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Abstract. We present an elementary combinatorial proof of the first Rogers-Ramanujan identity

with the help of a generalized Dyson’s rank. We then prove the second identity using a variant

of Schur’s involution. A connection to Ramanujan’s continued fraction is demonstrated.
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1. Introduction

The Rogers-Ramanujan identities have been regarded as the most beautiful pair of identities in
mathematics. We wish to present a case for the veracity of this evaluation.

There are two main forms of the Rogers-Ramanujan identity. On the one hand, they can be
expressed as the following product-sum identities:

∞∑
k=1

qk
2

(1− q)(1− q2) · · · (1− qk)
=

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
,(1.1)

∞∑
k=1

qk
2+k

(1− q)(1− q2) · · · (1− qk)
=

∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
.(1.2)

where we set (1 − q)(1 − q2) · · · (1 − qk) = 1 when k = 0 for convenience. Equivalently, we can
formulate them in words: the first identity (1.1) states that the number of partitions of an integer
n ≥ 0 into distinct nonconsecutive parts by at least 2 is the same as the number of partitions of
n into parts congruent to 1 or 4 (mod 5). The second identity (1.2) is similar, stating that the
number of partitions of n into distinct nonconsecutive parts each strictly greater than 1 is the
same as the number of partitions of n with parts congruent to 2 or 3 (mod 5). For example, we
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11 = 11

= 10 + 1

= 9 + 2

= 8 + 3

= 7 + 4

= 7 + 3 + 1

= 6 + 4 + 1

11 = 11

= 9 + 1 + 1

= 6 + 4 + 1

= 6 + 1 + 1 + 1 + 1 + 1

= 4 + 4 + 1 + 1 + 1

= 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1

= 1 + 1 + · · ·+ 1

Figure 1. Partitions of 11 with parts differing by at least 2 on the left,
partitions of 11 with parts congruent to 1 or 4 (mod 5) on the right. There are 7
of each. The last partition on the right consists of 11 parts of 1.

can empirically verify the first Rogers-Ramanujan identity for n = 11 (see Figure 1). A formal
treatment of partition terminology we will put off until Section 2.

L. J. Rogers was the first to discover (1.1) and (1.2); however, Rogers lived in obscurity and his
1894 paper was largely ignored. The identities resurfaced with Ramanujan’s rediscovery some time
before 1913. He sent them to Hardy, and in typical Ramanujan style, he did not provide a proof
with his results. It went on to be published. Then in 1917, Ramanujan stumbled upon Rogers’s
1894 paper. Curiously, this was not his first time reading the paper, as he had previously seen the
identities but they “had entirely slipped from [his] memory.”

Rogers and Ramanujan coauthored a joint proof of the two identities. Meanwhile, I. Schur inde-
pendently rediscovered and proved them in 1917. It is generally agreed upon that Schur’s combina-
torial proof is fundamentally different from the aforementioned collaboration [And89]. One might
then be inclined to wonder why (1.1) and (1.2) are not attributed to Schur. Indeed, neither Rogers
nor Ramanujan considered their combinatorial interpretations. The now-standard name ”Rogers-
Ramanujan identities” is due to Hardy, who has been criticized for his ”tabloid sensationalism”
and the ”historical injustice” of the name [?].

Historically, analytic proofs of identities in partition theory typically preceded combinatorial
proofs, which were more difficult to find. In fact, a direct bijective proof of the Rogers-Ramanujan
identities has yet to be discovered, where a direct bijection is a one that can be constructed without
any intermediate steps [Pak06]. The lack of a direct bijective proof is not unique to the Rogers-
Ramanujan identities, although one may argue that such a proof ought to exist for ”important”
partition identities.

In the present paper, we emphasize combinatorial methods and make heavy use of known bijec-
tions for a few reasons. Analytic proofs of the Rogers-Ramanujan identities, such as the motivated
proof given by Andrews and Baxter [AB89], are generally more accessible to a wider audience.
Moreover, some of the combinatorial ideas naturally give rise to definitions and examples using
diagrams, the explanatory power of which is obvious.
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2. Preliminaries

2.1. Notation. We define a partition λ to be a k-tuple of positive integers (λ1, λ2, . . . , λk) in
nonincreasing order, i.e. λ1 ≥ λ2 ≥ · · · ≥ λk > 0. We say λ is a partition of n, or |λ| = n, if
λ1 + λ2 + · · · + λk = n; call λ1, . . . , λk the parts of λ. Let ℓ(λ) = k be the number of parts, and
λj = 0 for all j > k. By a slight abuse of notation, we will sometimes write λ1 + λ2 + · · ·+ λk in
place (λ1, λ2, . . . , λk), identifying a partition with the sum of its parts.

