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1 Introduction
The Greek Mathematician Diophantus of Alexandria first studied the problem of finding
four numbers that satisfied the following property: one plus the product any two elements
in the set is a perfect square. He found the following set of four rational numbers that
satisfy this condition: {1/16, 33/16, 17/4, 105/16}.

Later, Fermat found the first set of four integers to satisfy the condition, the set {1, 3,
8, 120}. Euler was able to add the rational number 777480 / 8288641 to the set such that
this property was preserved. This problem has a long history, attracting the attention of
many,including Fermat, Baker, Davenport etc, with significant progress made in recent
times due to Dujella (2001a) Dujella (2001b) and Dujella (1998).

Definition 1. A set of m numbers (a1, a2, ..., am) is called a Diophantine m-tuple if
ai · aj + 1 is a perfect square for all 1 ≤ i < j ≤ m.

Definition 2. A set of m numbers (a1, a2, ..., am) is called a D(n) m-tuple if ai ·aj+n
is a perfect square for all 1 ≤ i < j ≤ m.

These sets have been explored across many different fields such as integers, rational
numbers, Quadratic fields, Gaussian integers, and have many problems and concepts
related to them.
In this paper we explore the extensions of Diophantine tuples.

2 Elliptic Curves

2.1 Background

We discuss the applications of elliptic curves to diophantine tuples. Elliptic curves have
a wide variety of use in mathematics, as they can be applied to many different problems
from cryptography and algebraic number theory to complex analysis. These figures can
be described by the following equation:

y2 = ax3 + bx2 + cx+ d.
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Figure 1.

The set of rational numbers on the curve can be described as the group E(Q) with the
group operation addition. Let P and Q be two distinct points on E(Q). In the context of
elliptic curves, P +Q is defined as the reflection of P ∗Q over the x− axis, where P ∗Q
is the intersection point of the line PQ with the curve other than P or Q. P +P = 2P is
defined similarly, but P*P is the intersection point of the tangent line at P with the curve
other than P . However, for E(Q) to be a group, there must be an identity element; since
there is no point in the plane that works, we can create an extra point O “at infinity.” O
must be a point on every vertical line for it to serve as the identity element. P + O = P
and O + P = P for all P, so our new set satisfies all the conditions to be a group.

Theorem 1 (Poincaré) [Silverman] Let K be a field and let E be an elliptic curve
that is given by the equation of the form

y2 = x3 + Ax+ b, A,B ∈ K

Let E(K) denote the points of E with coordinates in K,

E(K) = {(x, y) ∈ E : x, y ∈ K} ∪ {O}

then E(K) is a subgroup of the group of all points on E.
Thus the set E(Q) = {(x, y) : y2 = x3+ax2+bx+c : x, y rational}∪{O} is a subgroup

of all the points on E.

2.2 Extending Diophantine Tuples in Rational numbers

Let {a, b, c} be a diophantine triple, which satisfies ab+1 = r2, bc+1 = s2, and ac+1 = t2.
To extend this set (add another element, x), ax + 1, bx + 1, cx + 1 must all be in Q∗2.
Multiplying these conditions, we get that

y2 = (ax+ 1)(bx+ 1)(cx+ 1) (1)

However, not only does this equation need to be satisfied for rational numbers x and y
for the tuple to be extended, the original condition of each of ax+ 1, bx+ 1, and cx+ 1
each being perfect squares must be satisfied.
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First, let’s analyze the elliptic curve, y2 = (ax + 1)(bx + 1)(cx + 1). With the trans-
formations

x → x/abc, y → y/abc (2)

we get the new equation

y2 = (x+ bc)(x+ ac)(x+ ab) (3)

Let E(Q) the set of points with rational coordinates on equation (1), and E ′(Q) be that
of the transformed curve. Some notable points on E(Q) are

A = (−1/a, 0), B = (−1/b, 0), C = (−1/c, 0) (4)

and
P = (0, 1), S = (1/abc, rst/abc). (5)

E ′(Q) contains the points

A = (−bc, 0), B = (−ac, 0), C = (−ab, 0)

P ′ = (0, abc), S ′ = (1, rst)

This is just to convert the elliptic curve with constant term 1, in order to make our
calculations easier. At any point we can use whichever one that is easier to work with.
Let us shift back to E(Q).

2E(Q) is the set of all points with rational coordinates on the curve which can be
expressed as 2P for some point P in E(Q).
In fact, S ∈2E(Q). S = 2R,where

R = (
rs+ rt+ st+ 1

abc
,
(r + s)(r + t)(s+ t)

abc
) (6)

Theorem 2. The x-coordinate of the point T ∈ E(Q) satisfies (3) iff T - P ∈ 2E(Q).
Proof. The proof can be done by 2 descent proposition for elliptic curves, as done in
Dujella (2001a) [Proposition 1].

