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Abstract.
In this paper we build up Ergodic theory, using tools from measure theory and analysis.

We then go on to introduce the Birkhoff Ergodic Theorem and its applications.

1. Introduction

Ergodic theory allows us to study the properties of transformations on dynamic systems.It
has applications in mathematical physics, number theory, analysis, probability, statistics, and
multiple other fields.

In this paper, we will look into the Birkhoff Ergodic Theorem, which states that a trans-
formation on a set X is ergodic if and only if the limit of the average number of times that
an iteration of a measurable transformation T lands in a set A is equivalent to the size of
the set for each set A and point x ∈ X which is not in a null set of X. In simpler words, it
means on that on average, an ergodic process acting on a set X should visit a subset X ⊆ A
with size k approximately k times.

We will make this notion rigorous in the rest of the paper, using techniques from measure
theory and analysis to classify our sets.

2. The Lebesgue Outer Measure

In order to understand how a process can act on a set, we first need to rigorously define
what the size of a set is. First, we consider the sets A,B ∈ R such that A = (0, 1) and
B = [0, 1]. At first glance, the sizes of these sets appear to be different, since A is open while
B is closed. However, the difference in the sizes of these sets is infinitesmally small, because
they differ only by two points (which are of infinitesmally small length).

At this point we may choose to consider the length of the open set for both the open and
closed sets. More generally, we may try to approximate the length of the closed set using
the length of the union of multiple open sets. To do this, we introduce the Lebesgue outer
measure.

Definition 2.1. We define the Lebesgue outer measure of a set A ∈ R to be

λ(A) = inf

{
∞∑
j=1

|Ij| : A ⊂
∞⋃
j=1

Ij

}
where the Ij are a sequence of bounded intervals.

There are a few properties of the Lebesgue outer measure that help us to understand it
better.

Proposition 2.2. The Ij can be assumed to be open intervals.
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Proof. We provide a bounding argument for this. Let α(A) be the outer measure obtained
using open sets. Then we have α(A) ≥ λ(A). Next, we construct a sequence {Kj} of open
intervals such that Ij ⊆ Kj and

|Kj| < |Ij|+
ϵ

2j

for ϵ > 0. Then
∞∑
j=1

|Kj| <
∞∑
j=1

|Ij|+
∞∑
j=1

ϵ

2j
,

and since
∞∑
j=1

|Ij|+
∞∑
j=1

ϵ

2j
=

∞∑
j=1

|Ij|+ ϵ,

we find that

α(A) = inf

{
∞∑
j=1

|Kj|

}
≤ inf

{
∞∑
j=1

|Ij|+ ϵ

}
= λ(A).

Combining these inequalities gives λ(A) = α(A), so it is sufficient to assume that the Ij
are open intervals. ■

Using this fact, we can rephrase the Lebesgue outer measure of a set A as the combined
lengths of open sets approximating A.

In addition, we can show that the sets Ij can be made infinitesmally small.

Proposition 2.3. Let ϵ > 0 be a constant. Then |Ij| < δ for all j ≥ 1.

Proof. This follows from the fact that we can split the Ij into smaller subintervals and
preserve the measure. ■

Our last property concerns the union of multiple sets.

Proposition 2.4 (Countable Subadditivity). For any sequence {Aj} of sets, we have

λ

(
∞⋃
j=1

Aj

)
≤

∞∑
j=1

λ (Aj) .

Proof. Using a similar technique to the one that we used in Proposition 2.2, we let {Ij,k} be
a sequence of intervals such that

Aj ⊂
∞⋃
k=1

Ij,k.

Then
∞∑
k=0

|Ij,k| < λ (Aj) +
ϵ

2j
.

Then

A =
∞⋃
j=1

Aj ⊂
∞⋃
j=1

∞⋃
k=1

Ij,k,

so summing over j and k gives

λ(A) ≤
∞∑
j=0

∞∑
k=0

|Ij,k| < ϵ+
∞∑
j=0

λ (Aj) .
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Figure 1. The Cantor set.

Since our proof holds for all ϵ > 0, our inequality also holds. ■

With these definitions and properties, we can look further into a few interesting sets and
their outer measures.

3. Lebesgue Measurable Sets

We might wonder what happens when a set isn’t empty, but still has outer measure 0. We
call these sets null sets.

Definition 3.1. A null set N is a set of intervals {Ij} such that for any ϵ > 0, we have

N ⊂
∞⋃
j=1

Ij

and
∞∑
j=1

|Ij| < ϵ.

Let’s look at an example of a null set, called the Cantor set.