Superscripts indicate how many times an integer occurs as a part in a partition. For instance,
one may write (3, 2, 2, 2) = (3, 23) or (3, 1) = (31, 20, 11).

We often represent a partition graphically by its corresponding Young diagram, which is a
collection of unit squares on a square grid. For any λ = (λ1, λ2, . . . , λk), the Young diagram [λ]
is constructed as follows: construct a row of λi left-aligned unit squares in the i-th column from
the top, for each 1 ≤ i ≤ k. (Alternatively, replacing the squares with nodes produces a so-called
Ferrers graph [SF82]). The Durfee square of a partition λ is the largest square that can fit in the
Young diagram [λ]. More generally, a Durfee m-rectangle is the largest rectangle that can fit in [λ]
such that the difference between the height and width of the rectangle is m. We allow the width of
a Durfee m-rectangle to be zero, but the height must always be positive. The Durfee m-rectangle
of λ, if well-defined, is always placed in the top-left corner of [λ]. The concept is best explained
with an example (see Figure ??).

There are two natural ways to combine partitions to form a new partition. Let α = (α
a(α1)
1 , . . . , 2a(2), 1a(1))

and β = (β
b(β1)
1 , . . . , 2b(2), 1b(1)) be partitions, where a(i) (resp. b(i)) is the number of occurences

of i as an entry in α (resp. β). The union α ∪ β is the partition

α ∪ β = (Ma(M)+b(M), . . . , 2a(2)+b(2), 1a(1)+b(1))

where M = max {α1, β1}. Informally, α ∪ β is simply the combination of all the parts of α and β
with some rearrangement if necessary. This definition differs from the union of sets in that repeated
parts do not become a single part. Observe that if α ∪ λ = β ∪ λ, then α = β; this follows easily
by the definition of union. Similarly, define the sum

α+ β = (α1 + β1, α2 + β2, . . . , αmax {ℓ(α),ℓ(β)} + βmax {ℓ(α),ℓ(β)})

by the pairwise addition of αi and βi.
First defined by Dyson to give combinatorial interpretations of Ramanujan’s congruences [Dys44],

the rank of a partition λ is the largest part minus the number of parts, i.e. λ1 − ℓ(λ). There are
multiple useful generalizations of Dyson’s rank, such as Garvan’s generalization, successive rank,
and (2,m) rank; we will only consider the (2,m) rank, relevant in Section 5.
For the purposes of this paper, we assume that all power series and their variables are formal to
avoid issues of convergence. In particular, we interpret the expression 1/(1 − q) as the geometric
series

(2.1)
1

1− q
= 1 + q + q2 + q3 + q4 + · · ·

Let p(n) denote the number of partditions of n, d(n) denote the number of partitions of n into
distinct parts, and pk(n) denote the number of partitions of n with at most k parts. We take
p(0) = d(0) = pk(0) = 1 for convenience, and adopt this convention for partition counting functions
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α

β

γ

λ

Figure 2. Partition
λ = (11, 9, 8, 7, 7, 5, 4, 3, 3, 1) and
the sum of its parts is |λ| = 58.
The first and second Durfee
m-rectangles are shaded in blue
and green, respectively, for
m = 1; we have s2,m(λ) = 6)
and t2,m(λ) = 3). Also,
α = (6, 4, 3, 2, 2), β = (2, 1, 1),
and γ = (1).

Figure 3. λ = (2, 1, 1)

in general. Their corresponding generating functions have the well-known formulae:

∞∑
n=0

p(n) qn =

∞∏
j=1

1

1− qj
(2.2)

∞∑
n=0

d(n) qn =

∞∏
j=1

(1 + qj)(2.3)

∞∑
n=0

pk(n) q
n =

k∏
j=1

1

1− qj
(2.4)

Let P be the set of all partitions, D be the set of all partitions with distinct parts, and Q be the
set of partitions with parts differing by at least 2. We define C1(n) as the number of partitions of n
with no repeated or consecutive parts; similarly, we define C2(n) as the number of such partitions
with parts no less than 2; for instance, C1(9) = 5 and C2(9) = 3.