Thus, we can add x(T ), (the x coordinate of T), to the existing diophantine triple to
get {a, b, c, x(T )}, which is a diophantine quadruple. We also get that every diophantine
triple can be extended to a diophantine quadruple using this construction.

Theorem 3. If T satisfies Theorem 1, then for the points T±S it holds that x(T )x(T±
S) + 1 is a square.
Proof. The proof of this theorem can be achieved by direct computation.

Lemma 1. The numbers T ± S satisfy Theorem 1.
Proof. This statement can be proved due to the fact that S ∈2E(Q).

We get that the diophantine quadruple {a, b, c, x(T )} can always be extended to a
diophantine quintuple {a, b, c, x(T ), x(T+S)} or {a, b, c, x(T ), x(T-S)}.

So far, we can conclude that there are infinitely many diophantine triples, quadruples,
and quintuples, given in the previous form.

Adding both x(T +S) and x(T−S) to {a, b, c, x(T )}, we get a set of six numbers which
is almost a diophantine sextuple; however one condition is not met: x(T +S)x(T −S)+1
must be a perfect square. This condition is met if S is a point of order 3. Thus, since
there are infinitely many points of order 3, there can be infinitely many constructions of
diophantine sextuples.

3



3 Diophantine Tuples in integers
We now explore diophantine tuples throughout the integers.

Definition 1. A set of m positive integers

(a1, a2, ..., am)

is called a Diophantine m-tuple if
ai aj + 1

is a perfect square for all
1 ≤ i < j ≤ m

We can use what we have came up with on diophantine tuples in rational numbers,
since all integers are rational numbers. First we can look at some diophantine integer
tuples for smaller values of m.

Some examples for diophantine triples are sets of the form:

{k − 1, k + 1, 4k} or {F2k, F2k+2, F2k+4}

Since S ∈ E(Q), by Theorem 1, either x(P + S) or x(P − S) can be added to the
original diophantine triple, {d, e, f}

Let y = mx + b be the equation of the line between P ′ and S ′, and x′ be the x
coordinate of P ′ + S ′

(mx+ b)2 = x3 + ax2 + bx+ c = (x+ de)(x+ df)(x+ ef)

x3 + (a−m2)x2 + (b− 2mb)x+ (c− b2) = 0

The slope between P ′ and S ′ is rst− def , which is m. So:

x′ = m2 − a− (0 + 1) = (rst− def)2 − (de+ df + ef)− 1

x′ = (de+ 1)(df + 1)(ef + 1)− 2rstdef + (def)2 − (de+ df + ef)− 1 =

2(def)2 + def(d+ e+ f)− 2rstdef

Therefore, the x coordinate of P + S is equal to d+ e+ f + 2def − 2rst.
Similarly, the coordinate of P − S is equal to d+ e+ f + 2def + 2rst, so we can extend
any diophantine triple in integers to a diophantine quadruple.

4 Solutions by Pellian equations
Suppose the set (a, b, c) is a diophantine triple, and let ab+1 = x2, bc+1 = y2, ac+1 = z2

for integers x, y, z. We get the following system of two Pellian equations:

bz2 − cy2 = b− c (7)

az2 − cx2 = a− c (8)
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We are tasked with finding integer solutions (x, y, z) to (8). These equations have
solutions that are of exponential and recursive sequences, leading us to the problem of
finding their intersection. This system can be completely solved for specific (a, b, c).

Now let us consider these equations with no restrictions.

Lemma 1. If there are integers (z, x) and (z, y) that satisfy (8), theory of Pellian
equations says that there exist finite sets i ∈ {1, .., i0} and j ∈ {1, .., j0} such that

z
√
a+ x

√
c = (z

(i)
0

√
a+ x

(i)
0

√
c)(s+

√
ac)m (9)

z
√
b+ y

√
c = (z

(j)
1

√
b+ y

(j)
1

√
c)(t+

√
bc)m (10)

where (z
(i)
0 , x

(i)
0 ) and (z

(j)
1 , y

(j)
1 ) are any pairs of base solutions that can be used to

generate the solutions (z, x) and (z, y). Given that (z(i)0 , x
(i)
0 ) and (z

(j)
1 , y

(j)
1 ) are solutions,

it can be proved using induction that (z, x) and (z, y) are solutions.
Another way to find solutions of diophantine tuples is by solving these simultaneous
Pell’s equations. Integer solutions for (z, x) and (z, y) can be expressed recursively, and
the intersection of solutions for z can produce solutions to the system of equations, and
therefore to the extension of diophantine tuples. We can obtain lower and upper bounds
for these solutions by using minimality, linear forms and modular congruences. This
method was used to prove the bound on the size of diophantine tuples.
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