Rogers-Ramanujan Identities

Jinfei Huang jhuang929@student.fuhsd.org

Jinfei Circle

July 11, 2022

	~			
 100	60		-	
			 а.	~
				-

< 日 > < 同 > < 回 > < 回 > .

э

Integer partitions

Definition

A partition λ is a tuple of positive integers $(\lambda_1, \lambda_2, \ldots, \lambda_k)$ in nonincreasing order, i.e. $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$. If $\lambda_1 + \cdots + \lambda_k = n$, we say λ is a partition of n, and write $|\lambda| = n$. We call the λ_i 's the parts of λ . Let $\ell(\lambda)$ be the number of parts, in this case k.

Definition

A partition λ is a tuple of positive integers $(\lambda_1, \lambda_2, ..., \lambda_k)$ in nonincreasing order, i.e. $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$. If $\lambda_1 + \cdots + \lambda_k = n$, we say λ is a partition of n, and write $|\lambda| = n$. We call the λ_i 's the parts of λ . Let $\ell(\lambda)$ be the number of parts, in this case k.

Example

 $\lambda = (8, 5, 4, 3, 2, 2, 1)$ is a partition of 25. We write 8 + 5 + 4 + 3 + 2 + 2 + 1 for (8, 5, 4, 3, 2, 2, 1).

- 14	nte	ы	110	no
ີ	IIIC		ua	пg
				<u> </u>

イロト 不得下 イヨト イヨト 二日

Sets of partitions

Definition

Let $\mathcal{P}(n)$ denote the set of all partitions of n.

Jinfei Huang	Rogers-Ramanujan Identities	July 11, 2022

3/20

Sets of partitions

Definition

Let $\mathcal{P}(n)$ denote the set of all partitions of n.

Example

$$5 = 5$$

= 4 + 1
= 3 + 2
= 3 + 1 + 1
= 2 + 2 + 1
= 2 + 1 + 1 + 1
= 1 + 1 + 1 + 1 + 1

Young diagrams are one of the main ways to represent partitions graphically.

The conjugate of a partition λ is the partition given by reflecting its young diagram [λ] across the line y = -x.

Figure: $\lambda = (6, 4, 3, 1)$

イロト 不得下 イヨト イヨト 二日

Young diagrams are one of the main ways to represent partitions graphically.

The conjugate of a partition λ is the partition given by reflecting its young diagram [λ] across the line y = -x.

Figure: $\lambda = (6, 4, 3, 1)$

Figure: $\lambda' = (4, 3, 3, 2, 1, 1)$

We see that the conjugate of a partition is also a well-defined partition. Also, conjugation is an involution on the set of partitions.

		《曰》《圖》《臣》《臣》	目 うくぐ
Jinfei Huang	Rogers-Ramanujan Identities	July 11, 2022	4 / 20

Classes of partitions

Definition

Let $\mathcal{D}(n)$ denote the set of partitions of *n* having distinct parts, and $\mathcal{D} = \bigcup_n \mathcal{D}(n)$.

		《曰》《圖》《臣》《臣》 []	500
Jinfei Huang	Rogers-Ramanujan Identities	July 11, 2022	5 / 20

Definition

Let $\mathcal{D}(n)$ denote the set of partitions of *n* having distinct parts, and $\mathcal{D} = \bigcup_n \mathcal{D}(n)$.

Definition

Let $\mathcal{B}(n)$ be the set of partitions of n with parts that differ by at least 2, let $\mathcal{B}'(n)$ be the set of partitions of n with parts differing by at least 2 and smallest part at least 2. Define $\mathcal{B} = \bigcup_n \mathcal{B}(n)$ and $\mathcal{B}' = \bigcup_n \mathcal{B}'(n)$.

イロト イヨト イヨト ・

Definition

Let $\mathcal{D}(n)$ denote the set of partitions of *n* having distinct parts, and $\mathcal{D} = \bigcup_n \mathcal{D}(n)$.

