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Background

Euler discovered the Euler-Maclaurin Formula in 1732 through the Basel
Problem, which asks for the value of

∑∞
n=1

1
n2
. It was later independently

discovered by Maclaurin in 1742. The Basel problem had stumped
mathematicians for around 90 years prior to Euler’s solution.

Euler’s solution consisted of solving for the coefficient of x3 in the infinite
expansion of sin x in two ways. He calculated it as −1

6 through the
Maclaurin Series of sin x and used a factorization known as the Weirstrass
Factorization to show that the coefficient could also be expressed as
−
∑∞

n=1
1

(nπ)2
. Setting these equal with some slight rearranging gives us

that the answer to the Basel Problem is π2

6
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Background

Euler seemed to be dissatisfied with only an answer to the Basel Problem
and wanted to be able to solve or approximate infinite series with their
respective integrals. However, when deriving the Euler-Maclaurin Formula,
both Euler and Maclaurin were unable to solve for the exact remainder
term and it wasn’t until 1823 when Poisson discovered it.
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Definitions

Definition
The Bernoulli numbers bn can be defined by the following power series:

x

ex − 1
=

∞∑
n=0

bn
xn

n!

The first few terms are as follows:

n bn

0 1

1 -12
2 1

6

3 0

4 − 1
30

5 0

6 1
42
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Definitions

There happens to be no simple pattern to the Bernoulli numbers, but a
good approximation is

b2n ≈ (−1)n−14
√
πn(

n

πe
)2n

for large values of n.

Euler-Maclaurin Formula July 8th, 2022 5 / 14



Definitions

Definition
In a similar fashion, we can define the Bernoulli Polynomial for
nonnegative integers n as such:

zezx

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!

or

Bn(x) =
n∑

k=0

(
n

k

)
bkx

n−k

The first few polynomials can be expressed as follows:

B0(x) = 1

B1(x) = x − 1

2

B2(x) = x2 − x +
1

6

Euler-Maclaurin Formula July 8th, 2022 6 / 14



Definitions

Definition
In a similar fashion, we can define the Bernoulli Polynomial for
nonnegative integers n as such:

zezx

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!

or

Bn(x) =
n∑

k=0

(
n

k

)
bkx

n−k

The first few polynomials can be expressed as follows:

B0(x) = 1

B1(x) = x − 1

2

B2(x) = x2 − x +
1

6

Euler-Maclaurin Formula July 8th, 2022 6 / 14



Definitions

Definition
In a similar fashion, we can define the Bernoulli Polynomial for
nonnegative integers n as such:

zezx

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!

or

Bn(x) =
n∑

k=0

(
n

k

)
bkx

n−k

The first few polynomials can be expressed as follows:

B0(x) = 1

B1(x) = x − 1

2

B2(x) = x2 − x +
1

6
Euler-Maclaurin Formula July 8th, 2022 6 / 14



Definitions

Definition
We define the Periodic Bernoulli Function as such, where {x} = x − ⌊x⌋:

Pn(x) = Bn({x})

This will be used to express the remainder term.
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Euler-Maclaurin Formula

Euler-Maclaurin theorem

For a function f (x) that is p times differentiable on the interval [m, n] for
a positive integer p, we have

n∑
i=m

f (i) =

∫ n

m
f (x)dx+

f (n) + f (m)

2
+

p∑
k=2

bk
k!

(f (k−1)(n)− f (k−1)(m))+Rp

where

Rp = (−1)p+1

∫ n

m
f (p)(x)

Pp(x)

p!
dx
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Proof

We proceed with an outline of proof by induction.
Consider the integral ∫ k+1

k
f (x)dx =

∫ k+1

k
udv

where k is an integer

and
u = f (x)

du = f ′(x)dx

dv = P0(x)dx

v = P1(x)

Integrating by parts gives us∫ k+1

k
f (x)dx = [uv ]k+1

k −
∫ k+1

k
vdu

= B1(1)f (k + 1)− B1(0)f (k)−
∫ k+1

k
f ′(x)P1(x)dx

Euler-Maclaurin Formula July 8th, 2022 9 / 14



Proof

We proceed with an outline of proof by induction.
Consider the integral ∫ k+1

k
f (x)dx =

∫ k+1

k
udv

where k is an integer and
u = f (x)

du = f ′(x)dx

dv = P0(x)dx

v = P1(x)