9 9

8 + 1 7 + 2

7 + 2 6 + 3

6 + 3

5 + 3 + 1

The analytic form of the Rogers-Ramanujan identities can be concisely expressed with the help of
some standard shorthand notation:

Definition 2.1. For n ≥ 1, the q-Pochhammer symbol is given by

(a; q)n = (1− a)(1− aq)(1− aq2) · · · (1− aqn−1)

(a; q)∞ = (1− a)(1− aq)(1− aq2) · · · ,
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and let (a; q)0 = 1 for convenience. We abbreviate (a; q)n as (a)n when context implies the second
entry in (a; q)n is q; similarly, (a)∞ := (a; q)∞. Thus, we have

∞∑
k=0

qk
2

(q; q)k
=

1

(q; q5)∞(q4; q5)∞
(2.5)

∞∑
k=0

qk
2+k

(q; q)k
=

1

(q2; q5)∞(q3; q5)∞
.(2.6)

We employ the well-known Jacobi triple product to rewrite the product sides of (2.5) and (2.6).

Theorem 2.2. (Jacobi triple product)

∞∑
m=−∞

zmqm
2

= (−zq; q2)∞(−z−1q; q2)∞(q2; q2)∞ =

∞∏
n=0

(1 + zq2n+1)(1 + z−1q2n+1)(1− q2n+2).

Proof. Either omitted or sent to an appendix, depending the amount of other content. ■

We have the following two corollaries of Theorem 2.2:

∞∑
m=−∞

(−1)mt
m(5m+1)

2 =

∞∏
n=0

(1− t5n+2)(1− t5n+3)(1− t5n+5)(2.7)

∞∑
m=−∞

(−1)mt
m(5m+3)

2 =

∞∏
n=0

(1− t5n+1)(1− t5n+4)(1− t5n+5),(2.8)

corresponding to the substitutions (q, z 7→ t5/2,−t1/2) and (q, z 7→ t5/2,−t3/2), respectively. Divide
both sides of (2.7) by 1/(q; q)∞; the following identity is equivalent to (2.5):

Theorem 2.3.
∞∑
k=0

qk
2

(q; q)k
=

1

(q; q)∞

( ∞∑
m=−∞

(−1)mq
m(5m+1)

2

)

3. Motivation

The goal of this section is to provide insight into how Ramanujan’s celebrated identities may
have been naturally discovered and conjectured. Let us introduce some additional notation for this
section; define

G(q) =

∞∑
k=1

qk
2

(q; q)k
H(q) =

∞∑
k=1

qk
2+k

(q; q)k
.

to be the sum sides of the first and second Rogers-Ramanujan identities, respectively. We first
connect G(q) and H(q) to the q-analog of the simplest possible continued fraction, namely

(3.1) c(q) := 1 +
q

1 +
q2

1 +
q3

1 + · · ·
The q-analog of an expression is a generalization of that expression parameterized by a variable q
that reduces to the original expression as q → 1−. There exist q-analogs for numerous mathematical
objects, from factorials to nonnegative integers. Similar to how the geometric sum 1+q+· · ·+qn−1 =
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(1 − qn)/(1 − q) is a q-analog of 1 + 1 + · · · + 1 = n ∈ Z≥0, c(q) is a q-analog of the continued
fraction

c(1) = 1 +
1

1 +
1

1 +
1

1 + · · ·
We present some notable properties of c(1) before we proceed, as we will analyze its q-analog in
an similar manner. Clearly, we have the recurrence c(1) = 1 + 1/c(1); it follows that c(1) is the
golden ratio. Furthermore, the truncated fractions of c(1) follow a remarkable pattern.

c1 = 1 =
1

1
c2 = 1 +

1

1
=

2

1
c3 = 1 +

1

1 +
1

1

=
3

2
c4 = 1 +

1

1 +
1

1 +
1

1

=
5

3
· · ·

Indeed, the n-th truncated fraction is equal to the ratio of the n-th Fibonacci number and the
(n − 1)-th Fibonacci number. More importantly, note that the denominator of each truncated
fraction is the numerator of the previous one (when both are expressed in lowest terms). Does this
hold in general for c(q)?

