EULER-MACLAURIN FORMULA
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ABSTRACT. In this paper we introduce and detail the Euler-Maclaurin Formula which re-
lates summations to their integral counterparts. We start off with the Basel Problem which
inspires Euler to derive such formula, delve into an inductive proof of the formula, then
explore Euler’s constant and other applications of this formula.

1. INTRODUCTION

Our story begins with the Basel Problem, which although quite simple to state, had
stumped mathematicians for over 90 years. FEuler solved the problem but it left him unsat-
isfied; he must find a general way to approximate sums like the Basel Problem. Thus he
later derived the Euler-Maclaurin formula in 1732, which was later independently derived by
Maclaurin in 1742. However, when deriving the Euler-Maclaurin Formula, both Euler and
Maclaurin were unable to solve for the exact remainder term and it wasn’t until 1823 when
Poisson discovered it.

The formula can be used to approximate finite sums and infinite series by their integral
counterparts and conversely approximate integrals by finite sums. More specifically, an
estimation of Y1 = f(i) can be found through the integral [ f(t)dt with an error term that
can be expressed through the Bernoulli numbers and a remainder term expressed through
the Bernoulli Periodic Functions. Euler derived this formula to approximate many of the
converging infinite series that he solved. In it’s general form, it can be written as:

/ £t dt+2 Brir (1001) — 10(a)) + Ry,

where

ﬂ /b B (t)f(k+1)(t)dt

(k’ + 1)] 3 k+1 )

under the condition that f(x) is k times differentiable on the interval [m, n] for all integers
k > 0. The Ry represents the remainder term and we’ll go more in depth into its notation
later.

Ry, =

2. BASEL PROBLEM

The Basel Problem asks for the sum of the reciprocals of the squares of the positive

integers, or
o0

1
> ="
n=1
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. We can quickly test that it converges by showing that
1 1 1 1 1 1 1 1
§+§+3—2+E+§+@+ﬁ+§+...

is less than

1 1 1 1 1 1 1 1
ﬁ+§+2—2+4—2+ﬁ+ﬁ+ﬁ+§+...

which clearly converges to 2.

Here Euler decides to express the coefficient of 23 in the infinite expansion of sinz in 2
ways. First, he expresses sinx as the Maclaurin series

00
x2n+1

Z(_l)n@n—i— 1)!

n=0

and clearly the coefficient of % is —2.

Next, he uses the Weirstrass factorization to express

sine = azx(x +7)(x —m)(z+ 27)(z — 27) ... = ax H(x2 — (n7)?)

This implies that

sin 1
a =
v (2% —m?)(a? = (2m)?)(2® — (37m)?) ...
, and combined with lim,_, Si;”” =1,
1
a =

[ (@)= @m)?][=(Bm)?)]...
After expansion, our result for the 23 coefficient is

o

1
~ 2 G

n=1
Setting this equal to —% with a bit of rearranging, we conclude that

=1
> =5

With this, Euler had solved the Basel Problem, and this gave him his biggest inspiration
for the Euler-Maclaurin formula.

3. PRELIMINARIES

To understand the Euler-Maclaurin Summation Formula, we must first define the Bernoulli
numbers b, and the Bernoulli polynomials B,,(x). They both occur in a number of different
theorems involving analysis and number theory.
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3.1. Bernoulli Numbers. The Bernoulli numbers b,, can be defined by the following power
series:

n=0
or
d” T
b, = —
dac”(e$—1)x_0
n b, I
0 1
1
2 3
3 0
T
4 -5
5
6 4

Notice how for any integer k > 1, box_1 = 0, and how b, is negative if divisible by 4 and
positive otherwise. This is trivialized by the Taylor expansion of —*. There happens to be
no simple pattern to the Bernoulli numbers, but a good approximation is

bon = (—1)"4y/7n(

N \on

7re)

3.2. Bernoulli Polynomials. In a similar fashion, we can define the Bernoulli Polynomial
for nonnegative integers n as such:

23T e peg

There are 4 important properties about the Bernoulli Polynomials.
Endpoint Property:

B,(1) = i ("> B; = B, = B,(0), n>?2

=0 \J

Differentiation:

Integration:

Upper Bound:

| Bor(t)] < [Bar|, 720
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Proof. To prove this upper bound, let’s first define the Periodic Bernoulli Function. Now
define the Periodic Bernoulli Function as such, where {z} =2 — |z]:

Po(x) = Bn({z})
We can express the remainder term R, as

b
Ri— % [ Bt

Now let’s begin by repeatedly differentiating our Bernoulli polynomial. This gives

Br(Lj) —

B, i(t), j=0,1,....n, n>1,
implying

BO(0) = BY(1), j=0,1,....n—2,

n

Therefore P, € C"*(R). Now let’s consider the Fourier series of P,,

o0

Pn(t): Z ck€2m’kt

k=—o00

P,(t) is real, so c_y = ¢. Letting ¢, = ax + ibg, we have a_p = aj and b_j, = —by. Thus,

P.(t) =ap+2 Z ay, cos(2mikt) + 2 Z by sin(2mikt).
k=1 k=1
The coeflicients are

1
k= / B, (t)e *™*qt.
0
For k =0,

1
co = / B,(t)dt =0, n>1,
0
and for other k we get

—2mikt |

e 1 . —n.
= [By(t : B_1(t)e ™ *qt = = .
¢ = [Ba )—27rik:]0+n/0 ni(b)e rikyn T

Thus ag = by = 0 and for values of k # 0 we have different formulas for a; and by as
follows:

2r)!
ap = (=1)"1 (2<7rk>)2’“’bk =0,n=2r
. (2r —1)!
ak:(),bk:(—l) W,HZQT—l

From this we can deduce that
o0

Por(t) = (=1)7"2(20)1 3 ﬁ

k=1
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. sin(27kt)

Py, 1(t) = (—=1)"2(2r — 1)! —_—

2 1() ( ) ( r ) EZQ(QWk)%_l

We conclude the proof by piecing it all together as follows:
‘327‘ = ’P2r(0>’ = ‘BZr’
k=1
O
4. PROOF

4.1. Proof 1. We proceed with proof by induction. To prove the formula for k£ = 0, we first
rewrite [ | f(t)dt, where n is an integer, using integration by parts

/n:f(t)dt:/n:% (t—n—i—%) f(t)dt = (t—n+%) f(t) :1—/7:1 (t—n+%> f(t)dt

=;ﬂm+fm—n%1[;G—n+%)f®ﬁ

Because t —n + 3 = By(t) on the interval (n — 1,n), this is equal to

| =50+ -1~ [ B
From this, we get
fo) = [ e 50— s )+ [ B @
Now we take the sum of this expression for n = a + 1,a + 2,...,b, so that the middle term

on the right telescopes away for the most part:

b
t/de- £(b) - ﬂ»+/BﬁW®ﬁ

n= a+1

which is the Euler-Maclaurin formula for k£ = 0, since B; = —%. Suppose that k£ > 0 and the
formula is correct for k — 1, that is

1 k=1 pb
/fﬁ+z EU B () — o) + S [ Bt o

a<n<b

We rewrite the last integral using integration by parts and the fact that By is continuous
for k > 2 and By () = (kK + 1)By(t) for k>0 :

[ mwsroa= [ Zal o

k+1
b 1 b

“hx1l) Biyr (8) "D (t)dt

1

= Bt M()

a
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Using the fact that By(n) = By for every integer n if k& > 2, we see that the last term is
equal to

(—1)k+1Bk+1

(fP ) = fO(a) + — / kaH(t)f(’““’(t)dt

(k+1)! (k+1)!
Substituting this and absorbing the left term into the summation yields
/ £t dt+z 7"“ (FOb) - F(a) + Re

4.2. Proof 2. Another way to prove our formula is through first showing the local version
is true then expanding to the global version.

Lemma 4.1. Forr >0 and F € C* 2|0, 1],

/0 F(t)dt = %(F(O) +F(1) =) % (F#*=1(1) — F@=1(0)) + R,

where

1 1
Rr = m/ﬂ BQT+2(t)F(2T+2) (t)dt

Proof. By applying integration by parts twice, we obtain

/ Pyt = / ' Bo(®) ()t = By (1) F(1)]) — / BOF (1)t

= S(FO) + F(1) — L BOF () + 5 /0 By(t)F" (t)dt
= S(F(O0) + F(1) = 22 (F'(1) ~ F/(0)) + Ry

which proves our r = 0 case. Now suppose r > 1, and assume that the lemma holds with
r replaced by r — 1. Applying integration by parts twice, we obtain

1 1
1 @r) ()11 1 ' (2r+1)
“ @i [Borsa () FPV ()] ) — @), Bora () F (t)dt
1 . 1 1 ! .
= _m [B2r+2(t)F(2 ) (t)]() m/o BZT+2(t)F(2 +2)(t)dt
1
— _m (F(2T+1)(1) o F(27‘+1)(0)) + Rr,
which completes the proof. O

Lemma 4.2. Forr >0 and F € C*"2(0,1], there is some £ € (0,1) such that

By,
(2k)!

/1 F(t)dt = %(F(O) + F(1)) — (FE=1(1) — FE=D(0)) — R
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where

B2T+2
Fer+2)
(2r +2)! (&)

Proof. The last term plus the remainder term can be expressed as

_ Barer_ (Fe+D(1) — FC+(0)) + R,

(2r +2)!
__ B [ FP ) ()dt + R, = —R
TN A
where
1 ! 242
R = m/o (BQT+2 - BQT+2(t)) F( o )(t)dt

Using the upper bound on By, (t) of the previous section, the difference By, — Ba,.(t) is of
one sign in [0, 1], because

sgn (Bar) (Bar — Bor(t)) = |Bar| — sgn (Bar) Bay(t) = [Bar| — [Ba(t)| 2 0
So by the Mean Value Theorem, there is some £ € (0, 1) such that

1

1
B
B B r - B r t th(2T+2) - —2T+2 F(2T+2) .
R (QHQ)!/O (Barss — Boria(1) ©) = g F e

O

Now to finish off our proof, we apply the local expansion to the global expansion. Given
an interval [a, b] choose n > 1 and let h = (b —a)/n and x; = a +ih,i =0,1,...,n.

Theorem 4.3. Forr >0 and f € C**%[a,b], there is some & € (a,b) such that

b T
[ e =T = 30 SR (0~ @) - R

2 (2h)!
where
T(h) = 2(F(a) + F0) + B Y f ()
and

BT T T
R = ﬁ(b . G)h2 +2f(2 +2)(€)

Corollary 4.4. Forr >0 and f € C*"?[a,b],

b r
/a f(x)dz =T(h) — kz:; %h% (FD(b) — F2D(a)) + O (hZ+2)

ash —0
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Proof. Let F(t) = f (z;-1 + ht),t €[0,1],i =1,...,n. Then Lemma 2 gives

/ f(z)dz = h /F()dt:

By, _ _
5 (f (xi1) + f(xy)) — Z mh% (f(% D (2;_y) — f&D (2:)) — R;
k=1 )
where
_ Baryo 2r+3 £(2r4-2)
o(2r+ 2)!h / (&)
for some §; € (x;_1,x;). Summing this equation over ¢ = 1,. .., n yields the desired expansion

except that the remainder term is

R— ZR . 232:; 2r+3Zf2r+2 51

However, an application of the Mean Value Theorem gives

D &) = nfPrA ()

i=1

for some € € (a,b), and thus we are done. O

5. APPLICATIONS

5.1. Euler’s Constant. Something interesting happens when we consider the formula for
f(z) = % Let a =1, b =n, and k = 1 in the formula and we result the following:
"1 11 " Py(x)
- =1 — 4+ = d
2. Og”jLQnJrsz/1 2

=1

Rn) = - +1+/n hl@)

2n 2 2

Note that P;(z)’s absolute value is bounded by 3 and thus R(n) converges when n ap-
proaches co. Let us denote 7 = lim,,_,, R(n). This v is actually known as Euler’s Constant.
A good approximation is

Now let

v = 0.5772156649015328606065120900....

It is unknown whether Euler’s Constant is rational or not and it is also believed that it could
be transcendental. The question is left as food for thought.

