Riemann Surfaces, Teichmüller Spaces, and Fenchel-Nielson Coordinates

Eugenie Cha

July 7, 2022

Eugenie Cha

Riemann Surfaces, Teichmüller Spaces, and F

July 7, 2022

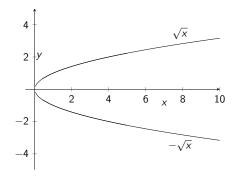
-47 ▶

The Square Root Function

Example

Graph $y = \sqrt{x}$

Equivalent to solving for y in $x = y^2$.



→ ∃ →

э

The Square Root Function

For z with $Im(z) \in \mathbb{R}$ and $Re(z) \in \mathbb{R}$:

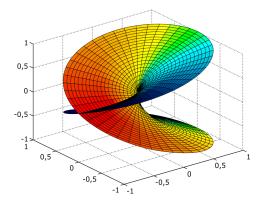
$$w = z^{\frac{1}{2}}$$

$$w = \begin{cases} \sqrt{z} = \sqrt{r}e^{\frac{i\theta}{2}} \\ -\sqrt{z} = -\sqrt{r}e^{\frac{i\theta}{2}} \end{cases}$$

How do we graph a complex input and a complex output?

The Square Root Function

Let $(x, y, z) = (\operatorname{Re}(z), \operatorname{Im}(z), \operatorname{Re}(w)).$

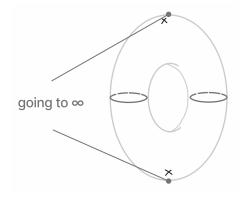


< 3 >

э

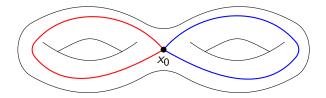
An Interesting Example

$$w=\sqrt{(z^2-1)(z^2-k^2)}$$
 where $k\in\mathbb{C}$, $k
eq\pm 1$ and $(z,w)\in\mathbb{C}^2$



Definition

The **fundamental group** is the group of equivalence classes under homotopy of the loops connected in the space. We can denote the fundamental group as $\pi_1(X, x_0)$ for a topological space X with base point x_0 .



◆ □ ▶ ◆ □ ▶

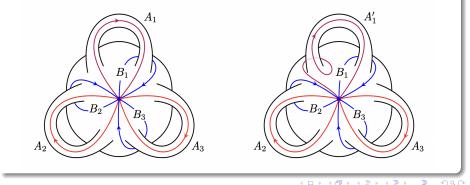
For a Riemann surface with genus g, the fundamental group consists of 2g elements. These elements make up a **marking** on a Riemann surface.

Definition

For a Riemann surface R of genus g, a **marking** on R is defined as $\Sigma_g = \{|A_j|, |B_j| | j = 1, 2, ..., g\}$ of $\pi_1(R, p)$. We denote a **marked Riemann surface** as (R, Σ_g) .

Example

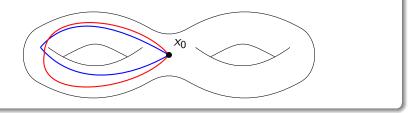
The collection of paths associated with markings $\Sigma_g = \{|A_1|, |A_2|, |A_3|, |B_1|, |B_2|, |B_3|\}$ (left) and $\Sigma_g = \{|A_1'|, |A_2|, |A_3|, |B_1|, |B_2|, |B_3|\}$ (right) on surfaces of genus 3.



Riemann Surfaces, Teichmüller Spaces, and F

Two markings are considered equivalent if they are homeomorphic to each other.

Example



→ ∃ →

▲ 同 ▶ → 三 ▶

Definition

Two marked Riemann Surfaces (R, Σ_{g_1}) and (S, Σ_{g_2}) are considered **marking equivalent** if there exists an isometry $m : R \to S$ such that Σ_{g_2} and $m \circ \Sigma_{g_1}$ are isotopic.

- ロ ト - (理 ト - (ヨ ト - (ヨ ト -)

Definition

We define the **Teichmüller space** of a Riemann surface S of genus $g \ge 2$ as

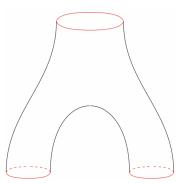
$$T_g = \{(S, \Sigma_g)\}/\sim$$

where Σ_g is the marking on S.