Before we answer that question, let us address another concern: is c(q) a sufficiently “nice”
generalization of c(1)? We would like c(q) to satisfy a simple recurrence like c(1) = 1 + 1/c(1).
Wishful thinking may lead us to conjecture c(q) = 1 + 1/c(q), but the powers of q do not match
up. We may stubbornly try to force the powers of q to match up anyway, and come up with a new
continued fraction:

c(z, q) = 1 +
zq

1 +
zq2

1 +
zq3

1 + · · ·
Introducing the parameter z allows us to adjust the powers of q by replacing z with, say, zq or
zq−1. By definition, c(z, q) satisfies

c(z, q) = 1 +
zq

c(zq, q)

Now let cn(z, q) be the n-th truncated fraction of c(z, q), defined similarly to the cn; let Hn(z, q)
be the polynomial numerator of cn(z, q). Computing cn(z, q) for n = 1, 2, 3, 4

c1(z, q) = 1 = 1;

c2(z, q) = 1 +
zq

1
= 1 + zq

c3(z, q) = 1 +
zq

1 +
zq2

1

=
1 + zq + zq2

1 + zq2

c4(z, q) = 1 +
zq

1 +
zq2

1 +
zq3

1

=
1 + zq + zq2 + zq3 + z2q4

1 + zq2 + zq3

suggests that the denominator of cn(z, q) is Hn−1(zq, q) for n > 1; i.e., the denominator of cn(z, q)
is the numerator of cn−1(z, q) up to a change of variables z 7→ zq. Thus, we substitution c(z, q) =
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H(z, q)/H(zq, q) for some power series H(z, q) (under the assumption that a power series exists).
This gives

(3.2) H(z, q) = H(zq, q) + zqH(zq2, q)

We write H(z, q) =
∑∞

n=0 hn(q)z
n. After rewriting the sums in (3.2) and comparing coefficients,

we have

(3.3) hn(q) =
q2n−1

1− qn
hn−1(q)

for all n ≥ 1; repeated application of (3.3) yields

hn(q) =
q(2n−1)+(2n−3)+···+3+1

(1− qn)(1− qn−1) · · · (1− q)
h0(q) =

qn
2

(q; q)n
h0(q)

Since every term in the numerator and denominator of c(z, q) will have a constant factor of h0(q),
we might as well take h0(q) = 1. Thus, c(z, q) can be expressed as

c(z, q) =

∑∞
n=0

qn
2

(q)n
zn∑∞

n=0
qn2+n

(q)n
zn

and

c(1, q) = 1 +
q

1 +
q2

1 +
q3

1 + · · ·

=
G(q)

H(q)

We have arrived at a celebrated identity of Ramanujan, which would deserve its own paper. We
will use this only as a starting point for the study of the series G(q) and H(q). Now we take
inspiration from Euler’s product formula for the Riemann zeta function. Recall that

ζ(s) =
1

1s
+

1

2s
+

1

3s
+ · · · = 1

(1− 2−s)(1− 3−s)(1− 5−s) · · ·

where the second equality is informally derived by multiplying ζ(s) by (1− 2−s) to cancel out all
the multiples of 2, (1 − 3−s) to cancel out all the multiples of 3, and so forth. Our trick is to
repeatedly multiply G(q) by terms of the form (1 − qm), where qm is the smallest nonconstant
power of q in the power series expansion of G(q).

G(q) = 1 +
q

1− q
+

q4

(1− q)(1− q2)
+

q9

(1− q)(1− q2)(1− q3)
+ · · ·

(1− q)G(q) = 1 +
q4

1− q2
+

q9

(1− q2)(1− q3)
+

q16

(1− q2)(1− q3)(1− q4)
+ · · ·

(1− q)(1− q4)G(q) = 1 + q6 +
q9(1 + q2)

1− q3
+

q16(1 + q2)

(1− q3)(1− q4)
+ · · ·

(1− q)(1− q4)(1− q6)G(q) = 1 + q9 + q11 + q14 +
q16(1 + q2)(1 + q3)