Definition

Let $\mathcal{B}(n)$ be the set of partitions of n with parts that differ by at least 2, let $\mathcal{B}'(n)$ be the set of partitions of n with parts differing by at least 2 and smallest part at least 2. Define $\mathcal{B} = \bigcup_n \mathcal{B}(n)$ and $\mathcal{B}' = \bigcup_n \mathcal{B}'(n)$.

Definition

Define
$$\mathcal{P}_{1,4}(n) = \{\lambda \in \mathcal{P}(n) : \lambda_i \equiv 1, 4 \pmod{5}\}$$
 and $\mathcal{P}_{2,3}(n) = \{\lambda \in \mathcal{P}(n) : \lambda_i \equiv 2, 3 \pmod{5}\}.$

イロト イポト イヨト イヨト

э

Rogers-Ramanujan identities

Theorem

For all $n \ge 1$, $|\mathcal{B}(n)| = |\mathcal{P}_{1,4}(n)|$.

Theorem

For all $n \ge 1$, $|\mathcal{B}'(n)| = |\mathcal{P}_{2,3}(n)|$.

We will only focus on the first identity.

 ın	te	н	пa	nσ

イロト イポト イヨト イヨト

э

Example

11 = 11	11 = 11
= 10 + 1	= 9 + 1 + 1
= 9 + 2	= 6 + 4 + 1
= 8 + 3	= 6 + 1 + 1 + 1 + 1 + 1
= 7 + 4	= 4 + 4 + 1 + 1 + 1
= 7 + 3 + 1	= 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 6 + 4 + 1	$=1+1+\dots+1$

 $|\mathcal{B}(11)|=7.$

 $|\mathcal{P}_{1,4}(11)| = 7$

• Rogers: proved in 1894, obscure paper

		・ロト ・四ト ・ヨト ・ヨト	≣ • େ ବ୍ଜ
Jinfei Huang	Rogers-Ramanujan Identities	July 11, 2022	8 / 20

- Rogers: proved in 1894, obscure paper
- Ramanujan: rediscovered circa 1913, sent to Hardy

		<u> </u>	
 		- 1	

イロト イヨト イヨト イヨト

3

- Rogers: proved in 1894, obscure paper
- Ramanujan: rediscovered circa 1913, sent to Hardy
- Rogers & Ramanujan (1917): joint proof

イロト 不得 トイヨト イヨト

э

- Rogers: proved in 1894, obscure paper
- Ramanujan: rediscovered circa 1913, sent to Hardy
- Rogers & Ramanujan (1917): joint proof
- Schur: rediscovered and proved in 1917

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

- Rogers: proved in 1894, obscure paper
- Ramanujan: rediscovered circa 1913, sent to Hardy
- Rogers & Ramanujan (1917): joint proof
- Schur: rediscovered and proved in 1917
- Slater (1952): list of 130 Rogers-Ramanujan type identities

イロト 不得下 イヨト イヨト

- Rogers: proved in 1894, obscure paper
- Ramanujan: rediscovered circa 1913, sent to Hardy
- Rogers & Ramanujan (1917): joint proof
- Schur: rediscovered and proved in 1917
- Slater (1952): list of 130 Rogers-Ramanujan type identities
- Garsia and Milne (1981): first bijective proof with involution principle

イロト 不得下 イヨト イヨト

We can translate the main result into a statement about the relevant generating functions.

$$1 + \sum_{k=1}^{\infty} \frac{q^{k^2}}{(1-q)(1-q^2)\cdots(1-q^k)} = \prod_{n=0}^{\infty} \frac{1}{(1-q^{5n+1})(1-q^{5n+4})}.$$

$$1 + \sum_{k=1}^{\infty} \frac{q^{k^2+k}}{(1-q)(1-q^2)\cdots(1-q^k)} = \prod_{n=0}^{\infty} \frac{1}{(1-q^{5n+2})(1-q^{5n+3})}.$$

3

We can use Jacobi's classic triple product identity to rewrite the product side of the first identity.