Definition 3.2. Let F = [0, 1] and

{Gj} =
3n−1−1⋃
k=1

(
3k + 1

3n
,
3k + 2

3n

)
.

We define the Cantor set to be

K = F \

(
∞⋃
j=1

Gj

)
.

While the Cantor set is a null set, it also contains uncountably many elements. This gives
us an idea of how strong results dependent on the Lebesgue outer measure can be; while
we might be able to guarantee a result for most sets, it is possible that there will be an
uncountable number of elements which do not satisfy it. A visualization of the unit interval
excluding the unions of the first few Gi is shown in Figure 1.

Definition 3.3. A set A is Lebesgue measurable if there exists an open set G = Gϵ such
that A ⊂ G and

λ(G \ A) < ϵ

for all ϵ > 0.

In other words, a set is Lebesgue measurable if it is well approximated by open sets.

Proposition 3.4. Any open or null set is measurable.
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Proof. First we consider open sets. If A is open, then we can let G = A, so clearly A is
Lebesgue measurable. Now, assume that A is a null set. Then we have

A ⊂
∞⋃
j=1

Ij,

so we let G =
⋃∞

j=1 Ij. Then

λ(G \ A) ≤ λ(G) ≤
∞∑
j=1

|Ij| < ϵ,

so A is measurable. ■

Proposition 3.5. If {Aj} is a sequence of measurable sets, then

A =
∞⋃
j=1

Aj

is also measurable.

Proof. Let ϵ > 0. Then for each n there exists some set Gn such that

λ(Gn \ An) <
ϵ

2n
.

Letting G =
⋃∞

j=1Gn, we find that

λ(G \ A) ≤ λ

(
∞⋃
n=1

(Gn \ An)

)
≤

∞∑
n=1

λ(Gn \ An) < ϵ.

Thus we find that A is a measurable set. ■

Proposition 3.6. If A is a bounded closed set and B is an open set such that A ⊂ B,

λ(B \ A) = λ(B)− λ(A).

Proof. We first note that by countable subadditivity, we have

λ(B \ A) ≥ λ(B)− λ(A).

Then since B \ A is open, there exist open intervals {Ij} such that

B \ A =
∞⋃
j=1

Ij.

Then for N ≥ 1, we have

B ⊂

(
N⋃
j=1

Ij

)
⊔ A.
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Thus we find that

λ(B) ≥ λ

(
N⋃
j=1

Ij

)
+ λ(A)

=
N∑
j=1

λ (Ij) + λ(A).

Taking the limit as N → ∞ gives

λ(B) ≥ λ(B \ A) + λ(A),

so we are done. ■

Proposition 3.7. All closed sets are measurable.

Proof. Let B be some closed set, and assume that it is bounded. Then for some ϵ > 0, there
exist sets Ij such that

B ⊂
∞⋃
j=1

Ij

and

λ

(
∞⋃
j=1

Ij

)
< λ(B) + ϵ.

Then let

I =
∞⋃
j=1

Ij,

so that I is an open set. Then

λ(I \B) = λ(I)− λ(B) < ϵ,

so B is a measurable set.
In the case of unbounded sets B, we let Bn = B ∩ [−n, n]. Then

B =
∞⋃

n=−∞

Bn

is a countable union of closed sets, so it is also measurable. ■

4. σ-Algebras and Measure Spaces

Definition 4.1. Let X be a nonempty set. A σ-algebra on X is a collection S of subsets of
X satisfying the following properties:

(1) S is nonempty.
(2) If A ∈ S, then X \ A ∈ X.
(3) If An ∈ S for n ≥ 1, then

∞⋃
n=1

An ∈ S.
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In other words, a σ-algebra is a nonempty collection of subsets which is closed under
countable unions and complements.

Definition 4.2. A measure on a σ-algebra S is a function µ : S → [0,∞) such that µ(∅) = 0
and

µ

(
∞⊔
j=1

Aj

)
=

∞∑
j=1

µ (Aj) .

Measures generalize the notion of length. For instance, if µ is a measure on a set X, then
µ′ = 2 · µ is also a measure. However, the general properties of length must be preserved,
meaning that an empty set must have length 0, and the sum of the lengths of some collection
of disjoint sets must be equal to the length of the union.

Definition 4.3. A measure space is a triple (X,S, µ) where X is a nonempty set, S is a
σ-algebra on X, and µ is a measure on S. A probability space satisfies µ (X) = 1.

Measure spaces allow us to rigorously define the spaces which we can use transformations
on.

Definition 4.4. LetX be a finite interval. We let L(X) be the set of all Lebesgue-measurable
sets in X.