Integrating by parts gives us∫ k+1

k
f (x)dx = [uv ]k+1

k −
∫ k+1

k
vdu

= B1(1)f (k + 1)− B1(0)f (k)−
∫ k+1

k
f ′(x)P1(x)dx

Euler-Maclaurin Formula July 8th, 2022 9 / 14



Proof

We proceed with an outline of proof by induction.
Consider the integral ∫ k+1

k
f (x)dx =

∫ k+1

k
udv

where k is an integer and
u = f (x)

du = f ′(x)dx

dv = P0(x)dx

v = P1(x)

Integrating by parts gives us∫ k+1

k
f (x)dx = [uv ]k+1

k −
∫ k+1

k
vdu

= B1(1)f (k + 1)− B1(0)f (k)−
∫ k+1

k
f ′(x)P1(x)dx

Euler-Maclaurin Formula July 8th, 2022 9 / 14



Proof

We proceed with an outline of proof by induction.
Consider the integral ∫ k+1

k
f (x)dx =

∫ k+1

k
udv

where k is an integer and
u = f (x)

du = f ′(x)dx

dv = P0(x)dx

v = P1(x)

Integrating by parts gives us∫ k+1

k
f (x)dx = [uv ]k+1

k −
∫ k+1

k
vdu

= B1(1)f (k + 1)− B1(0)f (k)−
∫ k+1

k
f ′(x)P1(x)dx

Euler-Maclaurin Formula July 8th, 2022 9 / 14



Proof

Summing k from 0 to n − 1 and plugging in B1(0) = −1
2 ,B1(1) =

1
2 , we

get ∫ 1

0
f (x)dx +

∫ 2

1
f (x)dx + . . .

∫ n

n−1
f (x)dx =

∫ n

0
f (x)dx

=
f (0)

2
+ f (1) + f (2) + . . .+ f (n − 1) +

f (n)

2
−
∫ n

0
f ′(x)P1(x)dx

Some simple rearranging gives us

n∑
k=0

f (k) =

∫ n

0
f (x)dx +

f (n) + f (0)

2
+

∫ n

0
f ′(x)P1(x)

which concludes the base case.
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Proof

Now let’s take a look at the step to the case where p = 2.

Consider the error term for the case p = 1∫ k+1

k
f ′(x)P1(x)dx =

∫ k+1

k
udv

where
u = f ′(x)

du = f ′′(x)dx

dv = P1(x)dx

v =
1

2
P2(x)
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Proof

Again, integrating by parts gives us∫ k+1

k
f ′(x)P1(x)dx = [uv ]k+1

k −
∫ k+1

k
vdu

=
b2
2
(f ′(k + 1)− f ′(k))− 1

2

∫ k+1

k
f ′′(x)P2(x)dx

Summing k from 0 to n − 1 once again gives us the p = 2 case where

n∑
k=0

f (k) =

∫ n

0
f (x)dx+

f (n) + f (0)

2
+
b2
2
(f ′(k+1)−f ′(k))−1

2

∫ n

0
f ′′(x)P2(x)
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Euler’s Constant

Something interesting happens when we consider the formula for
f (x) = 1

x . Let m = 1 and p = 1 in the formula and we result the following:

n∑
i=1

1

i
= log n +

1

2n
+

1

2
+

∫ n

1

P1(x)

x2
dx

Now let

R(n) =
1

2n
+

1

2
+

∫ n

1

P1(x)

x2
dx

Note that P1(x)’s absolute value is bounded by 1
2 and thus R(n) converges

when n approaches ∞. Let us denote γ = limn→∞ R(n).
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Euler’s Constant

A good approximation for Euler’s Constant is
γ = 0.5772156649015328606065120900.... It’s still an open problem
whether γ is rational or not and some even believe it is transcendental.
What do you think it is?
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