least 2. Define $B=\bigcup_n\mathcal{B}(n)$ and $\mathcal{B}'=\bigcup_n\mathcal{B}'(n)$.

Definition

Define
$$
\mathcal{P}_{1,4}(n) = \{ \lambda \in \mathcal{P}(n) : \lambda_i \equiv 1, 4 \pmod{5} \}
$$
 and $\mathcal{P}_{2,3}(n) = \{ \lambda \in \mathcal{P}(n) : \lambda_i \equiv 2, 3 \pmod{5} \}.$

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

э

Rogers-Ramanujan identities

Theorem

For all $n \ge 1$, $|\mathcal{B}(n)| = |\mathcal{P}_{1,4}(n)|$.

Theorem

For all $n \geq 1$, $|\mathcal{B}'(n)| = |\mathcal{P}_{2,3}(n)|$.

We will only focus on the first identity.

э

Example

 $|\mathcal{B}(11)| = 7.$

 $|\mathcal{P}_{1,4}(11)|=7$

• Rogers: proved in 1894, obscure paper

- Rogers: proved in 1894, obscure paper
- Ramanujan: rediscovered circa 1913, sent to Hardy

イロメ イ母メ イヨメ イヨメー

目

- Rogers: proved in 1894, obscure paper
- Ramanujan: rediscovered circa 1913, sent to Hardy
- Rogers & Ramanujan (1917): joint proof

イロメ イ母メ イヨメ イヨメー

э

- Rogers: proved in 1894, obscure paper
- Ramanujan: rediscovered circa 1913, sent to Hardy
- Rogers & Ramanujan (1917): joint proof
- Schur: rediscovered and proved in 1917

イロト イ母 トイヨ トイヨ トー

э

- Rogers: proved in 1894, obscure paper
- Ramanujan: rediscovered circa 1913, sent to Hardy
- Rogers & Ramanujan (1917): joint proof
- Schur: rediscovered and proved in 1917
- Slater (1952): list of 130 Rogers-Ramanujan type identities

イロト イ押 トイヨ トイヨ トー

- Rogers: proved in 1894, obscure paper
- Ramanujan: rediscovered circa 1913, sent to Hardy
- Rogers & Ramanujan (1917): joint proof
- Schur: rediscovered and proved in 1917
- Slater (1952): list of 130 Rogers-Ramanujan type identities
- Garsia and Milne (1981): first bijective proof with involution principle

イロト イ押 トイヨ トイヨ トー

We can translate the main result into a statement about the relevant generating functions.

$$
1+\sum_{k=1}^{\infty}\frac{q^{k^2}}{(1-q)(1-q^2)\cdots(1-q^k)}=\prod_{n=0}^{\infty}\frac{1}{(1-q^{5n+1})(1-q^{5n+4})}.
$$

$$
1+\sum_{k=1}^{\infty}\frac{q^{k^2+k}}{(1-q)(1-q^2)\cdots(1-q^k)}=\prod_{n=0}^{\infty}\frac{1}{(1-q^{5n+2})(1-q^{5n+3})}.
$$

イロト イ押 トイヨ トイヨ トー

目

We can use Jacobi's classic triple product identity to rewrite the product side of the first identity.

Theorem

$$
\sum_{m=-\infty}^{\infty} z^m q^{m^2} = \prod_{n=0}^{\infty} (1 + zq^{2n+1})(1 + z^{-1}q^{2n+1})(1 - q^{2n+2}).
$$

Schur's identity

By substituting $(q, z) \mapsto (t^{5/2}, -t^{1/2})$, we have

$$
\sum_{m=-\infty}^{\infty} (-1)^m t^{\frac{m(5m+1)}{2}} = \prod_{n=0}^{\infty} (1 - t^{5n+2})(1 - t^{5n+3})(1 - t^{5n+5}),
$$

$$
\prod_{i=1}^{\infty} \frac{1}{1 - t^j} \sum_{m=-\infty}^{\infty} (-1)^m t^{\frac{m(5m+1)}{2}} = \prod_{n=0}^{\infty} \frac{1}{(1 - t^{5n+1})(1 - t^{5n+4})}.
$$

By the Jacobi triple product, the first Rogers-Ramanujan identity is equivalent to the following:

$$
\prod_{j=1}^{\infty}(1-t^j)\left(1+\sum_{k=1}^{\infty}\frac{t^{k^2}}{(1-t)(1-t^2)\cdots(1-t^k)}\right)=\sum_{m=-\infty}^{\infty}(-1)^{m}t^{\frac{m(5m+1)}{2}}.
$$

Combinatorial interpretation

Equivalently,

$$
\sum_{\lambda \in \mathcal{D}} (-1)^{\ell(\lambda)} t^{|\lambda|} \sum_{\mu \in \mathcal{B}} t^{|\mu|} = \sum_{m=-\infty}^{\infty} (-1)^m t^{\frac{m(5m+1)}{2}},
$$

$$
\sum_{(\lambda,\mu) \in \mathcal{D} \times \mathcal{B}} (-1)^{\ell(\lambda)} t^{|\lambda| + |\mu|} = \sum_{m=-\infty}^{\infty} (-1)^m t^{\frac{m(5m+1)}{2}}.
$$

Set $\mathcal{R} = \mathcal{D} \times \mathcal{B}$, and $\mathcal{R}_n = \{(\lambda, \mu) \in \mathcal{R} : |\lambda| + |\mu| = n\}$. The sign of a pair (λ, μ) is the parity of $\ell(\lambda)$. We want to define an involution α on R_n that is sign-reversing for everything except the fixed points of the involution.