This is a useful construction, since it allows us to use the Lebesgue outer measure as a
measure on any finite interval. As we will observe shortly, this is a σ-algebra on X, so we
can treat (X,L(X), λ) as a measure space.

Proposition 4.5. Let X be a finite interval. Then L(X) is a σ-algebra on X.

Proof. Clearly L(X) is nonempty. Thus it suffices to prove that L(X) is closed under com-
plements and countable unions. Clearly the countable union of Lebesgue measurable sets is
also Lebesgue measurable, so we need to prove that if A is a Lebesgue measurable set, then
(X \ A) is also Lebesgue measurable.

To prove this, we notice that (X \ A) is a union of multiple intervals, which we proved
earlier are Lebesgue measurable. Since the countable union of Lebesgue measurable sets is
also Lebesgue measurable, L(X) is closed under complements and is thus a σ-algebra. ■

Definition 4.6. A canonical nonatomic Lebesgue measure space is the measure space (X,L(X), λ)
where λ is the Lebesgue outer measure.

Proposition 4.7. Let (X,S, µ) be a measure space. Then if {An} is a sequence of measurable
sets satisfying

An ⊂ An+1

for n ≥ 1, then

µ

(
∞⋃
n=1

An

)
= lim

n→∞
µ (An) .

Proof. First, we note that
∞⋃
n=1

An =
∞⊔
n=1

(An+1 \ An) .
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Then we have

µ

(
∞⋃
n=1

An

)
= µ

(
∞⊔
n=1

(An+1 \ An)

)

=
∞∑
n=1

µ (An+1 \ An)

= lim
N→∞

N∑
n=1

µ (An+1 \ An)

= lim
N→∞

N∑
n=1

µ (An+1)− µ (An) .

= lim
N→∞

µ (AN)

as desired.
■

Proposition 4.8. Let (X,S, µ) be a measure space. If {Bn} is a sequence of measurable
sets satisfying

Bn ⊃ Bn+1

for n ≥ 1 and µ(B1) < ∞, then

µ

(
∞⋂
n=1

Bn

)
= lim

n→∞
µ (Bn) .

Proof. First, we let

B =
∞⋃
n=1

Bn.

Then we find that

B1 = B ⊔
∞⋃
n=1

(Bn+1 \Bn) ,
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and thus

µ(B1) = µ(B) + µ

(
∞⋃
n=1

(Bn+1 \Bn)

)

= µ(B) +
∞∑
n=1

µ (Bn+1 \Bn)

= µ(B) +
∞∑
n=1

µ (Bn+1)− µ (Bn)

= µ(B) +
∞∑
n=1

µ (Bn+1)− µ (Bn)

= µ(B) + lim
n→∞

µ(B1)− µ (Bn)

= µ(B) + µ(B1)− lim
n→∞

µ (Bn) .

Then we have

µ(B1) + lim
n→∞

µ (Bn) = µ(B1) + µ(B),

and it follows that

lim
n→∞

µ (Bn) = µ(B)

as desired. ■

5. Outer Measure in Rd

Definition 5.1. Let X be a nonempty set. An outer measure ν is a function from subsets
of X to [0,∞) such that ν(∅) = 0, if A ⊂ B then ν(A) ≤ ν(B), and for sequences {Aj} of
measurable sets,

ν

(
∞⋃
j=1

Aj

)
≤

∞∑
j=1

ν (Aj) .

An outer measure is slightly less strict than a measure, while still adhering to the same
general properties. However, instead of countable additivity, the outer measure only needs
to satisfy countable subadditivity.

Definition 5.2. The Lebesgue outer measure in Rd is defined as

inf

{
∞∑
j=1

|Ij|d : A ⊂
∞⋃
j=1

Ij

}
,

where Ij are d-rectangles.

This is a natural generalization; for instance, in R3, we can consider the intersection of the
xy and yz planes, and consider rectangular prisms with sides parallel to these two planes.
This is equivalent to considering some combination of the analog of the outer measure in R2

for both planes.
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6. Measure-Preserving Transformations

In this section we introduce a special kind of transformation, called a measurable trans-
formation. However, we first need to introduce some prerequisite definitions.

Definition 6.1. An invertible transformation is one that is bijective.

In other words, the inverse of the transformation should also be a transformation. Pre-
cisely, this means that the transformation is both injective and surjective.

Definition 6.2. Let T be an invertible transformation on A. We let the pre-image T−1

satisfy

T−1(A) = {x : T (x) ∈ A} .
We denote the n-th iteration of the pre-image by T−n(A).