Theorem

$$\sum_{m=-\infty}^{\infty} z^m q^{m^2} = \prod_{n=0}^{\infty} (1 + zq^{2n+1})(1 + z^{-1}q^{2n+1})(1 - q^{2n+2}).$$

		▲□▶ ▲圖▶ ▲国▶ ▲国▶	≣ ୬୯୯
Jinfei Huang	Rogers-Ramanujan Identities	July 11, 2022	10 / 20

Schur's identity

By substituting $(q,z)\mapsto (t^{5/2},-t^{1/2})$, we have

$$\sum_{m=-\infty}^{\infty} (-1)^m t^{\frac{m(5m+1)}{2}} = \prod_{n=0}^{\infty} (1-t^{5n+2})(1-t^{5n+3})(1-t^{5n+5}),$$

$$\prod_{j=1}^{\infty} \frac{1}{1-t^{j}} \sum_{m=-\infty}^{\infty} (-1)^{m} t^{\frac{m(5m+1)}{2}} = \prod_{n=0}^{\infty} \frac{1}{(1-t^{5n+1})(1-t^{5n+4})}.$$

By the Jacobi triple product, the first Rogers-Ramanujan identity is equivalent to the following:

$$\prod_{j=1}^{\infty} (1-t^j) \left(1 + \sum_{k=1}^{\infty} \frac{t^{k^2}}{(1-t)(1-t^2)\cdots(1-t^k)} \right) = \sum_{m=-\infty}^{\infty} (-1)^m t^{\frac{m(5m+1)}{2}}$$

Combinatorial interpretation

Equivalently,

$$\sum_{\lambda\in\mathcal{D}}(-1)^{\ell(\lambda)}t^{|\lambda|}\sum_{\mu\in\mathcal{B}}t^{|\mu|}=\sum_{m=-\infty}^{\infty}(-1)^mt^{rac{m(5m+1)}{2}},
onumber\ \sum_{(\lambda,\mu)\in\mathcal{D} imes\mathcal{B}}(-1)^{\ell(\lambda)}t^{|\lambda|+|\mu|}=\sum_{m=-\infty}^{\infty}(-1)^mt^{rac{m(5m+1)}{2}}.$$

Set $\mathcal{R} = \mathcal{D} \times \mathcal{B}$, and $\mathcal{R}_n = \{(\lambda, \mu) \in \mathcal{R} : |\lambda| + |\mu| = n\}$. The sign of a pair (λ, μ) is the parity of $\ell(\lambda)$. We want to define an involution α on \mathcal{R}_n that is sign-reversing for everything except the fixed points of the involution.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$g(\lambda)$ and $u(\mu)$

FIGURE 30. For a pair of partitions $(\lambda, \mu) \in \mathcal{R}$ as above, we have $s(\lambda) = 3, g(\lambda) = 5, u(\mu) = 4.$

We abbreviate $s = s(\lambda)$, $g = g(\lambda)$, $u = u(\mu)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Let \mathcal{F} be the set of fixed points of α , defined in the following diagram.

Start with $(\lambda, \mu) \in \mathcal{R}_n$, suppose this is not a fixed point. First, compare λ_1 and μ_1 . If $\lambda_1 \ge \mu_1 + 2$, move part λ_1 to μ . If $\lambda_1 < \mu_1$, move part μ_1 to λ .

Image: A matrix and a matrix

Example 1

Jinfei Huang	Rogers-Ramanujan Identities	July 11, 2022	15 / 20

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 · のへで

There remain the cases $\lambda_1 = \mu_1$ and $\lambda_1 = \mu_1 + 1$. Denote these cases by \mathcal{R}^1_n and \mathcal{R}^2_n , respectively.

If $(\lambda, \mu) \in \mathcal{R}^1_n$ and $s \leq g, \mu$, move s to g. Conversely, if $(\lambda, \mu) \in \mathcal{R}^2_n$, g < s, g < u, move g to s.