$g(\lambda)$ and $u(\mu)$

FIGURE 30. For a pair of partitions $(\lambda, \mu) \in \mathcal{R}$ as above, we have $s(\lambda) = 3, g(\lambda) = 5, u(\mu) = 4.$

We abbreviate $s = s(\lambda)$, $g = g(\lambda)$, $u = u(\mu)$.

∢ □ ▶ ◀ [□] ▶ ◀

一本 語 (を) … э

Let F be the set of fixed points of α , defined in the following diagram.

Start with $(\lambda, \mu) \in \mathcal{R}_n$, suppose this is not a fixed point. First, compare λ_1 and μ_1 . If $\lambda_1 \geq \mu_1 + 2$, move part λ_1 to μ . If $\lambda_1 < \mu_1$, move part μ_1 to λ .

Example 1

START ST

Contract Contract

 $=$

 $=$ \sim $=$ \sim \sim \sim

There remain the cases $\lambda_1 = \mu_1$ and $\lambda_1 = \mu_1 + 1$. Denote these cases by \mathcal{R}_n^1 and \mathcal{R}_n^2 , respectively.

If $(\lambda,\mu)\in{\mathcal R}_n^1$ and ${\mathsf s}\leq{\mathsf g},$ μ , move ${\mathsf s}$ to ${\mathsf g}$. Conversely, if $(\lambda,\mu)\in{\mathcal R}_n^2$, $g < s, g \le u$, move g to s.

If $(\lambda,\mu)\in {\mathcal R}^1_{\frac{p}{2}}$ and $g < s,u$, move g to u and attach μ_1 to λ . Conversely, if $(\lambda,\mu)\in{\mathcal R}_n^2$, and $u<\varepsilon,g$, move u to g and attach λ_1 to $\mu.$

If $(\lambda,\mu)\in {\mathcal R}^1_n$ and ${\mathcal g}<{\mathfrak s},$ $\mu,$ move ${\mathfrak g}$ to μ and attach μ_1 to $\lambda.$ Conversely, if $(\lambda,\mu)\in{\mathcal R}_n^2$, and $u<\varepsilon,g$, move u to g and attach λ_1 to $\mu.$

Example 2

Proving Schur's identity

Claim

The map $\alpha : \mathcal{R}_n \to \mathcal{R}_n$ is an involution which is sign-reversing except for the fixed points.

Proving Schur's identity

Claim

The map $\alpha : \mathcal{R}_n \to \mathcal{R}_n$ is an involution which is sign-reversing except for the fixed points.

Proof.

(Sketch:) Start with (λ, μ) , and let $(\lambda, \hat{\mu})$ be its image under α . If $(\lambda, \mu) \in \mathcal{R}_n$, i.e. $|\lambda| + |\mu| = n$, then $|\hat{\lambda}| + |\hat{\mu}| = n$. One can verify that $\alpha=\alpha^{-1}$ by casework. Moreover, α always changes $\ell(\lambda)$ by 1, so α is indeed sign-reversing.

Claim

The map $\alpha : \mathcal{R}_n \to \mathcal{R}_n$ is an involution which is sign-reversing except for the fixed points.

Proof.

(Sketch:) Start with (λ, μ) , and let $(\hat{\lambda}, \hat{\mu})$ be its image under α . If $(\lambda, \mu) \in \mathcal{R}_n$, i.e. $|\lambda| + |\mu| = n$, then $|\hat{\lambda}| + |\hat{\mu}| = n$. One can verify that $\alpha=\alpha^{-1}$ by casework. Moreover, α always changes $\ell(\lambda)$ by 1, so α is indeed sign-reversing.

For every $(\lambda, \mu) \in \mathcal{R}_n \setminus \mathcal{F}$, we pair it up with $(\hat{\lambda}, \hat{\mu})$ (because α is an involution). The two terms cancel out in the sum:

$$
(-1)^{\ell(\lambda)}t^{|\lambda|+|\mu|}+(-1)^{\ell(\hat\lambda)}t^{|\hat\lambda|+|\hat\mu|}=(-1)^{\ell(\lambda)}t^{|\lambda|+|\mu|}-(-1)^{\ell(\lambda)}t^{|\lambda|+|\mu|}=0.
$$

イロト イ押 トイヨ トイヨ トー

Therefore, the LHS of Schur's identity becomes

$$
\sum_{(\lambda,\mu)\in\mathcal{R}}(-1)^{\ell(\lambda)}t^{|\lambda|+|\mu|} = \sum_{(\lambda,\mu)\in\mathcal{F}}(-1)^{\ell(\lambda)}t^{|\lambda|+|\mu|}
$$

= $1 + \sum_{m=1}^{\infty}(-1)^{m}t^{m(5m-1)/2} + \sum_{m=1}^{\infty}(-1)^{m}t^{m(5m+1)/2}$
= $\sum_{m=-\infty}^{\infty}(-1)^{m}t^{m(5m+1)/2}.$

which finishes the proof. \clubsuit

ヨメ イヨメー

K ロ ▶ K 何 ▶ K

G.

Thank you

重

 299