In other words, the pre-image is just the inverse of the transformation T.

Definition 6.3. Let (X,S, µ) be a measure space. A transformation T : X → X is measur-
able if T−1(A) ∈ S for all A ∈ S(X).

In other words, the σ-algebra S is closed under all measurable transformations.

Definition 6.4. An invertible measurable transformation is a transformation T such that T
and T−1 are both measurable.

This means that both T and T−1 would be transformations on the same σ-algebra, so we
can apply both of these transformations to the same measure space.

Definition 6.5. A transformation is measure-preserving if

µ
(
T−1(A)

)
= µ (A)

for all A ∈ X. In this case we call µ an invariant measure for T.

In other words, a transformation is measure-preserving if it takes a unit interval to another
unit interval.

7. Recurrence

Definition 7.1. Let (X,S, µ) be a measure space. A transformation T on X is said to be
recurrent if for every measurable set A of positive measure, there exists a null set N ⊂ A
such that for every x ∈ A \N, there is a positive integer n = n(x) > 0 such that

T n(x) ∈ A.

In other words, the transformation is recurrent if at some point it returns points x ∈ A to
A.

Lemma 7.2. Let (X,S, µ) be a measure space, and let T : X → X be a recurrent measure
preserving transformation. Then for every set A of positive measure, there exists a null set
N such that for all x ∈ A \N there is an increasing sequence ni > 0 such that

T ni(X) ∈ A \N

for i ≥ 1.
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Proof. There exists a null set N1 such that for x ∈ A \N1, there exists n1 = n1(x) > 0 such
that T n1(x) ∈ A. Then let

N =
∞⋃
j=1

T−k(x),

and since µ
(
T−k(x)

)
= 0 for all x, we find that µ(N) = 0 as well. Then for x ∈ A\N ⊂ A\N1

there exists n2(x) > 0 such that T n2(x)(x) ∈ A \ N. Then if we let n3 = n1 + n2, then
T n3(x) = T n1(x) ∈ A \N, and we can repeat this process to construct the ni. ■

Definition 7.3. A measure preserving transformation is said to be conservative if for any
set A of positive measure there exists some n > 0 satisfying

µ(T−n(A) ∩ A) > 0.

Lemma 7.4. Let (X,S, µ) be a measure space. A measure-preserving transformation T is
recurrent if and only if it is conservative.

Proof. First, we note that T is recurrent if and only if

µ

(
A \

∞⋃
n=1

T−n(A)

)
= 0

for all sets A such that µ(A) > 0. Now assume that T is recurrent. Then for sets A such
that µ(A) > 0, we have

µ

(
A \

∞⋃
n=1

(
A ∪ T−n(A)

))
= µ

(
A \

∞⋃
n=1

T−n(A)

)
= 0.

Then for some positive integer n we must have µ(A ∩ T−n(A)) > 0.
For the converse, we let A be a measurable set such that µ(A) > 0 and

B = A \
∞⋃
n=1

T−n(A).

Then if B is a set of positive measure, there is some integer such that

µ(B ∩ T−n(B)) > 0,

which is a contradiction since this means that there exists x ∈ B such that T−n(x) ∈ B.
Thus µ(B) = 0 and thus T is recurrent. ■

The Poincaré Recurrence Theorem was perhaps the first theorem discovered in Ergodic
Theory, which was proven in 1899.

Theorem 7.5 (Poincaré Recurrence). Let (X,S, µ) be a finite measure space. If T : X → X
is a finite measure-preserving transformation, then T is recurrent. [Sil07]

Proof. It is sufficient to show that for any measurable set A of positive measure, there exists
some n > 0 such that µ(A∩T−n(A)) > 0. Then assume that there is no set A satisfying this.
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Then for integers x, y such that x ̸= y, we can let x = n+ y for n > 0, and thus we have

µ
(
T−x(A) ∪ T−y(A)

)
= µ

(
T−n−y(A) ∪ T−y(A)

)
= µ

(
T−y

(
T−n(A) ∪ (A)

))
= µ

(
T−n(A) ∪ (A)

)
= 0.

Then for any integers p, q, we have that T−p(A) ∩ T−q(A) = ∅, so

µ

(
∞⋃
n=1

T−n(A)

)
=

∞∑
n=1

µ
(
T−n(A)

)
=

∞∑
n=1

µ (A)

= ∞.

This is a contradiction to the assumption that X is finite, so we have

µ(A ∩ T−n(A)) > 0

for some positive integer n. ■

Note that the argument we used is similar to the pigeonhole principle, but it applies for
infinite sets as well.