1− q4
+ · · ·

In view of (2.1), we have m = 1, 4, 6, 9, 11, . . . for the first few iterations. Notice that m appears to
only take on values that are 1 or 4 (mod 5). Hence, we conjecture

G(q)

∞∏
n=0

(1− q5n+1)(1− q5n+4) = 1
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which is equivalent to (2.2). The reader can check that a similar calculation yields

H(q)

∞∏
n=0

(1− q5n+2)(1− q5n+3) = 1

4. Generating functions of C1(n) and C2(n)

We derive combinatorial interpretations of the sum side of (2.5) (resp. (2.6)) as generating
function of C1(n) (resp. C2(n)). For all n ≥ 1, define

C(n) = {(λ1, . . . , λk) : k ≥ 1, λ1 + · · ·+ λk = n, λi − λi+1 ≥ 2 for i = 1, . . . , k − 1, λk ≥ 1}

to be the set of all partitions of n with no repeated or consecutive parts; in other words, the
difference between adjacent parts is at least 2. Similarly, define

C′(n) = {(λ1, . . . , λk) : k ≥ 1, λ1 + · · ·+ λk = n, λi − λi+1 ≥ 2 for i = 1, . . . , k − 1, λk ≥ 2}

to be the set of all partitions of n with no repeated or consecutive parts and smallest part no less
than 2. Thus, C1(n) = |C(n)| and C2(n) = |C′(n)|. We focus on C1(n), then we outline a similar
procedure for C2(n) The first step is to establish a bijection α between C1(n) and the set of all
partitions of n with smallest part no less than the number of parts; we call this set B(n). The idea
is to take an arbitrary partition in C(n) and shorten the “gaps” between the parts. For any λ in
C(n), the bijection α : C(n)→ B(n) is defined as follows:

(λ1, . . . , λk)
α←→ (λ1 − k + 1, . . . , λi + 2i− k − 1, . . . , λk + k − 1)

We see that λk + k− 1 ≥ k, and (λi + 2i− k− 1)− (λi+1 + 2(i+ 1)− k− 1) ≥ 0 by λi − λi+1 ≥ 2,
for i = 1, . . . , k − 1; the sum of all the parts of the partition is preserved under α by symmetry;
thus, α is indeed well-defined.
The inverse α−1 : B(n)→ C(n) is given by

(λ1, . . . , λk)
α−1

←−−→ (λ1 + k − 1, . . . , λi − 2i+ k + 1, . . . , λk − k + 1)

and is also well-defined by the definition of B(n). We conclude that |C(n)| = |B(n)|, and hence

∞∑
n=0

C1(n)q
n =

∞∑
n=0

|B(n)|qn

= 1 +

∞∑
n=1

∞∑
k=1

|B(n, k)|qn

where B(n, k) is the set of all partitions of n with k parts and λk ≥ k. Note that the number of
such partitions is the number of partitions of n − k2 into at most k parts: a bijection is given by
removing the k × k Durfee square from the Young Diagram of λ ∈ B(n, k) (see Figure 4).

Figure 4. λ = (8, 6, 5, 4)
Figure 5. λ = (4, 2, 1)
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We have

1 +

∞∑
n=1

∞∑
k=1

B(n, k)qn = 1 +

∞∑
k=1

∞∑
n=1

B(n, k)qn

= 1 +

∞∑
k=1

∞∑
n=1

pk(n− k2)qn

= 1 +

∞∑
k=1

∞∑
n=1

pk(n)q
n+k2

= 1 +

∞∑
k=1

qk
2

∞∑
n=1

pk(n)q
n

= 1 +

∞∑
k=1

qk
2

(1− q)(1− q2) · · · (1− qk)

= G(q)

Therefore, G(q) is both the generating function for partitions with parts differing by at least two,
and the generating function for partitions with smallest part no less than the number of parts.