If $(\lambda, \mu) \in \mathcal{R}^1_n$ and g < s, u, move g to u and attach μ_1 to λ . Conversely, if $(\lambda, \mu) \in \mathcal{R}^2_n$, and u < s, g, move u to g and attach λ_1 to μ .

If $(\lambda, \mu) \in \mathcal{R}^1_p$ and $g < s, \mu$, move g to μ and attach μ_1 to λ . Conversely, if $(\lambda, \mu) \in \mathcal{R}^2_n$, and u < s, g, move u to g and attach λ_1 to μ .

		◆□▶★舂▶★≧▶★≧▶ ■	୬୯୯
Jinfei Huang	Rogers-Ramanujan Identities	July 11, 2022	17 / 20

Proving Schur's identity

Claim

The map $\alpha : \mathcal{R}_n \to \mathcal{R}_n$ is an involution which is sign-reversing except for the fixed points.

		• • •	・ 本間 と 本語 と 本語 と	臣	<u> </u>
Jinfei Huang	Rogers-Ramanujan Identities		July 11, 2022		18 / 2

Proving Schur's identity

Claim

The map $\alpha : \mathcal{R}_n \to \mathcal{R}_n$ is an involution which is sign-reversing except for the fixed points.

Proof.

(Sketch:) Start with (λ, μ) , and let $(\hat{\lambda}, \hat{\mu})$ be its image under α . If $(\lambda, \mu) \in \mathcal{R}_n$, i.e. $|\lambda| + |\mu| = n$, then $|\hat{\lambda}| + |\hat{\mu}| = n$. One can verify that $\alpha = \alpha^{-1}$ by casework. Moreover, α always changes $\ell(\lambda)$ by 1, so α is indeed sign-reversing.

Image: A matrix and a matrix

Proving Schur's identity

Claim

The map $\alpha : \mathcal{R}_n \to \mathcal{R}_n$ is an involution which is sign-reversing except for the fixed points.

Proof.

(Sketch:) Start with (λ, μ) , and let $(\hat{\lambda}, \hat{\mu})$ be its image under α . If $(\lambda, \mu) \in \mathcal{R}_n$, i.e. $|\lambda| + |\mu| = n$, then $|\hat{\lambda}| + |\hat{\mu}| = n$. One can verify that $\alpha = \alpha^{-1}$ by casework. Moreover, α always changes $\ell(\lambda)$ by 1, so α is indeed sign-reversing.

For every $(\lambda, \mu) \in \mathcal{R}_n \setminus \mathcal{F}$, we pair it up with $(\hat{\lambda}, \hat{\mu})$ (because α is an involution). The two terms cancel out in the sum:

$$(-1)^{\ell(\lambda)}t^{|\lambda|+|\mu|} + (-1)^{\ell(\hat{\lambda})}t^{|\hat{\lambda}|+|\hat{\mu}|} = (-1)^{\ell(\lambda)}t^{|\lambda|+|\mu|} - (-1)^{\ell(\lambda)}t^{|\lambda|+|\mu|} = 0.$$

イロト イヨト イヨト ・

Proving Schur's identity, cont.

Therefore, the LHS of Schur's identity becomes

$$\begin{split} \sum_{(\lambda,\mu)\in\mathcal{R}} (-1)^{\ell(\lambda)} t^{|\lambda|+|\mu|} &= \sum_{(\lambda,\mu)\in\mathcal{F}} (-1)^{\ell(\lambda)} t^{|\lambda|+|\mu|} \\ &= 1 + \sum_{m=1}^{\infty} (-1)^m t^{m(5m-1)/2} + \sum_{m=1}^{\infty} (-1)^m t^{m(5m+1)/2} \\ &= \sum_{m=-\infty}^{\infty} (-1)^m t^{m(5m+1)/2}. \end{split}$$

which finishes the proof. 🖕

	 nte		- 1-	-		1	0
_	115	-			u	a	 Е

イロト 不得 トイヨト イヨト

3

Thank you

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □