
Random Permutations using Analytic

Combinatorics

Fajr Fatima

June 2022

1 Introduction

This paper focuses on studying the characteristics of analytic combinatorics,
specifically combinatorial classes, labelled and unlabelled structures, and the
specific combinatorial class of permutations. The use of permutations within
analytic combinatorics is defined through generating functions which are ex-
plored through examples so that there is ample understanding of the workings
of sequences of infinite and finite sets of permutations. The paper dives into the
combinatorial class of permutation through the functionings of analytic combi-
natorics and explores its applicability to limit shapes through specific examples
of permutations. This paper specifically explores permutations within limit
shapes through the Erdos-Szekeres theorem and the square Young tableau.

2 Combinatorial Classes

Definition 2.1. Combinatorics principally deals with finding a finite set of
mathematical objects filtered by a parameter n. These finite sets are used to
plot each object from within the set to a nonnegative integer such that there
are finitely many objects of each size. These countable sets of mathematical
objects are referred to as combinatorial classes.

Conditions 2.2. A key question in combinatorics is to enumerate these objects
under their set parameters:

1. the size of an element is a nonnegative integer

2. the number of elements of any size are finite

2.1 Unlabelled Classes

Definition 2.3. Supposing a combinatorial class A in which a ∈ A, the size
of a will be written as |a|. In a few special cases where further specification
is required, the size will be written as |a|A when the same element is used for

1

different sizes in different combinatorial classes. The subset of A containing the
elements of size n will be written as An whereas the cardinality of subset An

will be written as an.
While combinatorial problems vary in difficulty, a basic problem is that of

finding binary sequences of elements within a set. A simple example is that of
binary sequences using the set A with elements taken from the binary alphabet.

Example 1. Our combinatorial class would then be:

A = [E, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ...].

in that E represents an empty sequence. Each letter has 2 possibilities and all
possibilities multiply, thus, letting the cardinality of Sn be sn, it is apparent
that sn = 2n.

Another important example is that of permutations which will be discussed
further in 4.

Example 2. A permutation of size n has one-to-one correspondence with the
integer interval derived from computer science:

In := [1..n]

Therefore, it can be represented as an array:

1 2 . . . n
σ1 σ2 . . . σn

.

It can also be represented as a sequence of its definite elements: σ1σ2 . . . σn For
the set S:

S = [. . . , 12, 21, 123, 132, 213, 312, 321, 1234, . . . , 532614, . . .].

Consider a permutation sequence consisting of n definite numbers in which there
are n places for the placement of n, n−1 places for n−1, n−2 places for n−2,
and so forth. Thus, the permutations for size n of Pn would satisfy:

Pn = n! = 1.2.n..

Another combinatorial class is that of binary trees which consists of empty
nodes or a root node. Each node then extends forward to the left or right of their
position. The size of each tree is determined by the numbers of its contained
nodes, however, it can be determined by other factors such as its height or its
leaves. While counting binary trees is a bit more challenging than sequences or
permutations as were shown in 1 and 2 respectively, the number of binary trees
of size n is equivalent to the nth Catalan number Cn = 1

n+1

(
2n
n

)
.

Catalan numbers are also used to enumerate numerous other combinatorial
classes that will be discussed further. Interestingly, these classes are all combina-
torically the same outside of their superficial differences. Combinatorial classes
similar to binary trees include parenthesized n+1 symbols, regular (n+2)-gons
and various others. These combinatorial classes, therefore, become isomorphic
to one another.

2

Example 3. Suppose combinatorial class A and B are isomorphic and write
A ∼= B if an = bn for all n ≥ 0

Unlabelled Classes are translated over Ordinary Generating Functions and
so the ordinary generating function of the combinatorial class A:

A(z) =

∞∑
n=0

Anz
n

translates to the generating function of the numbers An:

A(z) =
∑
a∈A

z|a|.

The combinatorial form in this case occurs when supposing the zn occurs as
many times as size n appears for the objects in A. Principally, generating func-
tions are considered a formal power series in this case. Generating functions
are discussed more in depth in 3.

2.2 Labelled Classes

Definition 2.4. A labelled structure in a combinatorial class consists of dis-
tinctly labelled atoms making up an object. For instance, instead of using a
class of graphs we may use a class of labelled graphs in which all vertices n are
distinguished by a distinct label from 1 to n so that no graph is identical besides
in the case of identically labelled correspondence of nodes between two graphs.

In order to count labelled functions, we turn to exponential generating func-
tions (EGF)

Example 4. The exponential generating function (EGF) of series An is the
formal power series:

An =
∑
n≥0

An
zn

n!

The exponential generating function of class A would become the exponential
generating function of the numbers of An and therefore would present the func-
tion as:

A(z) =
∑
n≥0

An
zn

n!
=

∑
aϵA

z|a|

|a|!
.

where the variable z marks the size in the generating function.
For labelled enumeration, the most important examples prove to be those of

circles, urns and permutations shown in 5 till 7

Example 5. Permutations. For class P, under the linear representation of per-
mutations where:

1 2 . . . n
σ1 σ2 . . . σn

3

can also be presented as a sequence

σ1, σ2, . . . , σn.

Class P can therefore, be presented as

such that
P0 = 1, P1 = 1, P2 = 2, P3 = 6.

This produces the class P of a labelled enumeration in the form of the sequence
defined by

Pn = n!

since it would follow the same rule established in 2 stating that there would be
n choices for the placement of element 1, n−1 for element 2, so on and so forth.
This would produce the Exponential Generating Function of P as

P (z) =
∑
n≥0

n! =
∑
n≥0

zn =
1

1− z
.

Permutations within combinatorics provide essential due to their characteristic
of ordering elements proving to be useful within order statistics.

Example 6. Circular Graphs. The class C of circular graphs is bijective to cyclic
permutations and proves to be an important example to consider within this
paper. In this class, cycles are oriented in a positively conventional manner:

Since a directed cycle is based on its succession of elements following 1, one has
Cn = (n− 1)! presented as an EGF:

C(z) =
∑
n≥1

(n− 1)!
zn

n
= log

1

1− z
.

The logarithm is rather characteristic for circular arrangements within labelled
objects.

Example 7. Urns. The class U is shown as disconnected graphs:

4

To specify, the order of the labelled atoms does not matter in the class of urns
such that for each n, there is only a single possible arrangement and Un = 1.
The class U contains urns of size n which contain n distinguishable balls in an
undefined order. The EGF for class U would then become:

U(z) =
∑
n≥0

1
zn

n!
= exp(z) = ez.

While urns look trivial, they provide as building blocks for complex labelled
structures such as allocations within sorting. The purpose of this paper, how-
ever, focuses on the use of permutations derived from analytic combinatorics
and will primarily place emphasis on the details of permutations.

3 Generating Functions

Definition 3.1. A Generating Function represents the recurrence of a function
within an infinite generating sequence. It is presented as a formal power series
to define an infinite sequence and helps keep track of the nth term within an
infinite dataset.

The classification of generating functions into ordinary generating function
(OGF) and Exponential Generating Functions (EGF) provides a distinction
between unlabelled and labelled combinatorial classes as seen in 2

3.1 Ordinary Generating Functions

Definition 3.2. The Ordinary Generating Function of a sequence represents
a recursive linear sequence consisting of constant coefficients. Such generat-
ing functions are seen in unlabelled combinatorial classes where sequences are
recurring and linear.

Example 8. Let us consider an example with subsets where the size of subsets
is equivalent to the number of elements in the subset. Suppose } is a positive
integer.

The generating function of the sequence an =
(
k
n

)
for n < k is a polynomial

and is presented as:

A(x) =
∑
n≥0

(
k

n

)
xn = (1 + x)k.

Using the second equality, we use the binomial theorem and consider the se-
quence represented as a generating function of the subset (1, 2, . . . , k).

Using this example, let us suppose the probability g of flipping a coin and
landing on heads.The probability of the coin landing on tails would be repre-
sented by p = 1 − g. We toss it k times and use the defined cardinality of an

as with all combinatorial sequences to denote the probability of getting heads

5

n times. Using the binomial theorem again, we see that an =
(
k
n

)
qk−npn and so

represents the generating function:

A(x) =
∑
n≥0

(
k

n

)
qk−npnxn = (q + px)k,

which can be represented as

(q + px)(q + px) . . . (q + px).

This shows a recurring sequence represented by an ordinary generating function.

Example 9. Suppose a fibonacci sequence:

1 + z + 2z2 + 3z3 + 5z4 + 8z5 + . . . =

∞∑
n=0

Fnz
n.

Letting F0 = F1 = 1 and Fn+2 = Fn=1 + Fn, we represent the following as an
OGF of a fibonacci sequence:

(1− z − z2)

∞∑
n=0

Fnz
n =

∞∑
n=0

Fnz
n −

∞∑
n=0

Fnz
n+1 −

∞∑
n=0

Fnz
n+2

=

∞∑
n=0

Fnz
n −

∞∑
n=0

Fn−1z
n −

∞∑
n=0

Fn−2z
n

= F0 + (F1 − F0)z +

∞∑
n=2

(Fn − Fn−1 − Fn−2)z
n.

Thus, stating that F1 = F0 and Fn = Fn−1 − Fn−2z
n and presenting the

sequence as

(1− z − z2

∞∑
n=0

Fnz
n = F0 = 1.

Therefore, proving that

∞∑
n=0

Fnz
n =

1

1− (z + z2)
,

3.2 Exponential Generating Functions

Definition 3.3. Exponential Generating Functions are more representative
of permutations within combinatorics because they are classified by labelled
classes. Since the order of combinatorial objects matters in labelled classes,
permutations is an essential part of enumeration of labelled classes through gen-
erating functions. Exponential Generating Functions provide a formal power se-
ries by encoding infinite sequences. They transform linear recurrence sequences
of OGFs into using them for differential equations through formal power series.

6

Example 10. The Exponential Generating Function of a sequence 1, 1, 1, . . . be-
comes

∞∑
n=0

xn

n!
= ex.

Supposing gn to denote the set of size n, we let g0 = 1. By the established
cardinality within a combinatorial class, we have defined that gn = n which
presents the EGF:

G(x) =

∞∑
n=0

n!

n!
xn =

∞∑
n=0

xn =
1

1− x
.

Example 11. Let us suppose a fibonacci linear recurrence sequence that states
Fn+2 = Fn+1 + Fn and F0 = 0, F1 = 1. Defining

f(z) =
∑
n≥1

Fn
zn

n!
.

Multiplying our recurrence with by zn

n! , it can be represented as

F (x) =
∑
n≥0

Fn+2
zn

n!
=

∑
n≥0

Fn+1
zn

n!
+

∑
n≥0

Fn
zn

n!
,

which is then presented as a differential equation:

d2

dz2
f(z) =

d

dz
f(z) + f(z).

Therefore, you understand that f(0) = 0, f1(0) = 1.

4 Permutation Statistics

Definition 4.1. Permutations provide a mathematical technique to enumerate
the ordering possibilities of a set of values. The use of permutations can be
used to select a set of finite data from large datasets seen in algorithms anal-
ysed by analytic combinatorics. The use of permutations provides a generating
function used to sort out small chunks of datasets within an infinitely increas-
ing sequence. The use of these generating functions produced by permutations
provide a statistical analysis for n as it reaches infinity.

Example 12. Cycles are a special type of permutation. Supposing π as a per-
mutation of set (1, 2, 3, . . . , n), we consider the sequence

p1, p2 = π(p1), . . . , pn = π(pn−1).

When π is a cycle, it is only under the condition that (p1, p2, . . . , pn) is equivalent
to an ordered variation of (1, 2, 3, . . . , n). Using the rule of probabilities stated

7

in 2 (n− 1 choices for p2 = π(p1), n− 2 for p3 = π(p2, so on and so forth). The
generating function for the number of cycles will be represented as

P (x) =

∞∑
n−1

(x− n)!

n!
xn =

∞∑
n=1

xn

n
= log

1

1− x
.

In this paper, we explore permutations using generating functions under
their use in limit shapes.

4.1 Erdos Szekeres Theorem

Theorem 4.2. σϵSn and n > rs for some integers r, sϵN, then D(σ) > s or
L(σ) > r.

Proof. Using a variation on the permutation statistics D(·) and L(·), we state
that for each 1 ≤ k ≤ n, we let each Lk(σ) andDk(σ) denote the maximal length
of an increasing and decreasing subsequence respectivvely of σ that would end
with σ(k). Considering the n pairs in this dataset restricted by conditions, we
understand that all pairs are distinct.

Since we can append an increasing subsequence σ that ends with σ(j) to
σ(k) and has length Lj(σ) to σ(k) , we understand that for every 1 ≤ j <
k ≤ n, Lj(σ) < Lk(σ) under the condition that σ(j) < σ(k). Alternatively, if
σ(j) > σ(k), then the increasing subsequence can be made longer by appending
σ(j). Therefore, we can find that Dj(σ) < Dk(σ).

The conclusion we derive from this is that, contrary to the idea that n > rs,
for some 1 ≤ k ≤ n, either Lk(σ) > r or Dk(σ) > s. Looking at this theorem’s
construction within random square young tableaux provides a permutation set
with an interesting structure applicable to limit shapes. The strength of the
theory that n > rs is also highlighted in this construction.

Let us now look at the lower bound of ln by denoting ln = EL(σn).

Lemma 4.3. For all n ≥ 1, we use

ln ≥
√
(n)

Proof. For every permutation, we can say that for σϵSn we have L(σ)D(σ) ≥ n.
Due to symmetry, if ln is the average for all values across L(σ) in σϵSn, it will
also become the average for all values across D(σ). Then, it is also equal to:

ln =
1

n!

∑
σϵSn

L(σ) +D(σ)

2
= E(

L(σn) +D(σn)

2
).

Using the inequality of arithmetic and geometric methods, we get

ln ≥ E(
√

L(σn)D(σn).

8

This provides us with the correct magnitude for ln, however with the wrong
constant. Now we look at the upper bound case of ln under the same conditions.

Lemma 4.4. As n → ∞,

we get

lim sup
n→∞

ln√
n
≤ e.

Proof. For every value 1 ≥ k ≥ n, we denote all increasing subsequences of
length k for random permutations σn as Xn,k. We will now calculate the ex-
pected value of Xn,k keeping in mind that this value is equivalent to the sum of
all values across

(
n
k

)
subsequences of length k with an increasing subsequence

presented by the probability 1/k!.
This would give us

E(Xn,k =
1

k!

(
n

k

)
.

This would bound the possibility of k being the minimum length for L(σn) and
we denote it with

P(L(σn) ≥ k) = P(Xn,k ≥ 1) ≤ E(Xn,k
1

k!

(
n

k

)

=
n(n− 1) . . . (n− k + 1)

(k!)2
≤ nk

(k)2k
.

We can then fix δ > 0 whilst taking k = ⌈(1 + δ)e
√
n⌋ so that we get

P(L(σn) ≥ k) ≤ nk

k/e2k
≤ (

1

1 + σ
)2k ≤ 1

1 + σ

2(1+σ)e
√
n

,

we see a bound converging at 0 at an exponential rate for
√
n when n → ∞

which can be followed as the following equation where a positive constant c
depends on σ:

ln = E(L(σn)) ≤ P(L(σn) < k)(1+σ)e
√
n+P(L(σn) ≥ k)n ≤ (1+σ)e

√
n+O(e−c

√
n).

Therefore, it is proven that σ is an arbitrary number.

This proves that these values not only apply as an average value but rather
a typical value of L(σn). These bounds also show that changes away from the
typical values behave similar to exponential function of

√
n in terms of decay.

9

4.2 Robinson Schnested Algorithm

The combinatorial power of algorithms such as the patience sorting algorithm are
represented magnificently in the Robinson Schnested Algorithm. To understand
it, we must note that the array of stacks produced by algorithms such as the
patience sorting algorithm requires much more data than required to compute
L(σ), which would be the amount of stacks.

In these stacks, the topmost numbers are of utmost importance in the ex-
ecution such that the first row in the array determine the placement of a new
number. The other rows are simply used as input for further sorting and the
process continues per row. We must then consider the processing on the addition
of a new number and now it is determined to either exist next to existing arrays
or start a new one. The latter is a simple process since the number creates a
new array and the algorithm moved into sorting the next number in the dataset.
If the number is to place itself at the top of an existing array then the bottom
numbers are pushed down and designated the task to find and replace their array
placement (which is usually right below their previous position for each number
added). If we were to consider the event in which the number places itself in the
second row then the numbers below it recursively need to reposition themselves
accordingly and the process stops once a value places itself in a new unoccupied
space. This creates a cycle of permutations.

The following figure shows an array sequence in which number placements
shift to accommodate new values within the permutation:

The computational technique of the Robinson Schensted algorithm showcases
the refinement of array sorting through inputting permutations to produce sta-
tistical sorting and therefore, making the sorting algorithm much easier and
swifter.

4.3 Square Young Tableaux

Suppose nϵN . A loose term for noting n as a sum of positive integers without
the importance of ordering would be called a partition. We claim

λ = λ1, λ2, . . . , λk

where all numbers are positive integers and these integers are then called parts
of the partition.

10

This is an important detail because of its relevance to parts of a partition
being determinants of row lengths in two-dimensional number arrays produced
by algorithms. We denote λ as a partition of n with λ ⊢ n. We also denote
partition sets of n by P (n).

For the demoted partition of n (λ ⊢ n) we define the Young Tableaux

Definition 4.5. A young tableaux is a combinatorial object in which numbers
become non decreasing along their lines and increasing along their columns.
They are used to represent ordered datasets and therefore, represent permuta-
tions as ordered array.

An example is this figure of the Young Diagram representing the partition
(4, 4, 3, 1, 1)

Young diagrams represent integer partitions and therefore are often identified
through the partition they represent. If λ ⊢ n is denoted λ′ as a conjugate
partition of λ, its Young diagram is identified by following its column lengths,
also stated as its principal diagonal. The conjugate partition for our Young
tableaux figure representing λ = (4, 4, 3, 1, 1) would become λ′ = (5, 3, 3, 2).

A Young tableaux is characteristic of filling cells in an ordered manner where
all rows and columns are set in an increasing order which is also characteristic
of the sorting algorithm we have looked at. We can then consider P as a young
tableau, specifically the insertion tableau. We can also record a young tableau Q
where P , if occupied by k during the kth insertion of numbers in the algorithm.
Q would then be responsible for tracking the addition of cells as a shape ”grows”
to a numerical diagram from an empty one.

Theorem 4.6. The Robinson Schensted algorithm is defined as a mapping of
bijection between Sn and triple sets (λ, P,Q) by taking a permutation σϵSn. This
creates the identity:

L(σ) = λ1(lengthofthefirstrowofλ.

Further enumerating Young Tableaux of numerous shapes as they ”grow” from
empty diagrams, we can see that for each n ≥ 1 we have∑

λ⊢n

d2λ = n!

11

in that this sum applies across every partition of n.
Using the Erdos Szekeres theorem with Young Tableaux, we focus on permu-

tation statistics aiding limit shapes.
For integers m,n ≥ 1 we can state the permutation as σϵSn in which N =

mn,L(σ) = nandD(σ) = m where D(σ) would represent the maximal length
of decreasing subsequences as was stated previously. Supposing the case when
m = n, we state the permutation σϵESn,n and denote it by ESn.

Let σϵESm,nandλ, P,Q be our Young diagram for this case under the Robin-
son Schensted algorithm.

Theorem 4.7. The Robinson Schensted algorithm bijectively uses the pair of
Young Tableaux (P,Q) to map the set ESm,n

|ESm,n| = d2m,n =
(mn)!

Πm
i=1Π

n
j=1(i+ j − 1)

2

.

The Erdos-Szekeres permutations are bijectively mapping the set of the n×n in
the Young tableaux which is shown by

|ESn| = d2n,n = (
(n2)!

1 · 22 · 33nn(n+ 1)n−1(n+ 2)n−2(2n− 1)1
)2.

This theorem provides a structure for Erdos Szekeres permutations generat-
ing from Young tableaux. Due to the connection to square Young tableaux, we
can consider a random Erdos Szekeres permutation by randomly selecting two
square Young Tableaux. Using a uniformly random permutation S2500, we use
a figure to represent the density and graphic plotting of a random permutation
produced under these conditions.

It also showcases the asymptotic progression of permutations as n → ∞.

4.4 Limit Shape theorem and random permutations

Theorem 4.8. We now use the limit shape theorem to produce random Er-
dos Szekeres permutations and utilise analytic combinatorics within limit shapes
through permutation statistics with the use of square Young Tableaux. Suppose
σn denotes a permutation that is randomly chosen in a uniform manner from

12

ESn for each n. Supposing the denotation of An as (j, σn(j)) : 1 ≤ j ≤ n2. We
can represent the set A∞ ⊂ R2 with the following

A∞ = (x, y)ϵR2 : (x2 − y2)2 + 2(x2 + y2) ≤ 3

= (x, y)ϵ(R)2 : |x| ≤ 1, |y| ≤
√
x2 − 1 + 2

√
1− x2.

As n → ∞, a convergence of probability for A∞ occurs under two true condi-
tions:

(a) For any ϵ > 0,P(Ãn ⊂ (1 + ϵ)A∞) → 1 as n → ∞
(b) For any open set U ⊂ A∞,P(Ãn ∩ U ̸= ∅ → 1 → ∞.

The following figure represents the limit shape formed by A∞.

In order to understand limit shapes from random permutations, we need to truly
understand the connection between the Young tableau and permutations. In this
case we will use the Erdos Szekeres permutations and the square Young tableaux.
Looking into the tableau, we need to look at the different visualisations of the
tableau. The first interpretation is the usual array format of the tableau of
numbers (ti,j)

n
i,j=1, and creates a graph that resembles a “stepped surface” due

to the height variations of unit cubes covering the square tableau. The other
representation, alternatively showcases the “growth” of the tableau by tracking
the diagram as it grows from an empty set to its full form and records it as
different diagrams. This interpretation visualises the tableau as an increasing
sequence of Young diagrams

Φ = λ(0) ↗ λ(1) ↗ . . . ↗ λ(n) = λ.

The diagram produced from this would show a path of all cells of λ where the
tableau entries are ≤ k. Through the latter interpretation, we visualise the
tableau through the traced path of the tableau presented by the data which in
turn shows the growth of the tableau through the records of the tableau’s growth
from an empty diagram to a fully formed one.

13

Theorem 4.9. For all values of n ≥ 1, we suppose that Tn = (tni,j)
n
i,j=1 is a

consistently random Young tableau of a shape denoted by (n, n). For all values
of ϵ > 0, we can write

P[max
1≤i,j≤n

|n−2tni,j − S(i/n, j/n)| > ϵ] → 0asn → ∞.

Using 4.8, we prove this theorem.

Proof. Using the bijection claim, we use two Young tableau identified by their
uniformly random permutations σn which are Pn = (pni,j)

n
i,j=1, Qn = (qni,j)

n
i,j=1.

The set can then also be written as

An = (qni,j , p
n
n+1−i,j) : 1 ≤ i, j ≤ n.

Using this theorem, we look at all points n−2(qni,j , p
n
n+1−i,j) that become

uniformly close to point (S(x, y), S(1 − x, y)) where x = i/n and y = j/n as
n → ∞. We, therefore, define the set as

A′
∞ = (2S(x, y)− 1, 2S(1− x, y)− 1) : 0 ≤ x, y ≤ 1.

This denotation of set An as n → ∞, the scaled set values with intersect with
a subset of A′

∞.
The set A′

∞ becomes a mapped square of [0, 1]× [0, 1]

Φ : (x, y) → 2S(x, y)− 1, 2S(1− x, y)− 1

Φ would map the four boundaries of the squares defined by:

(−
√

1− t2,−
√

2t− t2)0≤t≤1,

for every boundary. Such that these curves with set parameters for the bound-
aries of the set A∞

We can see now that (x, y) → 2S(x, y) − 1 is subsequently increasing in x
and y both and that (x, y) → 2S(1 − x, y) is subsequently increasing in y and
decreasing in x and therefore, Φ becomes one-to-one. As a result, the square of
the mapping produced by [0, 1]2 is done under Φ. Thus, proving A′

∞ = A∞.

The use of the permutation ESn in two uniformly random Young tableaux
showcases the use of random permutations to compute, sort and arrange datasets
in the parameters of limit shape construction.

References

[1] P. Flajolet, R. Sedgewick (2009)Analytic Combinatorics, Princeton Univer-
sity Press.

[2] D. Romik (2014) The Surprising Mathematics of Longest Increasing Subse-
quences Dan Romik.

[3] P. Flajolet Analytic combinatorics of non-crossing configurations Discrete
Mathematics 204.

14