Definition 7.6. We consider two functions f and g to be almost equal if

µ {x : f(x) ̸= g(x)} = 0.

We denote two almost equal functions by

f = g a.e.

Most of the results that we will prove in this paper hold a.e. This means that while we
can say the result holds for a general set, there is nothing that we can show about individual
elements in these sets.

Definition 7.7. Let (X,S, µ) be a σ-finite measure space, and let T : X → X be a recurrent
measure-preserving transformation. Then for every measurable set A there exists some null
set N ⊂ A such that x ∈ A \N, there is an integer n = n(x) > 0 such that

T n(x) ∈ A.

We call
nA = min{n > 0 : T n(x) ∈ A}

the first return time to A.

In other words, this is the first time that the transformation takes a state back to itself.

Definition 7.8. We let the induced transformation TA satisfy

TA(x) = T nA(x)(x) for x ∈ A a.e.
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Lemma 7.9. Let (X,S, µ) be a measure space and let T : X → X be an ergodic transfor-
mation. Then if A is a measurable set of positive measure, the transformation TA is ergodic
on A.

Proof. Since A has positive measure, there exist sets B,C ∈ A which also have positive
measure. Since T is ergodic, there must be n > 0 satisfying µ(T n(B) ∩ C) > 0. Then there
exists some x ∈ B such that T n(x) ∈ C. Then we let ni satisfy

n1 = nA(x), n2 = nA(T
n1(x)), . . . ,

such that k is the first integer such that T nk(x) ∈ C. Then T nk
A (x) = T n(x) ∈ C, so

T nk(x) ∩B ̸= ∅, and thus T is ergodic. ■

8. Ergodicity

Definition 8.1. Let (X,S, µ) be a measure space, and let T : X → X be a transformation.
A subset A ⊂ X is positively invariant if

T (x) ∈ A

for x ∈ A.

Definition 8.2. Let (X,S, µ) be a measure space, and let T : X → X be a transformation.
A subset A ⊂ X is strictly invariant if

T−1(A) = A.

Definition 8.3. A set A is said to be strictly invariant mod µ if

A = T−1(A) mod µ.

Definition 8.4. Let (X,S, µ) be a measure space, and let T be a measure-preserving trans-
formation. T is said to be ergodic if when A is a strictly invariant measurable set, either
µ(A) = 0 or µ (X \ A) = 0.

Definition 8.5. Let a rational number x = p
q
be a dyadic rational if q = 2n for some n.

To understand transformations better, we can look at an example of one, called the Baker’s
Transformation.

Definition 8.6. The Baker’s transformation is the transformation

T (x, y) =

{(
2x, y

2

)
if 0 ≤ x < 1

2(
2x− 1, y+1

2

)
if 1

2
≤ x < 1.

Consider a rectangle, split into two regions A and B of equal area. Then the transformation
is equivalent to folding the retangle in half after performing a 180 degree twist, and then
flattening out the dough. A visualization of two iterations of this process is shown in Figure 2.

We might notice that half of the region which was originally marked region B (the left
side of the rectangle) is always occupied by the black region, regardless of the number of
transformations we apply to the rectangle. To formally understand this, we first need the
notion of a dyadic rectangle.

Definition 8.7. We define a dyadic rectangle to be a rectangle whose sides are bounded by
dyadic rationals.
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Figure 2. The Baker’s Transformation.

In the case of the Baker’s transformation, we noticed that the region originally occupied
by B is always half occupied by B and half occupied by A. In fact, if we let the rectangle
have area 1, half of the area originally occupied by B is equivalent to the products of the
original areas of A and B. Transformations like these are called mixing transformations.

Definition 8.8. A transformation T is mixing if for any dyadic rectangles A,B, we have

lim
n→∞

λ(T n(A) ∩B) = λ(A)λ(B).

A transformation might not be mixing, but there might be some sequence of ni which
seem to satsify a similar property. Thus we introduce the concept of weak mixing.

Definition 8.9. A transformation T is weakly mixing if there exists some increasing sequence
ni such that

lim
i→∞

λ(T ni(A) ∩B) = λ(A)λ(B).

9. The Lebesgue Integral

In this section, we address functions which can quantify different properties of our sets.
More generally, we consider functions f : X → R on measure spaces (X,S, µ).

Definition 9.1. Let (X,S, µ) be a measure space. A measurable function on the space is a
function f : X → R such that for all z ∈ R we have {x ∈ X : f(x) ≤ z} ∈ S.

Not every function is a measurable function; as we will see shortly, the characteristic
function of a set is not measurable.