5.2. Stirling’s Formula. Another interesting application of the formula is the Stirling’s
approximation formula, which tells us that

Theorem 5.1.
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Proof. Let us take f(x) =logz,k =0,a =1, and b = n, where n is any positive integer:

. 1 " Pt
Zlogi:(nlogn—n—i-l)—i- o§n+/ lt( )dt
i=1 1

Simplifying and extracting the error term R(n), we get

logn! = (n+%) logn—(n—1)+f"P1_(t)dt

t
R(n) =logn! — (n + %) logn +n = ln Plt%t)dt +1

n n P
+ / 2(t)dzf
1 1

t2

Integration by parts gives us

/n A, _ ()

t t

But Py(z) =>".°, 262’;&;’?% so using that the absolute value of cosine function is at most 1

and the series > ;2 & converges, we sce that absolute value of Py(z) is bounded. Then the
integral above converges when n — oo :

C = lim R(n)

n—0o0

We can obtain the exact value of C' in the following way. We have
2log(2-4---2n) = 2nlog2 + 2logn!
=2nlog2+ (2n+ 1)logn — 2n + 2R(n)
= (2n+ 1)log2n — 2n —log 2 + 2R(n)
On the other hand,

log(2n + 1)! = <2n + g) log(2n+1) — (2n+ 1) + R(2n+ 1)

Subtracting the second expression from the first,
2-4---2n
1-3---(2n+1)

1
log = (2n+1)log b log(2n+1)+1—1log2+2R(n) — R(2n + 1)

2n+1
2n+1
= —log <1+2—) = 510g(2n+ 1)+1—log2+2R(n) — R(2n+1)
n

Now let’s apply Walli’s product formula.

Theorem 5.2. 5. 4.0 .
. ) n
li — =
oo 1.3 (2n+1) vn VT

Using continuity of logarithmic function in the formula above, we get

4---2n, . 2n+1 .
32.?‘(23_1) \/2711+1 = —lim,_, log (1 + %) + 1 —log2 + lim, o (2R(n) —

lim,, o log T
R(2n+1)).
We can rewrite it as

1 2:4.--2 1
log — lim n — =(C —log2

\/ﬁn%oo1~3---(2n+1)\/ﬁ

Thus, we have C' = log v/2m. Substituting back to the remainder term above and we are
done. 0
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5.3. Superconvergence of the Trapezoidal Rule.

Corollary 5.3. Suppose r > 0 and f € C**2[a,b]. If fP=D(b) = fC=Y(a) for k =
1,...,r, then

/ f(x T(h) 4+ O (h*"*?) as h — 0.

This will be the case for any r > 0 for functions f € C*°(R) that are periodic with period
b — a. In fact for some functions of this type, the trapezoidal rule is exact.

Theorem 5.4. Let [a,b] = [0,27] and let

n—1 n—1
= Z a cos(kx) + Z b sin(kx),
k=0 k=1

for any choice of ay, and by, in R. Then T'(h) is exact for f.
Proof. All we need to do is show that T'(h) is exact for f(z) := e** k=0,1,...,n—1. The

integral of f is
2 p—
/ o)z = m, k=0
0, k>0

On the other hand, since f(0) = f(2m),

T(h) = (%(f( )+ £(2m) +Zf (2”>)
Sy (25) RS e

=0
So if k=0,

T(h) = hn = 2m,
and if 1 <k<n-—1,

and thus we are done. O

5.4. Sum of p-th Powers. A neat application is a formula for sums of p-th powers.

Corollary 5.5. Forp > 1,

The first few examples are as such:
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j=in?—in,
=1
2]2—%713 %nZ—l—%n,
Z] L Laile
:211]4—%715 5 4+Z1))n3 %n,

Proof. Let f(z) =aP,p > 1, and [a,b] = [0,n]. Then

/ f(x / xPdx = an.
p+1

With h = 1, applying the trapezoidal rule for f on [0, n| gives

n—1
1 .
h) = En” + Z JP.
7=1
Let r be such that p = 2r or p = 2r + 1. Then applying the Euler-Maclaurin Formula

" d Boy, P! —2k+1
2Pdx =T(h) — Z nP— 2Rt
/0 £ (2k)! (p— 2k +1)!

and therefore,

+1 r
Y = AR N Pl Bogn? =21
prl 2 Tpriae\ %

p
AU
P k=0

= —— (Bpr1(n) — Bpya)
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