Let B′(n) be the set of partitions of n with smallest part strictly greater than the number of
parts. The reader can check that C′(n) is isomorphic to B′(n) by

(λ1, . . . , λk)←→ (λ1 − k + 1, . . . , λi + 2i− k − 1, . . . , λk + k − 1)

and that B′(n) is in turn isomorphic to the set of all partitions of n− k2 − k with at most k parts
(Figure 6 gives an explicit bijection). Putting this together, we have

Figure 6. λ = (8, 6, 5, 5) Figure 7. λ = (4, 2, 1, 1)

∞∑
n=0

C2(n)q
n =

∞∑
n=0

|B′(n)|qn = 1 +

∞∑
n=1

∞∑
k=1

|B′(n, k)|qn

= 1 +

∞∑
k=1

∞∑
n=1

pk(n− k2 − k)qn

= 1 +

∞∑
k=1

∞∑
n=1

pk(n)q
n+k2+k

= 1 +

∞∑
k=1

qk
2+k

(1− q)(1− q2) · · · (1− qk)

= H(q)

where B′(n, k) is defined similarly as B(n, k).

5. Combinatorial proof

In this section, we will state and prove the two symmetry equations, ultimately leading to a
proof of Theorem 2.3. One of the main ideas (due to Andrews [And79]) is to use iterated Durfee
squares, or more generally, Durfee m-rectangles, to study the Rogers Ramanujan identities.
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By construction, the Durfee m-rectangle splits a partition λ into two smaller partitions to the
right of and below the rectangle. As long as the λ is not in Q, the lower partition will be nonempty.
Therefore, we can further separate the lower partition into two smaller partitions via its Durfee
m-rectangle (see Figure ). Thus, λ consists of two iterated Durfee m-rectangles, a partition α to
the right of the larger rectangle, a partition β between the two rectangles, and a partition γ below
the smaller rectangle. Let sm(λ) (resp. tm(λ) denote the height of the first (resp. second) iterated
Durfee m-rectangle; we write s = sm(λ) and t = tm(λ) for short. By construction, we have s ≥ t.
We are now ready to define the (2,m)-rank of a partition.

Definition 5.1. For m ≥ 1, or m = 0 and λ ∈ P \Q, the (2,m)-rank of λ r2,m(λ) is given by

r2,m(λ) = β1 + αs−t−β1+1 − γ′1
The statistic r2,m(λ) is a special case of the more general (k,m)-rank, used by Andrews [And79]

to prove his generalizations of the Rogers Ramanujan identities.
We can now define sets of partitions based on the notion of (2,m)-rank. Let Hn,m,r denote set

of partitions of n with (2,m)-rank equal to r. Similarly define Hn,m,≤r and Hn,m,≥r in the obvious
fashion. As for the sizes of these sets, let h(n,m, r) = |H(n,m, r)|, h(n,m,≤ r) = |H(n,m,≤ r)|,
and h(n,m,≥ r) = |H(n,m,≥ r)|. Clearly, all partitions of n have (2,m)-rank either less than r
or no less than r; this implies,

p(n) = h(n,m,≤ r) + h(n,m,≥ r + 1)

for all r ∈ Z and m > 0. If m = 0, we have

p(n)− q(n) = h(n, 0,≤ r) + h(n, 0,≥ r + 1)

The proofs of the following two symmetries will rely solely on combinatorial methods; we will save
their algebraic relevance for the next section.

h(n, 0, r) = h(n, 0,−r) (first symmetry)

h(n,m,≤ −r) = h(n− r − 2m− 2,m+ 2,≥ −r) (second symmetry)

5.1. Proof of the first symmetry. The idea is to define a two-step involution φ on P \Q which
preserves the Durfee squares but changes the sign of the rank. The map φ can be thought of as

sending (α, β, γ) to some 5-tuple of partitions (µ, ν, π, ρ, σ), and then to a new triple (α̂, β̂, γ̂). For

any λ ∈ P \ Q, its image φ(λ) is constructed by deleting α, β, γ and replacing them with α̂, β̂, γ̂,
respectively.

Definition 5.2. (Definition of φ)
Step 1: Let µ = β.

Remove the parts αs−t−βj+j for 1 ≤ j ≤ t; let ν consist of the parts removed, and π
consist of the parts not removed from α (assume all the parts are arranged in nonincreasing
order so that ν and π are well-defined).

For each 1 ≤ j ≤ t, define

kj = max{k ≤ s− t : γ′j − k ≥ πs−t−k+1}

For 1 ≤ j ≤ t, define ρj = kj and σj = γ′j − kj .
Step 2: Define α̂ = π ∪ σ, β̂ = ρ, and γ̂′ = µ+ ν (see Figure ?? for an example).

It turns out to be more convenient to talk about things in terms of the conjugate of γ rather than
the partition γ itself; since γ′ is attached to the second Durfee square (which has width t−m), we
have ℓ(γ′) ≤ t−m. Thus, γ′ has a fixed upper bound on the number of parts, unlike γ.

Let us elaborate on the definition of kj . Define the set Sj = {k ≤ s− t : γ′j − k ≥ πs−t−k+1} for
convenience. Note that 0 is always in Sj because πs−t+1 = 0, so kj is indeed well-defined. Since
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kj = maxSj , we have kj + 1 ̸∈ Sj . If kj < s − t, then γ′j − (kj + 1) < πs−t−(kj+1)+1, so we have
γ′j − kj ≤ πs−t−kj

. This gives the useful inequality

(5.1) πs−t−kj+1 ≤ γ′j − kj ≤ πs−t−kj

as long as kj < s − t (we consider the case when kj = s − t separately). In fact, we chose
kj to be the unique k < s − t that satisfies the inequality (5.1). To see this, suppose we have
k ≤ s − t and πs−t−k+1 ≤ γ′j − k ≤ πs−t−k. This implies k is in Sj , while k + 1 is not. But note
whenever we have k1, k2 such that k1 ∈ Sj and k2 < k1, k2 must also be in Sj by the inequality
γ′j − k2 > γ′j − k1 ≥ πs−t−k1+1 ≥ πs−t−k2+1. Thus, k can only be the maximum of the set Sj .

We now begin the core of the proof of the first symmetry.

Lemma 5.3. The map φ : P \Q→ P \Q is well-defined.

Proof. Let us check that ρ and σ are indeed partitions, i.e. ρ1 ≥ ρ2 ≥ · · · ≥ ρt and σ1 ≥ σ2 ≥ · · · ≥
σt. We first prove kj ≥ kj+1 for j = 1, . . . , t − 1. Informally, the condition γ′j+1 − k ≥ πs−t−k+1

is “stricter” than the condition γ′j − k ≥ πs−t−k+1 since γ′j+1 ≤ γ′j . In other words, we have
kj+1 + πs−t−kj+1+1 ≤ γ′j+1 ≤ γ′j ; thus, kj+1 ∈ Sj and kj+1 ≤ maxSj . Next, we verify that
γ′j − kj ≥ γ′j+1 − kj+1; this is clear if kj = kj+1. Otherwise, kj+1 ≤ kj − 1 and kj+1 < s− t, so

πs−t−kj+1+1 ≤ γ′j+1 − kj+1 ≤ πs−t−kj+1
≤ πs−t−kj+1 ≤ γ′j − kj

Now it suffices to show that α̂ has at most s parts, β̂ has at most t parts with largest part no
larger than s − t, and γ̂′ has at most t parts. The first claim follows by the definition α̂ = π ∪ σ,
π having at most s − t parts and σ having at most t parts. Next, β̂ = ρ has at most t parts by

definition and β̂j = kj ≤ s− t for all 1 ≤ j ≤ t. Finally, µ and ν each have at most t parts, so their
sum γ̂′ has at most t parts as well.

It is now clear that the first and second Durfee squares of φ(λ) are indeed the same as the
ones from λ, and since the second square is well-defined, φ(λ) is indeed a non-Rogers-Ramanujan
partition. ■

Let us introduce some notation for Lemma 5.4, which states that φ2 is the identity map. We will
apply φ to λ ∈ P \Q twice and show that φ2(λ) = λ. For 1 ≤ j ≤ t, we define

k̂j = max {k ≤ s− t : γ̂′j − k ≥ ˆπs−t−k+1}
Let (µ̂, ν̂, π̂, ρ̂, σ̂) be the 5-tuple of partitions given by applying the first step of φ to φ(λ), and let
(α∗, β∗, γ∗) be the triple obtained from the second step. Thus, Lemma 5.4 is equivalent to showing
that α = α∗, β = β∗, and γ = γ∗. As the notation can become quite cumbersome, refer to Figure 8.

Lemma 5.4. The map φ is an involution.

Proof. First, observe that ρ = β̂ = µ̂ by definition.
We know from (5.1) that πs−t−kj+1 ≤ σj ≤ πs−t−kj

, assuming kj < s− t. In other words, σj is
“sandwiched” between two consecutive parts of π; this tells us how the parts of π ∪ σ are ordered:

σℓ(σ), . . . , σj+1, πℓ(π), . . . , πs−t−kj+1 ≤ σj ≤ πs−t−kj
, . . . , π1, σj−1, . . . , σ1

Since there are s − t − kj + j terms on the right hand side, we conclude that σj = α̂s−t−kj+j .
Therefore, σj = ν̂j ; of course, this is true even if kj = s− t.

Thus, we have γ′ = σ + ρ = ν̂ + µ̂ = (γ∗)′.
Next, π ∪ σ = α̂ = π̂ ∪ ν̂ and σ = ν̂ implies that π = π̂.

If k̂j < s− t, then k̂j is the unique integer at most s− t satisfying

π̂s−t−k̂j+1 ≤ γ̂
′
j − k̂j ≤ π̂s−t−k̂j

but since π̂ = π and γ̂′j = µj + νj = βj + νj , we have

πs−t−k̂j+1 ≤ βj + νj − k̂j ≤ πs−t−k̂j
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Figure 8. Visual accompaniment to Lemma 5.4. Equal partitions are
highlighted in the same color. Arrows going in one direction represent union and
addition; arrows going in both directions signify equality.

By definition, νj = αs−t−βj+j . Consider the parts α1, α2, . . . , αs−t−βj+j−1. Exactly j − 1 of
these are parts of ν, namely ν1, . . . , νj−1; the remaining s − t − βj parts are parts of π, namely
π1, . . . , πs−t−βj

. We conclude that

πs−t−βj+1 ≤ νj ≤ πs−t−βj

and
πs−t−βj+1 ≤ βj + νj − βj ≤ πs−t−βj

so µj = βj = k̂j = ρ̂j where the middle equality is by the uniqueness of k̂j . It follows that β = β∗.
Finally, we have µ+ ν = γ̂′ = ρ̂+ σ̂ and µ = ρ̂, so ν = σ̂. Therefore, α = ν ∪ π = σ̂ ∪ π̂ = α∗. ■

γ

β

α

φ

β µ

+

Lemma 5.5. If λ ∈ P \Q has (2,m)-rank r2,m(λ) = r, then r2,m(φ(λ)) = −r.

Proof. Suppose β1+αs−t−β1+1− γ′1 = r. In order to prove that β̂1+ α̂s−t−β̂1+1− γ̂
′
1 = −r, we can

rewrite everything in terms of µ, ν, π, ρ, and σ.
First, note that β1 + αs−t−β1+1 − γ′1 = µ1 + ν1 − ρ1 − σ1. Using the result that ν̂ = σ from

Lemma 5.4, we have α̂s−t−β̂1+1 = ν̂1 = σ1. Furthermore, β̂1 = ρ1 and γ̂′1 = µ1 + ν1. Hence,

β̂1 + α̂s−t−β̂1+1 − γ̂
′
1 = ρ1 + σ1 − µ1 − ν1. ■

5.2. Proof of the second symmetry. We wish to establish a bijection

ψm,r : Hn,m,≤−r → Hn−r−2m−2,m+2,≥−r.

For reasons that will become apparent, we require the two Durfee m-rectangles to have nonzero
width. If m = 0, then the heights being nonzero guarantees nonzero widths. If m > 0, note that
the second Durfee m-rectangle has nonzero width if γ′1 > 0; by extension, the first m-rectangle also
has nonzero width.

Definition 5.6. (Definition of ψm,r)
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6. Proof of Schur’s Identity

For j ≥ 0, we define

aj = h(n− jr − 2jm− j(5j − 1)/2,m+ 2j,≤ −r − j)
bj = h(n− jr − 2jm− j(5j − 1)/2,m+ 2j,≥ −r − j + 1)

By the second symmetry, we have

bj+1 = h(n− jr − 2jm− j(5j − 1)/2− r − 2m− 5j − 2,m+ 2j + 2,≥ −r − j) = aj

The point is to start with a0 = h(n,m,≤ −r) and repeatedly add zero in the form of (aj − bj+1)
or −(aj − bj+1). Thus,

7. Second Rogers-Ramanujan identity

8. Final remarks
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