Definition 9.2. Let A be a measurable set. The characteristic function 1A(x) is equal to 1
for x ∈ A, and 0 otherwise.

In other words, the characteristic function of a set tells us whether a value is in a set of
not.

With this notion, we can define the Lebesgue integral.

Definition 9.3. We let the Lebesgue integral of a characteristic function be∫
1A dµ = µ(A).

This should naturally be true, since the characteristic function takes on the value 1 if and
only if x ∈ A, and takes on 0 otherwise.

To develop the Lebesgue integral for more complicated functions, we have to first simplify
functions that are Lebesgue integrable.
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Definition 9.4. A function g is a simple function if

g(x) =
k∑

i=1

ai1Ai

for measurable sets A1, A2, A3, . . . , Ak and real a1, a2, . . . ak.

In other words, if a function is in some set Y of intervals, it will take on the sum of the
values indicated by each element y ∈ Y.

Definition 9.5. Assume that a simple function g takes on the values α1, α2, α3, . . . , αk. Then
we can split the range of the function into disjoint sets Ej satisfying

Ej = {x : g(x) = αj} .

We let the sum

g(x) =
k∑

i=1

αj1Ej

be the canonical representation of g.

In other words, we can split the range of any simple function into finite disjoint sets, and
say that the function g(x) takes on some value αj when x ∈ Ej.

Definition 9.6. We let the Lebesgue integral of a simple function g be∫
g dµ =

n∑
j=1

αjµ(Ej),

where αj and Ej are as in the canonical representation of g.

It is important to note here that when αj = 0 and µ(Ej) = ∞, we consider the product
αjµ(Ej) to be equal to 0.

Notice that this integral seems to agree with the Riemann integral, and in fact, it always
does. Notice that in this case, however, we split the range into chunks rather than the
domain.

An example of the split range for calculation of the Lebesgue integral of a simple function
is shown in 3.

Proposition 9.7. Let g1 and g2 be nonnegative simple functions. Then∫
αg1 + βg2 dµ = α

∫
g1 dµ+ β

∫
g2 dµ.

Proof. First, we represent both g1 and g2 in canonical form so that

g1(x) =
n∑

i=1

ai1Ei
, g2(x) =

m∑
j=1

1Fj
,

where
n⋃

i=1

Ei =
m⋃
j=1

Fj = X.
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Figure 3. To calculate the Lebesgue integral, the range is partitioned rather
than the domain.

Then we note that the sets Ei ∩ Fj = Gk are also disjoint and their union is X, so we can
write our functions as

g1(x) =
n·m∑
k=1

yk1Gk
, g2(x) =

n·m∑
k=1

zk1Gk
.

Then we have ∫
αg1 + βg2 dµ =

∫
α

n·m∑
k=1

yk1Gk
+ β

n·m∑
k=1

zk1Gk
dµ

=

∫ n·m∑
k=1

(αyk + βzk)1Gk
dµ

=
n·m∑
k=1

(αyk + βzk)µ(Gk)

=
n·m∑
k=1

αykµ(Gk) +
n·m∑
k=1

βzkµ(Gk)

= α
n·m∑
k=1

ykµ(Gk) + β
n·m∑
k=1

zkµ(Gk)

= α

∫
s1 dµ+ β

∫
s2 dµ.

This completes the proof. ■

Proposition 9.8. Let g1 and g2 be nonnegative simple functions such that g1 ≤ g2. Then∫
g1dµ ≤

∫
g2 dµ
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Proof. Let the Gk be defined as in Proposition 9.7. Then we have

s1(x) =
n·m∑
k=1

yk1Gk

and

s2(x) dµ =
n·m∑
k=1

zk1Gk
.

Now, consider some Gk. for x ∈ Gk, we have

s1(x) = yk, s2(x) = zk.

However, we note that yk ≤ zk. Then the respective Lebesgue integrals are∫
s1 dµ =

n·m∑
k=1

ykµ(Gk)

and ∫
s2 dµ =

n·m∑
k=1

zkµ(Gk).

Since

ykµ(Gk) ≤ zkµ(Gk),

we have ∫
s1 dµ ≤

∫
s2 dµ

as desired. ■

Definition 9.9. Let f be a nonnegative function. Then∫
f dµ = sup

{∫
g dµ : g is simple and 0 ≤ g ≤ f

}
.

Essentially, we approximate f from below using simple functions, and then take the upper
bound of the set of approximations, in a similar way to the way that we defined the Lebesgue
outer measure.