4 A b 4

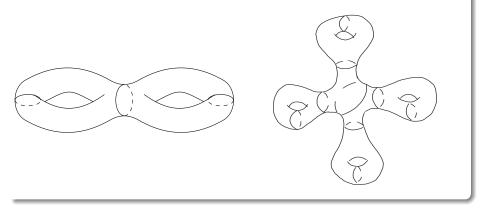
Definition

A pair of topological pants is a genus zero surface with three boundaries.



< ∃⇒

Example

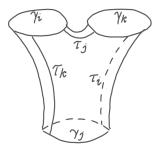


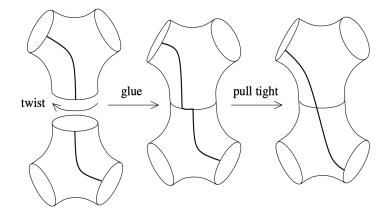
Riemann Surfaces, Teichmüller Spaces, and F

July 7, 2022

<ロト <問ト < 目ト < 目ト

A **geodesic** is a length minimizing curve. Assume all of the boundaries $\{\gamma_1, \gamma_2, ..., \gamma_{3g-3}\}$ are geodesics. Define the lengths $\{\tau_1, \tau_2, ... \tau_{3g-3}\}$ as the shortest paths between these boundaries.





Riemann Surfaces, Teichmüller Spaces, and F

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 July 7, 2022

Definition

For a surface S of g > 1, S can be decomposed in 2g - 2 pairs of pants $\{P_1, P_2, ..., P_{2g-2}\}$ by closed geodesics $\{\gamma_1, \gamma_2, ..., \gamma_{3g-3}\}$. The **Fenchel-Nielson coordinates** of S in a Teichmüller space $T_{g,n}$ are given by:

$$\{(|\gamma_1|, \theta_1), (|\gamma_2|, \theta_2), ..., (|\gamma_{3g-3}|, \theta_{3g-3})\}.$$

T_S is Homeomorphic

Theorem

Let $g \ge 2$ for a surface S. The map

$$FN: T_S \to \mathbb{R}^{3g-3}_+ imes \mathbb{R}^{3g-3}_+$$

defined by

$$FN(X) = (|\gamma_1|, |\gamma_2|, ... |\gamma_{3g-3}|, \theta_1, \theta_2, ..., \theta_{3g-3})$$

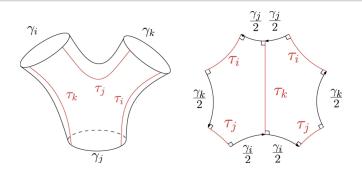
is a homeomorphism.

イロト イポト イヨト イヨト

Proof

Definition

Given a pair of pants with geodesic boundaries there exists three geodesic arcs that join the cuffs perpendicular to their endpoints. These arcs collectively are called the **seams** of the pants.



Riemann Surfaces, Teichmüller Spaces, and F

Proof

Proposition

For $l_1, l_2, l_3 \in \mathbb{R}_+$, there exists a unique hyperbolic right-angled hexagon with alternating edge lengths (l_1, l_2, l_3) .

Proposition

Given a surface S with genus g and pants decomposition P, the surface can be decomposed in 2g - 2 pairs of pants.

Proposition

There are 3g - 3 curves in a pants decomposition for a surface S with genus g.

Any point on the Teichmüller space of a Riemann surface S of genus g can be specified by 3g - 3 nonnegative real numbers (lengths of hyperbolic seams) and 3g - 3 real numbers (twisting angles). Therefore:

$$T_g
ightarrow \mathbb{R}^{3g-3}_+ imes \mathbb{R}^{3g-3}$$

and the Fenchel-Nielson coordinates specify this point. This concludes our proof.

Purpose

- I_S is an easier, more understandable space than the moduli space
- 2 The study of T_S Teichmüller theory a whole field itself
 - **1** The use of metrics: Weil-Petersson metric
 - Study of the shape and distance

イロト イヨト イヨト ・

э

Thank you for listening!

Eugenie Cha

Riemann Surfaces, Teichmüller Spaces, and F