We note here that the Lebesgue integral always agrees with the Reimann integral, for
any nonnegative measurable function. We might notice that as we approach the Lebesgue
integral from below the function, the rectangles which we use to approximate it should
naturally become infinitely small, as in the Reimann integral. It is also important to note
that the Lebesgue integral is defined for any nonnegative function (even those which are not
bounded from above). This allows us to avoid using improper integrals to calculate integrals
for functions such as f(x) = 1

x
.

Theorem 9.10 (Monotone Convergence). Let f1 ≤ f2 ≤ f3 ≤ . . . ≤ fn ≤ . . . be a sequence
of nonnegative functions. If

f(x) = lim
n→∞

fn a.e,

Then ∫
f dµ = lim

n→∞

∫
fn dµ.
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Proof. Notice that since fn ≤ f, we have

lim
n→∞

sup

∫
fn dµ ≤

∫
f dµ

≤
∫

lim
n→∞

f dµ =

∫
f lim

n→∞
inf dµ

≤ lim
n→∞

inf

∫
f dµ.

Then by the Squeeze Theorem we have∫
f dµ = lim

n→∞

∫
fn dµ

as desired. ■

Definition 9.11. Let f be an arbitrary function. We define the functions

f+(x) =

{
f(x) f(x) ≥ 0

0 otherwise

and

f−(x) =

{
−f(x) f(x) ≤ 0

0 otherwise.

We let ∫
f dµ =

∫
f+ dµ−

∫
f− dµ.

Naturally, this makes sense. We take the regions in which f is negative, multiply the
function in these regions by −1, turning them into nonnegative regions. We then take the
integral of these regions as we did for any other nonnegative function, and then multiply this
integral by −1 again, almost as if factoring out the −1 from the original integral.

10. The Birkhoff Ergodic Theorem

Theorem 10.1 (Birkhoff Ergodic Theorem). Let (X,S, µ) be a measure space and let T be
an ergodic transformation. Then if f : X → R is a Lebesgue integrable function,

lim
n→∞

1

n

n−1∑
i=0

f
(
T i(x)

)
=

∫
f dµ. [Sil07]

There are two parts of the proof that are necessary. The first part is to prove that the
limit exists, and the second part of the theorem is to prove that the limit is in fact equal to
the Lebesgue integral.

Definition 10.2. We first introduce some preliminary definitions. We define

fn(x) =
n−1∑
i=0

f(T i(x)), n ≥ 1,

and also let

f∗(x) = lim
n→∞

inf
1

n
fn(x)
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and

f ∗(x) = lim
n→∞

sup
1

n
fn(x).

We are now ready to begin our proof of the ergodic theorem.

Proof of the Ergodic Theorem. Let

A =

{
x : f∗(x) <

∫
f dµ

}
.

We will show that µ(A) = 0. Assume that µ(A) > 0. Then

A =
⋃
r∈Q

{
x : f∗(x) < r <

∫
f dµ

}
.

Then we let

Br =

{
f∗(x) < r <

∫
f dµ

}
.

Then there exists some rational number r such that µ(Br) > 0. Since T is ergodic, we have
µ(Br) = 1. Then let

Er
p = {x :

1

n

n−1∑
i=0

f
(
T i(x)

)
≥ r, 1 ≤ n ≤ p.

Since µ(Br) = 1, we have

µ

(
∞⋃
p=1

Er
p

)
= 0.

Thus limn→∞ µ (Er
n) = 0 and therefore ∫

f dµ ≤ r,

which is a contradiction. Thus we have µ(A) = 0. Then we have∫
f dµ ≤ f∗(x) a.e.

Applying this expression to −f gives∫
−f dµ ≤ lim

n→∞
inf

1

n

n−1∑
i=0

−f(T i(x)) a.e.,

so that ∫
f dµ ≥ lim

n→∞
sup

1

n

n−1∑
i=0

−f(T i(x)) a.e.

≥ f ∗(x) a.e.

Then we have ∫
f dµ = lim

n→∞

1

n

n−1∑
i=0

f(T i(x)) a.e.

as desired. ■
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11. Normal Numbers

Definition 11.1. Let x be a real number such that x ∈ [0, 1). We let

M(x, b) = x (mod 1)b = b · x− · ⌊b · x⌋ .

Definition 11.2. We let a real number x ∈ [0, 1) be normal in base b if for every y ∈
{0, 1, . . . , b− 1}, we have

1

n
lim
n→∞

n−1∑
i=0

M i(x, b)1[ yb ,
y+1
b ) =

1

b
.

Theorem 11.3. Almost every number x ∈ [0, 1) is normal in every base b. [KD02]

Proof. Once we show that the transformation M(x, b) is measure preserving, this result
follows as a straightforward application of the ergodic theorem. Here we note that a trans-
formation is ergodic if when A is a strictly invariant measurable set, then µ(Ac) = 0. This is
true in the case of M(x, b), so it is measure preserving. Thus the result holds. ■

While we cannot prove anything about an individual number like π or e, we can see that
the result should hold for most numbers by looking at an example.

Consider the number

X = 0.012345678910111213 . . . .

We know that this is normal in base 10, and for the sake of approximation, we consider
truncating this number after 99. We can consider the number in a few other bases.

First, we convert X to binary, and then check the number of 1s in the representation of the
number. Truncating this at different lengths gives the results in the table shown in Figure 1.

100 46
150 67
200 94.

Table 1. Truncating the binary representation at 100, 150, and 200 digits
gives the following results for the number of 1s.

Applying a similar strategy for base 3, we check the number of 1s and 2s in the repre-
sentation of the number. Truncating again at different lengths gives the results in the table
shown in Figure 2.

100 23 36
150 43 48
200 60 65.

Table 2. Truncating the ternary representation at 100, 150, and 200 digits
gives the following results for the number of 1s and 2s.
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12. Continued Fractions

In order to work with continued fractions, we first need to find a transformation repre-
senting continued fractions.

Definition 12.1. We define the Gauß map to be the transformation

T (x) =

{
1
x
−
⌊
1
x

⌋
x ̸= 0

0 x = 0.

Proposition 12.2. The Gauß map is measure-preserving with respect to the measure

ν(x) =
1

log 2

∫
1

1 + x
dλ(x).

Proof. It is sufficient to prove that the map is measurable with respect to all intervals (a, b).
First, we can rewrite these intervals as [0, b)\ [0, a). Then we need to show that for b ∈ (0, 1),
we have

ν
(
T−1([0, b))

)
=

1

log 2

∫
[0,b)

1

x+ 1
dλ(x)

=
1

log 2
log(x+ 1)|b0

=
1

log 2
log(b+ 1).

Note that we have

T−1([0, b)) =
∞⊔
n=1

[
1

n+ b
,
1

n

)
mod λ.

Then we have

ν
(
T−1([0, b))

)
=

1

log 2

∫
⊔∞

n=1[ 1
n+b

, 1
n)

1

x+ 1
dλ

=
1

log 2

∞∑
n=1

∫
[ 1
n+b

, 1
n)

1

x+ 1
dλ

=
1

log 2

∞∑
n=1

log

(
1 + 1

n

1 + 1
n+b

)

=
1

log 2
lim

N→∞

N∑
n=1

log

(
n+ 1

n

)
− log

(
n+ b

n+ b+ 1

)

=
1

log 2
lim

N→∞

N∏
n=1

log

(
n+ 1

n

)
· log

(
n+ b

n+ b+ 1

)
=

1

log 2
(b+ 1)

as desired. ■
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Proposition 12.3. Let x ∈ [0, 1) be a real number and let

[a0, a1, a2, . . . , an, . . .]

be the coefficients of its continued fraction representation. Then

an+1 =

⌊
1

T n(x)

⌋
,

where T (x) is the Gauß map.

This intuitively makes sense, since when computing the continued fraction of a number,
we repeatedly remove the whole part of the number and perform the transformation on the
fractional part that we have left.

Theorem 12.4. Let x be a real number such that x ∈ [0, 1), and let [a0, a1, a2, . . . , an, . . .] be
its continued fraction representation. Then

P(ai = k) =
1

log 2
log

(
(k + 1)2

k(k + 2)

)
. [Hin15]

Proof. Applying the ergodic theorem with f = 1( 1
k+1

, 1
k ]
, we have

P(ai = k) =
1

log 2

∫
( 1
k+1

, 1
k ]

1

1 + x
dλ

=
1

log 2

(
(k + 1)2

k(k + 2)

)
.

■

Thus we have ≈ 41.5037% 1s, ≈ 16.9925% 2s, ≈ 9.31094% 3s, ≈ 5.88937% 4s, ≈ 4.0642%
5s, and so on.

13. Conclusion

Ergodic theory has many applications, particularly in probability on infinite spaces. Us-
ing ergodic theory, we can investigate many more related problems, such as ”What is the
probability that an arbitrary power of 2 starts with a 7?”. Similar problems to this one are
addressed further in [Sil16], and the reader is encouraged to consult this resource to explore
this topic. Ergodic theory also has applications in many other fields, and open problems
include applications in Ramsey theory, among others.
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